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Continuum wave functions for estimating the electric dipole moment:
Calculation based on a multiconfiguration Dirac-Hartree-Fock approximation

Paweł Syty* and Józef E. Sienkiewicz
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The multiconfiguration Dirac-Hartree-Fock method is employed to calculate the continuum electron wave
functions, which are then used to estimate their contribution to the atomic electric dipole moment (EDM)
of 129Xe. The EDM arises from (P, T )-odd electron-nucleon tensor-pseudotensor and pseudoscalar-scalar
interactions, the nuclear Schiff moment, the interaction of the electron electric dipole moment with nuclear
magnetic moments, and atomic electric dipole matrix elements. In addition to being estimated in the continuum
states, all of these interactions are also estimated in the ground state, as well as in the Rydberg states of
129Xe. Calculations of one-electron atomic orbitals include the interelectronic interactions, through valence and
core-valence electron correlation effects. The contribution to the EDM from continuum states is found to be of
the same order of magnitude as the contribution from discrete states.
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I. INTRODUCTION

In recent years the electric dipole moments (EDMs) of
elementary particles, nuclei, atoms, and molecules have been
the subject of intensive experimental and theoretical studies.
The importance of these studies arises from the fact that the
discovery of a nonzero permanent EDM of an elementary
particle, or in a nondegenerate system of particles, would
constitute a proof of violation of parity P and time-reversal
T symmetries [1,2].

The experimental searches have not yet detected a nonzero
EDM, but they continue to improve the limits on EDMs of
individual elementary particles, as well as limits on CP -
violating interactions [1,3,4]. Nowadays, the focus is on an
EDM of diamagnetic atoms like Xe or Hg. The combined
statistical and systematic errors in the case of 129Xe are by
two order of magnitude higher than in the case of 199Hg
[5]. Despite this, the measurements of the Xe EDM have
significant potential for improvements in the experimental
limit by using a nuclear spin maser technique [6,7]. Recent
experimental studies on the 129Xe and 3He mixture in a newly
designed EDM cell indicate the possibility of improving the
EDM upper limit by at least of one order of magnitude to
achieve the accuracy as low as 10−28 e cm [8], while the most
precise measurement of the EDM induced in 129Xe gives the
value of [9] d(129Xe) = (0.7 ± 3.3 ± 0.1) × 10−27 e cm.

Some diamagnetic atoms, including noble gases like Xe
and Rn, have been investigated within the Hartree-Fock
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approximation in the V N self-consistent potential formed
from all N electrons [10]. In turn, calculations based on
the relativistic-coupled-cluster theory in combination with
the measurement of the EDM of a 129Xe atom gave the
parity and time-reversal odd coupling constant associated with
the tensor-pseudotensor electron-nucleus interaction and the
nuclear Schiff moment [11].

When using the multiconfiguration Dirac-Hartree-Fock
(MCDHF) approximation it is important to understand the
importance of continuum states for calculation of the EDM,
because we expect that the contribution of continuum states
can be different for many-body perturbation theory (MBPT)
and MCDHF approximations. There are several papers on
EDM calculations in which different approximations were
used and bound states summations were done explicitly, but
the contribution from continuum states was not singled out
[12,13]. Only in the rather special case of the ground state
of hydrogen [14], the contribution of continuum states was
calculated explicitly and accounted for 53%.

The main goal of this paper is to demonstrate the method
for generation of continuum state functions for EDM applica-
tion in the MCDHF approximation. As an example, the con-
tribution of the continuum states for the EDM was calculated
and compared to the contributions from discrete states in the
ground state of 129Xe, as well as from the Rydberg states. To
ensure the correctness of our approach, we obtained detailed
insight into the behavior of the electron wave function while
passing through the ionization energy. Let us stress that this
is a numerically obtained estimation of the contribution of the
continuum states to the atomic EDM.
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Discrete states were calculated with the relativistic atomic
structure package GRASP2K [15], based on the MCDHF ap-
proach. Continuum states were calculated using the COWF

code [16] prepared in frames of the RATIP package [17],
adapted to GRASP2K. Time and parity (P, T )-odd electron-
nucleon tensor-pseudotensor (TPT) and pseudoscalar-scalar
(PSS) interactions, the nuclear Schiff moment (NSM), in-
teraction of the electron electric dipole moment (eEDM)
with nuclear magnetic moments operators, and expressions of
matrix elements are presented in [18].

