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Abstract—Utilization of electromagnetic (EM) simulation tools 
is mandatory in the design of contemporary antenna structures. 
At the same time, conducting designs procedures that require 
multiple evaluations of the antenna at hand, such as parametric 
optimization or yield-driven design, is hindered by a high cost of 
accurate EM analysis. To certain extent, this issue can be 
addressed by utilization of fast replacement models (also referred 
to as surrogates). Unfortunately, due to curse of dimensionality, 
traditional data-driven surrogate modeling methods are limited to 
antenna structures described by a few parameters with relatively 
narrow parameter ranges. This is by no means sufficient given the 
complexity of modern designs. In this paper, a novel technique for 
surrogate modeling of antenna structures is proposed. It involves 
a construction of two levels of surrogates, both realized as kriging 
interpolation models. The first model is based on a set of reference 
designs optimized for selected performance figures. It is used to 
establish a domain for the final (second-level) surrogate. This 
formulation permits efficient modeling within wide ranges of 
antenna geometry parameters and wide ranges of performance 
figures (e.g., operating frequencies). At the same time, it allows 
uniform allocation of training data samples in a straightforward 
manner. Our approach is demonstrated using two microstrip 
antenna examples and compared to conventional kriging and 
radial basis function modeling. Application examples for antenna 
optimization are also provided along with experimental validation. 

Index Terms—Antenna design, surrogate modeling, 
approximation models, simulation-driven design, kriging 
interpolation. 

I. INTRODUCTION
ontemporary antenna structures need to satisfy more and 
more stringent specifications concerning both electrical 

and field performance. Furthermore, increasing demands are 
imposed concerning simultaneous achievement of multiple 
objectives, realization of additional functionalities (multi-band 
operation [1], band notches [2], circular polarization [3], etc.), 
as well as maintaining small physical dimensions [4]. Fulfilling 
these demands requires development of non-standard antenna 
geometries which are topologically complex and described by 
a large number of parameters. Clearly, only full-wave 
electromagnetic (EM) analysis is capable of providing reliable 
evaluation of such designs. While EM simulation is not a 
problem for one-time design verification, massive simulations 
required when carrying out tasks such as parametric 
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optimization [5], statistical analysis [6], or robust (tolerance-
aware) design [7], [8], create a serious practical challenge. The 
need of incorporating environmental components such as 
connectors, housing, etc., only adds to already high 
computational costs. Due to the structural complexity of 
modern antennas, experience-driven parameter sweeping as a 
way of parameter tuning is inferior to automated optimization. 
The latter, however, is often impractical when using 
conventional methods, both local [9] and global [10], [11]. 
Addressing these issues led to development of several 
techniques that offer improved computational efficiency. One 
of these is utilization of adjoint sensitivities within gradient-
based optimization frameworks [12], [13], which is not 
widespread primarily because of a limited support for this 
technology in commercial simulation software packages. 
Another class of methods are surrogate-assisted algorithms 
where computational burden is cast into cheaper representations 
of the antenna at hand. The two major groups of surrogates are 
physics-based ones (space mapping [14], response correction 
techniques [15]-[18]) and data-driven models [19], [20]. 
Computational savings can also be obtained by exploiting a 
particular structure of the system response (feature-based 
optimization [21]).  

In general, utilization of surrogate models allows for 
alleviating difficulties related to high cost of extensive EM 
simulations. In a strictly optimization context, surrogates are 
often constructed locally (along the optimization path). For 
generic purposes, global or quasi-global models are needed, 
which are supposed to be valid over the entire parameter space 
or a large portion thereof. Because of low evaluation cost and 
versatility, data-driven surrogates constitute the most popular 
class of models. Widely used techniques include polynomial 
regression [22], kriging [23], radial basis function interpolation 
[23], Gaussian process regression [24], neural networks [25], 
and support vector regression [26]. Unfortunately, the number 
of training data points necessary to construct a reliable 
surrogate (in many applications, RMS error below 5 percent is 
considered sufficient [27]) increases rapidly with the design 
space dimensionality but also the parameter ranges, which is a 
common disadvantage of approximation modeling. The latter 
problem is actually of higher importance because in order for 
the surrogate to be useful in a design work, it should cover a 
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decent range of operating condition variability (and, 
consequently, be valid within wide range of geometry/material 
parameters).  

