
Introducing Agile Practices Into Development Processes of
Safety Critical Software

Katarzyna Łukasiewicz
 Department of Software Engineering

 Gdańsk University of Technology
 Poland

 katarzyna.lukasiewicz@pg.edu.pl

Janusz Górski
 Department of Software Engineering

 Gdańsk University of Technology
 Poland

 janusz.gorski@pg.edu.pl

Abstract
In this paper we present AgileSafe – a method which supports
introduction of agile practices into safety-critical software
development processes. To represent safety assurance
constraints resulting from the regulatory context, AgileSafe uses
assurance case patterns. The knowledge base of AgileSafe helps
the user to select the agile practices relevant for the considered
software development project. The corresponding assurance case
patterns define the scope of the evidence to be collected to
demonstrate that the project meets its safety constraints. The
overview of the method is presented with reference to a case
study - a project for continuous glucose monitoring-enabled
insulin pump system.

CSS Concepts

Keywords
Agile development, Safety constraints, Safety-critical system,
Safety arguments

ACM Reference format:

Katarzyna Łukasiewicz and Janusz Górski. 2018. Introducing Agile
Practices Into Development Processes of Safety Critical Software. In
Proceedings of XXXX (XXXX). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/1234567890

1. INTRODUCTION
With an intensive progress and expansion of technology in the
20th and 21st centuries, devices and solutions in many domains
have become increasingly software reliant. The safety-critical
software domain will likely expand in the future, with dropping
cost of hardware and new possibilities offered by the software
[1]. As such, the importance of safety assuring solutions will

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
XXXX, June, 2018, XXXX
© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-0/00/00...$15.00
https://doi.org/10.1145/1234567890

grow, especially with time and cost playing an increasingly
important role in this domain.
While plan-driven methodologies have proven their value and
usefulness in safety-critical projects, the evolving market of
software products of the last decade showed they could be
considered as being too restrictive in some circumstances [2].
This is the case, in particular, while dealing with volatile
requirements and ever-changing market demands. In such
situation, heavyweight documentation and low flexibility
associated with plan-driven approaches could have an impeding
effect on a software development process [3], [2]. The need to
deliver systems of acceptable quality, faster and at lower cost in
comparison to competitors evoked seeking an alternative [4].
In response to these concerns agile methodologies have offered
practices which value close relationship with customers, allow
more relaxed approach towards documentation and provide a
flexible development lifecycle based on short iterations [5]. A
growing body of experience shows that successfully combined,
agile practices can potentially reduce the cost of production as
well as time to market [6], [7].
The objective of this paper is to introduce a new method, called
AgileSafe, which supports introduction of agile practices into a
software development process while still maintaining the
compliance with the software assurance requirements imposed
by the application domain. The crucial idea of this method is to
employ evidence-based argument templates to explicitly
represent the assurance requirements imposed by the safety
context of the developed software. Such argument templates, if
derived from the regulatory constraints relevant for a given
development project, provide for identifying the scope of
necessary assurance activities and for gathering the supporting
evidence.

2. BACKGROUND
With growing competition in the domain, fast paced changes in
technology and clients demanding innovations as well as the
highest safety standards, safety-critical software companies are
tempted to employ hybrid approaches where agility is combined
with necessary safety assurance. As a result, in recent years
researchers have been trying to propose such hybrid approaches.
Some of the approaches relevant to our research have been
described in this section.

Post-print of: Katarzyna Łukasiewicz and Janusz Górski. 2018. Introducing agile practices into development processes of safety critical
software. In Proceedings of the 19th International Conference on Agile Software Development: Companion (XP '18). Association for
Computing Machinery, New York, NY, USA, Article 13, 1–8. DOI: https://doi.org/10.1145/3234152.3234174

https://doi.org/10.1145/3234152.3234174

XXXX, June, 2018, XXXX K. Łukasiewicz et al.