II. GENERAL THEORY OF THE BOUND STATE

We have used the MCDHF approach to generate numerical
representations of atomic wave functions. An atomic-state
function (ASF) �(γPJMJ ) was obtained as a linear com-
bination of configuration-state functions �(γrPJMJ ), eigen-
functions of the parity P , total angular momentum operators
J 2, and the projection MJ ,

�(γPJMJ ) =
∑

r

cr�(γrPJMJ ), (1)

where cr are configuration mixing coefficients. The multicon-
figuration energy functional is based on the Dirac-Coulomb
Hamiltonian, given (in a.u.) by

ĤDC =
N∑

j=1

[cαj · pj + (βj − 1)c2 + V (rj )] +
N∑

j<k

1

rjk

, (2)

where α and β are the Dirac matrices and p is the momentum
operator. The sum runs over a number of electrons N . The
electrostatic electron-nucleus interaction V (rj ) was generated
from a two-parameter Fermi nuclear charge distribution. The
effects of the Breit interaction as well as QED effects were
neglected since they are expected to be small at the level of
accuracy attainable in the present calculations.

The atomic-state functions (1) were obtained as expansions
over jj -coupled configuration-state functions (CSFs). To pro-
vide the LSJ labeling system, the ASFs were transformed
from a jj -coupled CSF basis into an LSJ -coupled CSF basis
using the method provided by [19,20].

III. GENERAL THEORY OF THE CONTINUUM STATE

In the MCDHF approach, we express the total wave func-
tion of the N -electron 129Xe system with one electron in the
continuum in the form [21]

�(γPJMJ ; N ) = � ion(γPJMJ ; N − 1)uκm. (3)

The right-hand side of Eq. (3) is the product of the bound
configuration states of the ion and the one-electron continuum
spinor uκm. Let us stress that the ionic bound states were con-
structed from the atomic ones according to (1), by removing
one of the bound electron.

The continuum Dirac spinor is defined as

uκm(r) = 1

r

(
Pκε (r )χκm(r/r )

iQκε (r )χ−κm(r/r )

)
, (4)

where Pκε and Qκε refer to continuum orbitals and the spin-
angular function is given by

χκm(r/r ) =
∑

σ=±1/2

〈
jm

∣∣l, 1
2 ,m − σ, σ

〉
Ym−σ

l (r/r )χσ
1/2, (5)

where 〈jm|l, 1
2 ,m − σ, σ 〉 is a Clebsch-Gordan coefficient,

Ym−σ
l (r/r ) is a spherical harmonic, χσ

1/2 is the spin eigen-
function, κ is the relativistic angular quantum number, with
κ = ±(j + 1/2) for l = j ± 1/2, where j is the total angular
momentum and l and m are the orbital and magnetic quantum
numbers, respectively. These continuum orbitals are solutions
of the Dirac-Fock (DF) equations(

d

dr
+ κ

r

)
Pκε (r ) −

(
2c − ε

c
+ V (r )

cr

)
Qκε (r ) = −X(P )(r )

r
,

(
d

dr
− κ

r

)
Qκε (r ) +

(
− ε

c
+ V (r )

cr

)
Pκε (r ) = X(Q)(r )

r
.

(6)

Here ε is the kinetic (positive) energy of the continuum elec-
tron. Direct V (r ) and exchange X(r ) potentials are given in
[22]. These equations were solved by the method of outward
integration to obtain the (radial) continuum wave functions
Pκε and Qκε . See [23,24] for a detailed description of the
total wave function of the atom- (ion-) electron system and
the method of solving Eq. (6).

The continuum wave function was normalized per unit
energy [25], which means that the amplitude of the continuum
spinor Pκε was adjusted to 21/4π−1/2ε−1/4. Then the small
component Qκε was also rescaled. Tests of normalization
correctness are presented in Sec. VIII.

IV. THE EDM THEORY

The atomic EDM can be written as a sum consisting of
two parts, the first for the bound states and the second for the
electron in the continuum state (CS)

d int
at = d int

b + d int
c , (7)

where d int
b represents the contribution to the atomic EDM

from bound states and the d int
c contribution from the electron

in the continuum. These parts are detailed below. Like in
Ref. [18], the EDM values of bound states were computed by
the formula

d int
b = 2

∑
i

〈0|D̂z|i〉〈i|Ĥint|0〉
E0 − Ei

, (8)

where D̂z represents the z projection of the electric dipole mo-
ment operator, |0〉 represents the ground state |�(γPJMJ )〉,
with J = 0 and even parity, and the summation runs over
excited states |�(γi (−P )JiMJi

)〉, with Ji = 1 and odd parity.
Here E0 and Ei are the energies of the ground and excited
states, respectively. In practice, this sum needs to be truncated
at some level.