Data-driven models are normally set up in the domains 
defined by lower and upper bounds for the problem parameters. 
From the designer’s perspective, vast majority of such domains 
are uninteresting because they contain designs that are poor 
with respect to whatever performance figures may be 
considered. For example, re-designing a multi-band antenna for 
various operating frequencies requires joint tuning of multiple 
parameters to maintain resonances at sufficient depths or 
operating bands at sufficient widths. Identification of the 
parameter space regions that contain good designs may save a 
lot of computational effort when setting up a surrogate. In [28], 
a constrained modeling technique has been proposed, in which 
the computational savings are achieved by restricting the model 
domain to a vicinity of a manifold spanned by a set of reference 
(base) designs. These designs could be pre-existing (e.g., from 
the previous design work with the same structure) or optimized 
specifically with respect to selected performance figures (e.g., 
operating frequency, bandwidth, etc.). Domain restriction 
permits construction of approximation models within higher-
dimensional spaces without formally limiting the ranges of 
geometry parameters. In [29], the method [28] has been 
generalized for an arbitrary number of performance figures and 
an arbitrary allocation of the base designs. Despite the 
mentioned advantages, the constrained modeling techniques are 
rather complex in terms of the surrogate model domain 
geometry, applications in design optimization (implicit domain 
definition makes it problematic to maintain feasibility of 
solutions in the course of the optimization run), as well as 
design of experiments (uniform sampling of constrained 
domain is a non-trivial task [29]). 

This paper proposes a novel performance-driven surrogate 
modeling approach. Our technique is based on a nested kriging 
interpolation. The first-level model maps the figures of interest 
(or objective) space into the geometry parameter space of the 
antenna in order to establish the surrogate model domain. The 
domain is defined as the objective space image through the 
first-level mapping orthogonally extended to provide it with 
non-zero “thickness”. Subsequently, the second-level model is 
constructed over that domain to represent the antenna 
responses. Although the proposed methodology shares a similar 
concept of constrained modeling with the techniques of [28] 
and [29], it is significantly different from these in the following 
respects, thus constituting an important technical novelty and 
bringing contributions: (i) the mapping between the objective 
space and surrogate domain is surjective (and even 
homeomorphic under mild assumptions concerning the domain 
“thickness”), (ii) the surrogate domain has a regular geometry 
which is a continuous image of a unit hypercube, (iii) uniform 
allocation of training data samples is straightforward (as a 
consequence of (ii)), (iv) antenna optimization within the 
surrogate model domain is also straightforward as the domain 
is defined explicitly (as opposed to [28] and [29]). The 
surrogate modeling approach introduced here is demonstrated 
using a dual-band uniplanar dipole antenna and a ring slot 

antenna. In both cases, accurate models are constructed for wide 
ranges of operating conditions (operating frequencies for the 
dipole antenna and center frequency and substrate permittivity 
for the slot antenna) and geometry parameters using small 
training sets. Predictive power improvement over the 
benchmark methods is shown to be dramatic. Applications of 
the surrogates to antenna optimization as well as experimental 
validation of selected designs are also provided. 

II. PERFORMANCE-BASED NESTED KRIGING MODELING 
Conventional approximation-based surrogates are 

constructed in regular domains, typically being intervals 
(hypercubes), defined by lower and upper bounds for design 
variables. Handling such domains is straightforward. This 
includes allocation of training data samples: most of design of 
experiments techniques [30]-[32] have been developed for 
interval-type sets. At the same time, due to complex interactions 
between geometry parameters of antenna structures, design that 
are “good”, that is, optimal with respect to any particular 
performance figures of choice, are concentrated within small 
subsets (low-dimensional manifolds) [29]. This means that vast 
majority of hypercube-like domains contain uninteresting 
designs. Consequently, constraining the modeling process to 
the “promising” regions may allow us to significantly reduce 
the training data set required to construct the model while 
maintaining its good predictive power. 