The second part is the contribution to the atomic EDM
from the (P, T )-odd interactions between the electron in the
continuum and bound electrons

d int
c = 2

∫ ∞

0
f int (Ec )dEc, (9)
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where

f int (Ec ) = 〈0|D̂z|c〉〈c|Ĥint|0〉
E0 − Ec

. (10)

According to Eq. (10), we need to calculate the matrix element
between the ASF of the atom and the continuum electron wave
function c of the total energy Ec, which in turn is the sum of
the energy of the Xe+ ion and kinetic energy ε of the electron.
The ASF for the atom and ion is from the MCDHF and the
wave function of the electron is from solving Eq. (6).

A Hamiltonian Hint consecutively becomes one of the in-
teraction operators responsible for inducing the atomic EDM,

ĤTPT = i
√

2GF CT

N∑
j=1

(〈σA〉 · γ j )ρ(rj ), (11)

ĤPSS = −GF CP

2
√

2mpc

N∑
j=1

γ0(∇jρ(rj )〈σA〉), (12)

ĤNSM = 3

B

N∑
j=1

(S · rj )ρ(rj ), (13)

ĤeEDM = −ide

N∑
j=1

(γ j B), (14)

where GF is the Fermi constant and CT and CP are dimen-
sionless constants of TPT and PSS interactions, respectively.
The Schiff moment S is directed along the nuclear spin I

and S ≡ SI/I , where S is the coupling constant with units
|e|f m3, and de represents the electric dipole moment of the
electron.

V. GENERATION OF BOUND-STATE WAVE FUNCTIONS

A. The Xe atom

Bound-state wave functions were generated in an extended
optimal level (EOL) potential [26]. Wave functions for the
ground state and for excited states were optimized separately
in a nonorthogonal way. The atomic-state function expansions
(1) were based on the active-space method.

TABLE I. The TPT (in 10−20CT 〈σN 〉|e| cm), PSS (in
10−20CT 〈σA〉|e| cm), NSM (in 10−17[S/(|e| fm3)]|e| cm), and
eEDM (in de × 10−4) interaction contributions to the EDM,
calculated with the EOL method in different virtual sets, for the
ground state of 129Xe. Here VOS enumerates the active sets; Th and
Ex indicate the results obtained with excitation energy taken from
GRASP2K and the NIST database [28], respectively.

TPT PSS NSM eEDM

VOS Th Ex Th Ex Th Ex Th Ex

0 (DF) 0.16 0.15 0.44 0.43 0.12 0.11 0.10 0.11
1 0.18 0.20 0.51 0.59 0.12 0.14 0.16 0.19
2 0.17 0.34 0.47 0.97 0.10 0.19 0.27 0.61
3 0.16 0.35 0.47 1.00 0.10 0.20 0.26 0.59
4 0.15 0.32 0.43 0.92 0.09 0.19 0.22 0.51
5 0.16 0.33 0.45 0.95 0.09 0.20 0.24 0.54

TABLE II. The Xe+ energies calculated with different virtual
sets. The first column indicates the designation of the particular
virtual set.

VOS J P NCSF E (hartree)

0 (DF) 1/2 1 7436.32436840377
1 1/2 430 7436.43020217599
2 1/2 13080 7436.51799792548
3 1/2 53898 7436.53933399994
4 1/2 116350 7436.55170675590
0 (DF) 3/2 1 7436.37290018392
1 3/2 752 7436.47203134945
2 3/2 23248 7436.55470539355
3 3/2 96006 7436.57651624905
4 3/2 207122 7436.58950780784

Active space was generated by single and double (SD) ex-
citations from valence shells (5p and 6s) and single restricted
double (SRD) substitution from core shells of configurations
5p6 and 5p56s. Restricted double substitutions allow one
excited electron from the core and another from the valence
shells. The virtual orbital set (VOS) was restricted up to l = g

as follows:

VOS1 = {7s, 6p, 5d, 4f, 5g},
VOS2 = VOS1 + {8s, 7p, 6d, 5f, 6g},
VOS3 = VOS2 + {9s, 8p, 7d, 6f, 7g},
VOS4 = VOS3 + {10s, 9p, 8d, 7f, 8g},
VOS5 = VOS4 + {11s, 10p, 9d, 8f, 9g}.