This section outlines the proposed modeling approach. The 
fundamental concept is to identify the “promising” region of the 
parameter space and build the surrogate within it. This is 
explained on a generic level in Section II.A. Section II.B 
provides particulars concerning practical realization of the 
concept using a set of reference designs. A formal definition of 
the surrogate domain, the nested modeling framework, and the 
uniform sampling procedure are described in Sections II.C 
through II.E. 
A. Objective Space and Geometry of Optimum Design Sets 

We denote by X the parameter space defined in a usual 
manner, i.e., using the lower and upper bounds on design 
variables l  x  u, where x = [x1 … xn]T, l = [l1 … ln]T, u = [u1 
… un]T, or X = [l1 u1]  …  [ln un]. Let fk, k = 1, …, N, denote 
the figures of interest to be considered in the design process (e.g., 
operating frequencies of a multi-band antenna). The objective 
space F is defined by the ranges (lower and upper bounds) for the 
figures fk, fk.min  fk(j)  fk.max, k = 1, …, N, i.e., we have F = [f1.min  
f1.max]  …  [fN.min  fN.max]. Further, let U be the scalar objective 
function such that  

( ) arg min ( , )fU U xf x f                            (1) 
is the optimum design of the antenna at hand for a given vector 
of figures of interest f. For example, if f is a vector of operating 
frequencies of a multi-band antenna, U() may be defined as –
min{B1,…,BN}, where Bj is the fractional operating bandwidth 
corresponding to the operating frequency fj. In that case, Uf(f) will be a design that maximizes the antenna fractional 
bandwidths while allocating them at the required frequencies f. 
The image Uf(F) of the objective space F is an N-dimensional 
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manifold in the parameter space X as illustrated in Fig. 1. From 
the point of view of antenna design, only Uf(F) is of interest 
when considering the performance figures f1 through fN. A 
practical problem is of course identification of this set and 
constructing the surrogate model within Uf(F). This is the 
subject of the proposed modeling framework as explained in the 
remaining part of this section. 
B. Reference Designs and Level I Surrogate 

Identification of the manifold Uf(F) is realized here using a 
set of reference designs x(j)  Uf(F), j = 1, …, p, optimized with 
respect to the performance figure vectors f(j) = [f1(j) … fN(j)]. In 
other words, x(j) = Uf(f(j)), i.e., it is a solution to (1) with the 
objective function U(x, f(j)). It should be noted that the reference 
designs may be available beforehand (from the previous design 
work on the same structure) or obtained specifically for the 
purpose of surrogate model construction. 

In order to approximate the manifold Uf(F), the first-level 
surrogate sI(f) is constructed, which maps the objective space F 
into the parameter space X. Here, it is implemented as a kriging 
interpolation model [23] with {f(j),x(j)} being the training set. The 
conceptual illustration of sI() is shown in Figs. 2(a) and 2(b). 
C. Surrogate Model Domain 

It should be emphasized that sI(F)  X is only an 
approximation of the manifold Uf(F), obtained using limited 
information (here, the reference designs). In order to ensure that 
the entire manifold is a proper subset of the surrogate model 
domain to be constructed, certain “thickness” has to be 
provided by extending sI(F) in all orthogonal directions to it.  

We denote by {vn(k)(f)}, k = 1, …, n – N, an orthonormal 
basis of vectors normal to sI(F) at f. Moreover, we define xmax = max{x(k), k = 1, …, p} and xmin = min{x(k), k = 1, …, p}, and 
dx = xmax – xmin as the range of variation of antenna geometry 
parameters within sI(F). Let D be a user-defined thickness 
parameter. Using this notation, we define extension coefficients 
as follows: 

TT
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( ) [ ( ) ... ( )] ( )2
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n N x n
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Fig. 1. The objective space F (left panel) and the design space X (right panel). 
The image Uf(F) of F is an N-dimensional manifold in X (here, N = 2), which 
contains designs that are optimal with respect to the figures of interest f1 through 
fN. From design purposes point of view, the surrogate modeling process can be 
restricted to Uf(F) without any loss of information concerning designs of 
interest with respect to the selected figures of interest. 
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Fig. 2. The concept of nested kriging modeling (here, illustrated for two figures 
of interest and three-dimensional parameter space): (a) reference designs and 
objective space F; (b) the image sI(F) first levels surrogate model and the 
normal vector v1(k) at f(k); (c) manifolds M– and M+ as well as the surrogate model 
domain XS defined as orthogonal extension of sI(F). 

 Here, the matrix Vn consists of the vectors vn(k)(f) (as its 
columns). 

The coefficients of (2) determine the boundaries of the 
surrogate model domain XS, which is allocated between the 
following two manifolds:  

  ( )
1: ( ) ( )n N k

I k nkM X a
    x x s f f v f             (3) 

and  
  ( )

1: ( ) ( )n N k
I k nkM X a

    x x s f f v f             (4) 
In other words, we have 

( )
1

( ) ( ) ( ) : ,
1 1, 1,...,

n N k
I k k n

kS
k

a FX
k n N






            

x s f f v f f             (5) 

Thus, the domain XS is defined as a set of all points of the 
form x = sI(f) + k = 1,…, n – N kak(f)vn(k)(f) with f  F and –1  k  1, for k = 1, …, n – N.  

The concept of orthogonal extension of sI(F) has been 
graphically illustrated in Figs. 2(b) and 2(c). It should be noted 
that the thickness parameter D determines the “amount” of the 
orthogonal extension of sI(F) (into the manifolds M– and M+), 
or, in other words, the lateral size of the surrogate model 
domain in relation to the tangential size of sI(F). 
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D. Level II Surrogate 
The second-level surrogate is a kriging interpolation model 

set up in XS, using a set of training data samples 
{xB(k),R(xB(k))}k  = 1, …, NB, where R is the EM-simulation model 
of the antenna at hand. The samples are allocated as described 
in Section II.E. The second-level model is our final surrogate 
which accounts for the antenna designs restricted to the vicinity 
of the manifold Uf(F). Figure 3 shows the flow diagram of the 
proposed surrogate modeling methodology. 
E. Design of Experiments for Nested Kriging 

Achieving the best possible predictive power of the 
surrogate model requires uniform allocation of the training data 
samples (note that a “one-shot” design of experiments is 
considered here rather than sequential sampling [33]). This has 
been a major issue for the previous attempts to constrained 
antenna modeling [29]. The problem was a complex definition 
and geometry of the surrogate model domain, determined 
through triangulation of the reference designs [29]. 

For the proposed nested modeling methodology, uniform 
sampling can be realized in a convenient manner, directly using 
the domain definition (5) and a two-step surjective 
transformation of a unit hypercube onto XS. Let [0,1]n be a unit 
hypercube, and {z(k)}, k = 1, …, NB, be a uniformly distributed 
data set (here, obtained using a Latin Hypercube Sampling 
[34]), with z(k) = [z1(k) … zn(k)]T. 

The first step of mapping the samples onto XS is realized as 

 
T

1 1 1
1.min 1 1.max 1.min .min .max .min

1

( ) ([ ... ] )
( ) ... ( )

[ 1 2 ... 1 2 ]

n
N N N N

N n

h h z z
f z f f f z f f

z z

  
     

    

y z
   (6) 

In other words, h1 maps the hypercube onto a Cartesian 
product F  [–1,1]n–N.  
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Fig. 3. Flow diagram of the proposed nested kriging modeling methodology. 