The core was opened for SRD substitutions step by step. For
the VOS1 one core shell 5s was opened for SD excitations;
for the next VOS2 all n = 4 shells were opened for SRD sub-
stitution. For VOS5 all core shells were opened. In the VOS5

the number of CSFs was 67 325 for odd-parity and 32 049
for even-parity configurations. For each VOS the number of
optimized levels for odd parity was extended by 5 and in the
end (VOS5) it reached 27. This included levels 5p5 ns1,3P ,
n = 6–11; and 5p5 nd1,3P and 5p5 nd3D, n = 5–9.
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FIG. 1. Large components of the normalized continuum orbitals
with J = −1/2 and κ = −1 for different ionic virtual sets. The
kinetic energy of the continuum electron is equal to 0.0007 hartree.
The fragment marked with a box is enlarged in Fig. 2.
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FIG. 2. Same as in Fig. 1, but for a smaller R-axis range. Small
differences for different complexes are shown, but the convergence
of the results with an increasing number of CSFs is clearly visible.

B. The Xe+ ion

The active set for the states [Kr]4d105s25p5 2P1/2,3/2 was
generated in the same manner as for the Xe atom. The
wave functions of Xe+ were taken from the atom ground
state [Kr]4d105s25p6 1S0 and the mixing coefficients were
obtained by the relativistic configuration interaction compu-
tation.

VI. CONTRIBUTION OF BOUND STATES TO THE EDM

The atomic states for EDM calculations were built from
electronic orbitals optimized separately for each state. In
general, this approach results in electronic orbitals, which are
considered optimal for the calculations of matrix elements
of the EDM operators, but they are not necessarily optimal
for calculations of transition energies [27]. Therefore, we
applied a strategy where the EDM matrix elements were
calculated ab initio from separately optimized atomic states,
while the transition energies were adopted from the NIST
database [28].

Data for the EDM for 129Xe from the TPT, PSS, NSM,
and eEDM interactions, presented in Table I, are only from
the ground state and were computed by Eq. (8). All EDM
values computed with the NIST energies, except those from
DF interactions, are larger than values calculated with the
GRASP2K energies.

To estimate the EDM contribution from the Rydberg states
of 129Xe, the Riemann ζ tail procedure described in [18] was
applied. The main goal of this procedure was to evaluate
the upper bound of the infinite tail of the sum (8), which
contains the contribution to the EDM from Rydberg states.
This contribution, divided by sum of the five leading terms in
(8), was found to be 1.5%.

VII. COMPUTATIONS OF CONTINUUM WAVE
FUNCTIONS FOR THE Xe+ + e− SYSTEM

Wave functions of the continuum states were generated
in the ionic field described in Sec. V B. The results of Xe+

energies calculated with different virtual sets are collected in
Table II. As expected, the differences between consecutive
energies become smaller along with the growing size of the
active space used. These virtual sets were used further in the
generation of continuum orbitals.

The kinetic energies of the continuum electron used in
our calculations cover the range of 0.0001–10.0 hartree. They
were chosen as 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001,
0.003, 0.005, 0.007, 0.009, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2,
0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, 5.0, and 10.0 hartree. Here
only the s wave (κ = −1) was calculated, since only this one
was used in further EDM calculations. The continuum orbital
wave functions were calculated on a relatively extensive grid,
e.g., 90 000 points were used on the asymptotically linear
exponential grid (which correspond to Rmax = 397 538 and
1258 bohrs for the lowest and highest energies from the list,
respectively). Such long grids were required to find the accu-
rate amplitude of the wave function needed for normalization.

Large components of the continuum orbitals of the con-
tinuum wave functions for a selected energy are presented in
Figs. 1 and 2. The amplitude becomes slightly smaller with
enlargement of the virtual sets.

VIII. COMPUTATIONAL ACCURACY OF THE
CONTINUUM WAVE FUNCTIONS

The continuum orbitals were calculated with the modified
version of the COWF code, which was originally prepared in
frames of the RATIP package. The modifications have adapted
the code to the newest version of the GRASP2K package.

To ensure that the modified code correctly generates con-
tinuum wave functions, two tests were performed. In the first

TABLE III. Calculated phase shifts for the Xe + e− system with the different numbers of CSFs used (NCSF), compared to the previous
computations [23].