The second step is mapping of F  [–1,1]n–N onto XS as  
T T

2 2 1 1
T ( ) T

1 1
1

( ) ([ ... ] ) ([ ... ] )
([ ... ] ) ([ ... ] )

n I N
n N k

N k k N n N
k

h h y y y y
y a y y y y



   


x y s
v

           (7) 

The meaning of expansion coefficients ak and the normal 
vectors vn(k) has been explained in Section II.C. The samples 
xB(k) obtained as  

( ) ( ) ( )
2 1( ) ( ( ))k k k

B H h h x z z                            (8) 
are uniformly distributed with respect to the figures of interest 
f1 through fN. It should be noted that the same mapping can be 
utilized for other purposes such as parametric optimization 
within the domain XS, which is convenient because regardless 
of the domain geometry, it is sufficient to operate within F  [–
1,1]n–N and only apply the mapping (8) for antenna evaluation 
purposes (cf. Section IV). Graphical illustration of the sampling 
procedure has been provided in Fig. 4.  
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 Fig. 4. Sampling procedure in the surrogate model domain XS (two-dimensional 
objective space and three-dimensional parameters space is used here for 
illustration purposes, cf. Fig. 2). LHS-allocated samples are first mapped onto 
the Cartesian product of F and [–1,1]n–N using function h1 (cf. (6)). The samples 
are then mapped onto XS using function h2 (cf. (7)). An additional picture 
(second from the bottom) also illustrates samples sI(h1(z)) mapped into the 
image sI(F) of the objective space F (i.e., before their orthogonal relocation as 
in the second term of (7). 
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III. VERIFICATION EXAMPLES 
In this section, operation and performance of the proposed 

nested modeling framework is demonstrated using two 
examples, a uniplanar dipole antenna and a ring slot antenna. 
The analysis of the modeling error versus the size of the training 
data set is carried out along with benchmarking using 
conventional kriging and radial basis function interpolation 
surrogates. Applications to antenna optimization are considered 
in Section IV. 
A. Case 1: Uniplanar Dipole Antenna 

Our first example is a dual-band uniplanar dipole antenna 
(Antenna I) shown in Fig. 5 [35]. The antenna is implemented 
on a Rogers RO4350 substrate (εr = 3.5, h = 0.76 mm). It is fed 
by a 50 Ohm coplanar waveguide (CPW). The variables are: x 
= [l1 l2 l3 w1 w2 w3]T, whereas l0 = 30, w0 = 3, s0 = 0.15 and o = 
5 are fixed (all dimensions in mm). The EM antenna model R 
(~100,000 cells; 60 s simulation on a dual Xeon E5540 
machine) is implemented in CST Microwave Studio and 
evaluated using its time-domain solver. 

The goal is to construct the surrogate model of the antenna in 
Fig. 5 which is valid for the following ranges of operating 
frequencies 2.0 GHz ≤ f1 ≤ 3.0 GHz (lower band), and 4.0 GHz ≤ 
f2 ≤ 5.5 GHz (upper band). The allocation of ten reference designs 
x(j), j = 1, …, 10, selected for illustration purposes, have been 
shown in Fig. 6. The lower and upper bounds for design variables 
are based on {x(j)}. We have l = [29 5.0 17 0.2 1.5 0.5]T, and u = 
[42 12 25 0.6 5.2 3.5]T. It should be noted that the parameter ranges 
are wide with the ratio between the upper and the lower bounds 
varying from around 1.5 to 7.0 and the average of 3.1.  

For validation purposes, the nested surrogate model has been 
set up using the training data sets of the sizes of 50, 100, 200, 
400, and 800 samples. This has been done for three different 
values of the thickness parameter, D = 0.05, 0.1, and 0.15. The 
model accuracy has been tested using a split-sample method [36] 
with 100 independent random test points. Table I shows the 
average RMS errors for the nested kriging model, conventional 
kriging model [36], and radial basis function (RBF) [23] 
surrogate set up in the interval [l, u]. The RBF model utilizes 
Gaussian basis function with the scaling parameter adjusted 
through cross validation. Responses of the EM simulation model 
of the antenna as well as conventional and nested kriging 
surrogates (set up with 200 training samples) at the selected 
testing designs have been shown in Figs. 7 and 8, respectively. 