Ref. [23] Present work

ε (eV) κ NCSF = 1 NCSF = 827 NCSF = 3 NCSF = 137 NCSF = 2337

10 −1 1.452 1.448 1.451 1.446 1.444
10 1 −1.074 −1.070 −1.076 −1.075 −1.073
10 −2 −1.170 −1.169 −1.166 −1.173 −1.170
10 2 0.995 0.975 0.984 0.971 0.962
10 −3 0.982 0.975 0.971 0.958 0.952
10 3 0.111 0.110 0.109 0.109 0.109
10 −4 0.115 0.114 0.113 0.113 0.113
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FIG. 3. Continuity across the series limit ε = 0 for the electric
dipole radial integrals. To the left of the vertical line are calculated
radial integrals for the Rydberg states (where An = √

n3/2) and to
the right for the continuum states.

test, scattering phase shifts were calculated for elastic scat-
tering of electrons from 129Xe. Calculations were performed
for three virtual orbital sets of J = 0 and the results were
compared to the results from [23] (see Table III). None of the
calculations accounted for correlation effects. This test was
repeated for different energies and higher partial waves of the
continuum electron, and also for the case of J = 1. In all cases
the results from [23] were reproduced correctly.

In the second test, electric dipole radial integrals
An〈5p|r|ns〉 and An〈5p|r|nd〉 (An =

√
n3/2, n = 6, . . . , 15)

were calculated involving the outer electron in the Rydberg se-
ries 5s25p5ns and 5s25p5nd. They were matched to integrals
〈5p|r|εs〉 and 〈5p|r|εd〉, calculated for the continuum orbitals
Pκε and Qκε , for a set of energies ε from 10−7 up to 10−1

hartree. The results are presented in Fig. 3. It is clearly shown
that continuity through the ionization limit was achieved.

Although in the EDM calculations only the s wave (κ =
−1) was considered, the above tests were also performed
for higher values of κ . This way it has been shown that the
continuum orbitals were calculated and normalized correctly.

IX. THE EDM RESULTS FROM THE CONTINUUM STATES

Using the wave functions of the continuum electron,
we computed the matrix elements between ground and
continuum-state functions of the Xe atom, namely, 〈0|D̂z|c〉
and 〈c|Ĥint|0〉, and then computed the EDM contributions in
VOS2 for each state from the continuum. These values of
the eEDM for J = 3/2, 1/2 for p− are plotted in Fig. 4
as an example. The fitting procedure allows us to obtain the
dependence of EDM values for all interactions from energies
of the continuum states. We found the best-fitting function

f int (Ec ) = −A

(1 + aEc )1/b
. (15)

It should be mentioned that the parameters a and b were
matched in the second decimal place for the same VOS, J ,
and p orbital. After integration of these functions according
to the formula (9), the EDM contributions from the continuum
states were obtained.

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1.0x10

0.0

1.0x10

2.0x10

3.0x10

4.0x10

5.0x10

eEDM3/2,p- = 4.756×10-5

10-5
/(1+0.602*Ec)

1/0.178

eEDM1/2,p- = 4.818× /(1+1.159*Ec)
1/0.292

3/2 p-
1/2 p-

eE
D
M
(a
.u
.)

Ec (a.u.)

FIG. 4. Dependence of eEDM values for all interactions of the
continuum energy, for the p− orbital in the VOS2 approximation.
The ground-state configuration for Xe+ is J = 3/2, 1/2 with fitted
equations.

The contribution of the continuum states for all interaction
was computed in VOS2 and is presented in Table IV. All these
contributions were computed with the experimental ionization
limit from the NIST database [28]: 0.445 763 535 4 for Xe
II 5s25p5 2P o

3/2 and 0.493 773 699 49 for 5s25p5 2P o
1/2 (both

values in a.u.). The theoretical ionization limits, computed
with the total energies from the MCDHF method for atoms
and ions, are 0.562 291 606 and 0.598 999 075 (in a.u.),
respectively. The contributions computed with experimental
values of ionization limits are slightly bigger than those
obtained with the MCDHF method. In Table IV the sum of all
states in the continuum is also presented (see the last column).

A summary of the computations is presented in Table V.
Also the sum of contributions to the EDM from bound and

TABLE IV. Individual continuum states and the sum of their
contributions to the interactions. The TPT (in 10−20CT 〈σN 〉|e| cm),
PSS (in 10−20CT 〈σA〉|e| cm), NSM (in 10−17[S/(|e| fm3)]|e| cm),
and eEDM (in de × 10−4) interaction contributions to the EDM are
calculated in VOS2 for 129Xe. Here Th and Ex indicate the results
obtained with the excitation energy taken from GRASP2K and the
NIST database [28], respectively.