The results gathered in Table I indicate that the nested 
kriging surrogate exhibits significantly better predictive power 
than the conventional kriging model. For D = 0.1, its accuracy 
with only 50 training samples is the same as the accuracy of the 
conventional kriging model at 200 samples, whereas the  
accuracy comparison for the same corresponding training data 
sets reveals dramatic advantage of the proposed approach by a 
factor between two and three.  

It can also be observed that the dependence between the 
model accuracy and the thickness parameter D is weak 
considering dimensionality of the design space. The reason for 
this is that the surrogate model domain is a relatively “thin” set, 
i.e., the amount of the orthogonal extension is small compared 

to the “tangential” dimensions of XS. Consequently, the 
effective dimension of the domain is close to that of the 
objective space, and, in practice, we have N << n. This is a 
highly desirable feature which makes the nested surrogate 
relatively insensitive to D.  
 

 
Fig. 5. Geometry of dual-band uniplanar dipole antenna (Antenna I) [35]. 

 Fig. 6. Allocation of the reference designs for nested kriging modeling of Antenna I. 
 TABLE I   MODELING RESULTS FOR ANTENNA I 

Number of 
training 
samples 

Relative RMS Error 
Conventional Models Nested Kriging Model [this work] 

Kriging RBF D = 0.05 D = 0.1 D = 0.15 
50 21.7 % 24.9 % 6.9 % 9.9 % 13.0 % 
100 17.3 % 19.8 % 4.5 % 6.4 % 9.6 % 
200 12.6 % 14.3 % 2.8 % 4.4 % 6.5 % 
400 9.3 % 10.5 % 2.6 % 3.8 % 5.5 % 
800 7.2 % 8.7 % 2.4 % 3.4 % 4.7 % 

 

  Fig. 7. Responses of Antenna I at the selected test designs for N = 200: EM 
model (—), conventional kriging surrogate (o). 

  Fig. 8. Responses of Antenna I at the selected test designs for N = 200: EM 
model (—), proposed nested kriging surrogate with D = 0.1 (o). 
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B. Example 2: Ring Slot Antenna 
The second example is a slot antenna shown in Fig. 9 [28]. The 

structure comprises a microstrip line that feeds a circular ground 
plane slot with defected ground structure (DGS). The low-pass 
properties of the DGS allows for suppression of the antenna 
harmonic frequencies [28]. The substrate thickness is set to 0.76 
mm. The geometry parameter set is: x = [lf ld wd r s sd o g]T; εr is 
an additional variable representing relative permittivity of the 
substrate. The feed line width wf is computed for each εr to ensure 
50 ohm input impedance. The antenna model R is implemented 
in CST (~300,000 cells, simulation 90 s). 

For this antenna, the goal is to construct the surrogate model 
for the operating frequencies f within the range 2.5 GHz  f  
6.5 GHz, and substrate permittivity  within the range of 2.0    5.0. The allocation of ten reference designs x(j), j = 1, …, 10, 
have been shown in Fig. 10. The lower and upper bounds for 
design variables are based on {x(j)}. We have l = [22.0 3.5 0.3 
6.5 3.0 0.5 3.5 0.2]T, and u = [27.0 8.0 2.3 16.0 7.0 5.5 6.0 2.3]T. 
Note that the parameter ranges are even wider than for Antenna 
I, with the ratio between the upper and the lower bounds varying 
from around 1.2 to 11.5 and the average of 5.0. 

The verification setup was the same as for Antenna I. The 
numerical data has been gathered in Table II whereas the 
selected reflection characteristics of the EM model and the 
surrogates are shown in Figs. 11 and 12. The results are 
consistent with those obtained for the first example. In 
particular, the nested surrogate exhibits significantly better 
accuracy than conventional models for all sizes of the training 
data set. The dependence of the modeling error on the thickness 
parameter is more pronounced because the modeling problem 
is much more challenging than for Antenna I. It should be 
emphasized that the accuracy of conventional models make 
them unusable for practical purposes (error larger than 25 
percent even for the largest training data set), see also Fig. 11. 