J = 3/2 J = 1/2

p− p+ p− p+ �

TPT
Th 0.17 −0.84 × 10−4 0.07 −0.86 × 10−4 0.24
Ex 0.08 −0.98 × 10−4 0.08 −0.97 × 10−4 0.16

PSS
Th 0.20 0.01 0.20 0.01 0.42
Ex 0.23 0.01 0.23 0.01 0.48

NSM
Th 0.02 0.03 0.02 0.03 0.10
Ex 0.02 0.03 0.02 0.03 0.10

eEDM
Th 0.31 −0.14 0.30 −0.14 0.33
Ex 0.34 −0.16 0.34 −0.16 0.36
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TABLE V. The TPT (in 10−20CT 〈σN 〉|e| cm), PSS (in
10−20CT 〈σA〉|e| cm), NSM (in 10−17[S/(|e| fm3)]|e| cm), and
eEDM (in de × 10−4) interaction contributions to the EDM from
bound and continuum states, for the ground state of 129Xe, compared
with data from other methods. Here Th and Ex indicate the results
obtained with the excitation energy taken from GRASP2K and the
NIST database [28], respectively.

TPT PSS NSM eEDM

Th Ex Th Ex Th Ex Th Ex

bound states 0.16 0.33 0.45 0.95 0.09 0.20 0.24 0.54
CS 0.24 0.16 0.42 0.48 0.10 0.10 0.33 0.36
� 0.40 0.49 0.87 1.43 0.19 0.30 0.57 0.90
DHFa 0.45 1.3 0.29 0.85
RPAa 0.57 1.6 0.38 1.00
DHFb 0.41
RPAb 0.52
DHFc 0.41
RPAd 0.38
DHFe 0.86
RPAe 1.05
DFf 0.45 0.29
MBPTf 0.41 0.27
MBPTf 0.52 0.34
CPHFf 0.56 0.38
CCf 0.61 0.42
CCf 0.50 0.34
CCf 0.50 0.34
CPHFg 0.56

aReference [10].
bReference [29].
cReference [30].
dReference [31].
eReference [32].
fReference [32].
gReference [12].

continuum states according Eq. (7) is presented. Let us stress
here that the values from the CS are of the same order as those
computed from the bound states.

X. UNCERTAINTY ESTIMATES

Since the present work is based on ab initio calcula-
tions, it is not easy to estimate the overall uncertainty.

However, the possible sources of uncertainties may be
identified.

Two of these error sources are electron correlation effects
and wave-function relaxation. Their contributions to the over-
all error budget can be estimated by comparing the EDM
results for bound states, obtained for different virtual orbital
sets DF–VOS5. By comparing the last two rows in Table I, we
can estimate this contribution as approximately 5%.

In the present work only SRD substitutions were used to
generate virtual orbital sets, thus the double (partially), triple,
and higher-order substitutions were omitted. In general, this
might affect the result around 10%–20%, but it is often partly
canceled and usually remains below 10% [33]. In the case of
Xe, we estimate this contribution as 5%.

The correlation term in Eq. (3) is omitted. In the case of
xenon this may affect the CS wave function by approximately
5%. This is based on the calculations with and without a
correlation term in [23].

Our neglect of the QED effects and Breit interaction also
contributes to the total error budget. It is estimated as 1%.

In Eqs. (9) and (10) numerical methods are employed for
fitting and integrating. We estimate the fitting error as no
more than 2%. Since the integrand is a smooth function, the
integrating error is estimated to be less than 1%.

Taking all of the above contributions into account, we
estimate the relative standard error of the mean σx = 20%.

XI. CONCLUSION

The method for generating continuum electron wave func-
tions in the framework of the MCDHF method were presented
in the context of the EDM for many-electron atoms. The
continuity across the ionization energy of radial integrals
involving the Rydberg and continuum states was ensured. As
an example, the contributions to the atomic EDM of 129Xe,
from both discrete and continuum states, were estimated using
the MCDHF method. We showed that the contribution of
the continuum electron to the atomic EDM is comparable in
size to the contribution of the bound states. Therefore, in the
accurate calculations of EDMs it is necessary to evaluate the
continuum contribution.
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