 

 Fig. 9. Geometry of the ring slot antenna (Antenna II) with a microstrip feed 
(dashed line) [28]. 
 

 Fig. 10. Allocation of the reference designs for nested kriging modeling of 
Antenna II.  

TABLE II   MODELING RESULTS FOR ANTENNA II 
Number of 

training 
samples 

Relative RMS Error 
Conventional Models Nested Kriging Model [this work] 

Kriging RBF D = 0.05 D = 0.1 D = 0.15 
50 56.9 % 61.0 % 12.9 % 19.4 % 25.1 % 
100 50.8 % 53.2 % 6.9 % 12.9 % 16.5 % 
200 35.8 % 37.9 % 4.9 % 7.7 % 12.7 % 
400 31.5 % 34.1 % 3.1 % 5.1 % 9.0 % 
800 25.6 % 27.2 % 2.2 % 3.7 % 6.2 % 

 

  Fig. 11. Responses of Antenna II at the selected test designs for N = 400: EM 
model (—), conventional kriging surrogate (o). 

 Fig. 12. Responses of Antenna II at the selected test designs for N = 400: EM 
model (—), proposed nested kriging surrogate with D = 0.05 (o). 
 

IV. APPLICATION EXAMPLES. ANTENNA OPTIMIZATION 
In this section, the application of the nested surrogate for 

antenna optimization is investigated. We explain how the 
definition of the model domain can be utilized to facilitate the 
search for the optimum design, provide numerical results, as 
well as discuss experimental validation. 
A. Optimization Methodology 

Design optimization of the antenna has to be carried out 
within the domain XS of its surrogate model, which is a rather 
complex set as explained in Section II. However, the 
optimization process can be made straightforward by using the 
transformation (8) between the unit hypercube [0,1]n and XS (cf. 
Section II.E). More specifically, given the original design 
problem (1) and the target vector ft = [f1.t … fN.t] the antenna is 
to be optimized for, one can solve an equivalent problem  

*
[0,1]arg min ( ( ), )n tU H xx z f                          (9) 

Note that (9) is solved within a hypercube, which is a regular 
set defined by box constraints, rather than directly in XS. 
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Further, because H is surjective (cf. Section II.E), operating in 
the hypercube will cover the entire surrogate model domain.  

Finally, a good initial design for (9) can be easily identified 
as follows 

(0) ( )I tx s f                                    (10) 
In other words, the initial design is the best available 

approximation of Uf(ft), here, obtained by the first-level 
surrogate. 
B. Numerical Results 

Antennas I and II have been optimized for selected target 
vectors, using the nested surrogate obtained with the thickness 
parameter D = 0.1. Tables III and IV gather the numerical 
data, whereas Figs. 13 and 14 show the reflection 
characteristics at the initial and optimized designs evaluated 
using the surrogate and the EM model. It can be observed that 
reliability of the surrogate is excellent in all cases. Also, the 
quality of the initial design found using (10) is good, which 
allows for applying local optimizer instead of global routines. 
This is another benefit of the nested modeling approach 
proposed in this work. 
C. Experimental Validation 

Selected designs of the considered antennas have been 
fabricated and measured for the sake of additional validation. 
Both antennas have been implemented on the same substrate, 
RO4350. Figure 15 shows the photographs of the prototypes, 
whereas Fig. 16 compares the simulated and measured 
reflection characteristics. The agreement is very good, slight 
discrepancies (frequency shifts) are mostly due to not including 
the SMA connectors in the computational models of the antenna 
structures. 

 
TABLE III   OPTIMIZATION RESULTS FOR ANTENNA I 

Target operating 
conditions Geometry parameter values [mm] 

f1 [GHz] f2 [GHz] l1 l2 l3 w1 w2 w3 
2.45 5.30 33.0 8.74 17.9 0.26 2.62 1.51 
2.20 4.50 34.7 5.96 18.5 0.44 3.71 1.48 
3.00 5.00 28.5 9.60 19.6 0.37 2.40 0.58 
2.10 4.20 35.1 5.49 19.4 0.47 4.40 1.94 

 
 

TABLE IV   OPTIMIZATION RESULTS FOR ANTENNA II 
Target operating 

conditions Geometry parameter values [mm] 
f0 [GHz]  lf ld wd r s sd o g 

3.4 3.5 26.0 5.91 0.79 11.9 4.94 3.22 4.74 1.04 
4.8 2.2 22.8 4.79 0.56 9.46 3.21 3.56 5.16 1.23 
5.3 3.5 21.0 4.57 0.31 8.63 3.35 4.94 5.55 1.76 
2.45 4.3 26.8 6.46 2.03 13.5 6.22 1.54 4.93 0.22 

 
 

                                 (a)                                                          (b) 

                                (c)                                                          (d) 
Fig. 13. Nested surrogate (o) and EM-simulated responses (—) of Antenna I at 
the designs obtained by optimizing the surrogate model with D = 0.1 for (a) f1 = 2.45 GHz, f2 = 5.3 GHz, (b) f1 = 2.2 GHz, f2 = 4.5 GHz, (c) f1 = 3.0 GHz, f2 = 
5.0 GHz, and (d) f1 = 2.1 GHz, f2 = 4.2 GHz. Required operating frequencies 
are marked using vertical lines. Initial design obtained using (10) marked using 
a dotted line. 
 

                               (a)                                                          (b) 

                               (c)                                                          (d) 
Fig. 14. Nested surrogate (o) and EM-simulated responses (—) of Antenna II at 
the designs obtained by optimizing the surrogate model with D = 0.1 for (a) f1 = 2.45 GHz, f2 = 5.3 GHz, (b) f1 = 2.2 GHz, f2 = 4.5 GHz, (c) f1 = 3.0 GHz, f2 = 
5.0 GHz, and (d) f1 = 2.0 GHz, f2 = 4.2 GHz. Required operating frequencies 
are marked using vertical lines. Initial design obtained using (10) marked using 
a dotted line. 
 

                                          (a)                                                        (b) 
Fig. 15. Photographs of the fabricated antenna prototypes: (a) Antenna I, f1 = 
2.45 GHz, f2 = 5.3 GHz, (b) Antenna II, f0 = 3.4 GHz,  = 3.5. 
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                               (a)                                                           (b) 
Fig. 16. Reflection responses of the antennas of Fig. 15: (a) Antenna I, f1 = 2.45 
GHz, f2 = 5.3 GHz, (b) Antenna II, f0 = 3.4 GHz,  = 3.5; simulation results (- - 
-) and measurements (—). 
 

V. CONCLUSION 
The paper proposed a novel approach to surrogate modeling 

of antenna structures. Our methodology is based on a two-level 
(or nested) kriging, where the first-level model is used to 
establish domain of the second-level model being the actual 
surrogate. The first-level model approximates the manifold 
containing the designs that are optimum with respect to selected 
performance figures. This approximation is then orthogonally 
extended in order to capture all designs that are of interest. The 
proposed approach has several important advantages over 
conventional surrogate models as well as some recent attempts 
to performance-driven constrained modeling. First, by focusing 
the modeling process in the region containing quality designs, 
significant improvement of the surrogate predictive power can 
be achieved. Second, defining the surrogate model domain 
through a surjective transformation from a unity hypercube 
permits uniform allocation of training data points in a 
straightforward manner. Finally, utilization of the same 
mapping allows for convenient optimization of surrogate (with 
only box constraints on the adjustable parameters) despite 
nonlinear geometry of the domain itself. An additional benefit 
is that a good initial design corresponding to the requested 
performance figures (or operating condition) values can be 
directly extracted from the first-level surrogate. Comprehensive 
verification of the proposed framework provides consistent 
results throughout the considered benchmark antennas and 
training data sets, also supported by experimental validation. 
Furthermore, the nested surrogate has been demonstrated as a 
useful antenna design tool.  
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