In 2009 Weiguo and Xiaomin [8] presented an agile based
approach suitable for FDA compliant medical devices projects.
The approach has been dedicated to a specific domain thus its
applicability is limited. Another relevant approach is AV-Model
[9] combining the traditional V-Model with Scrum and focusing
on medical device software development and the IEC 62304
standard [10]. While the AV-Model presents some promising
solution, its focus as well as potential applications are restrained
and as such cannot be universally recommended.
A more comprehensible and practical solution has been
proposed by a joint research group of SINTEF [11] and the
Norwegian University of Science and Technology [12]. They
proposed a method called SafeScrum [13], which concentrates on
adapting Scrum into safety-critical software development. The
method provides a well justified set of practices although the
safety assurance aspect of the method is still a work in progress.
When releasing a piece of safety-critical software, the company
responsible for it needs to be able to prove its safety in its target
environment. Proving in this context means being able to
convince the licencing bodies as well as the potential users that
the software is acceptably safe and will not cause harm. In order
to do that a sufficient evidence to back claims about safety
should be presented. This is where assurance arguments can be
of great use. Over a decade ago, Food and Drug Administration
(FDA) and Software Engineering Institute (SEI) have begun an in
depth analysis of the idea of safety assurance cases [14]. As a
result, a series of documents presenting potential uses of
assurance cases in FDA certification process have been issued
[14], [15]. With the current FDA recommendation of assurance
arguments for presenting compliance with safety regulations,
this method is increasingly gaining recognition. On the other
hand, as the Health Foundation report [16] states, there is little
experience in the industry when it comes to the preparation of
assurance cases. A need for special training and developing new
methodologies in the matter is emerging. Templates and
methods facilitating the use of arguments which the
manufacturers can relate to can be of great value. This problem
attracts the attention of the researchers and projects like AMASS
[17] and SafeCer [18] have been focusing on an intelligible and
comprehensive certification frameworks.
In AgileSafe we combine both, the guidance on introducing agile
practices into a project and the assurance aspect of developing
safety critical software,

3. AGILESAFE METHOD OVERVIEW
AgileSafe is a method of incorporating agile practices into
critical software development while still maintaining the
compliance with the software assurance requirements imposed
by the relevant standards in the application domain.
There are two main uses of AgileSafe. The first is applying
AgileSafe to obtain an advice on software development process,
with suggestions on which practices to use and how to assert
conformance with selected standards. The second is improving
AgileSafe by updating the knowledge base of the method.

The high-level use case diagram of AgileSafe is presented in
Figure 1.

Figure 1 The high-level use case diagram of AgileSafe

The Apply AgileSafe use case is applied for a specific software
development project (the Project) and User is a person or a team
with a good knowledge of the Project. User needs to be able to
specify the characteristics of the Project as well as to decide
upon the final set of selected practices.
In order to follow the Improve AgileSafe use case, User should be
an expert on agility and in addition a person with good
knowledge of the standards and the safety aspects of software
development.
Taking all of the above into consideration, the User could be a
Project Manager, Process Engineer, Scrum Master (or the whole
Team), RAMS Engineer or similar roles, depending on the
company applying the AgileSafe method.

4. APPLYING AGILESAFE
The Apply AgileSafe use case is decomposed into more specific
use cases, as shown in Figure 2. User needs to specify the
characteristics of the Project and the regulations the Project
needs to comply with. Based on these, the User is guided
through two main aspects of AgileSafe: the process which selects
the specifications of software development practices to be
applied in the Project and the process which results in the set of
assurance arguments corresponding to the regulations included
in the regulatory context. Finally, the User applies the selected
practices in the Project.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Introducing Agile Practices Into Development Processes of Safety
Critical Software

XXXX, June, 2018, XXXX

Figure 2 Apply AgileSafe use case diagram

In the further text we give a more detailed description of the use
cases presented in Figure 2. During discussion, we will also call
these use cases ‘processes’.

4.1 AS.P.1 Analyse the Project
The first process of AgileSafe is AS.P.1 Analyse the project. In this
process, the User is expected to gather information about the
Project that is then being used as an input to the subsequent
steps of AgileSafe. In order to determine the characteristics of
the Project, AgileSafe uses an approach for scaling agile,
presented by Scott W. Ambler [19], in particular because of its
focus on context of the project. As Kruchten noted in [20], the
context is vital in deciding how agile the software development
and management in a given project can be. Ambler’s scaling
factors represent a broad spectrum of circumstances, both
company and project related.
The factors are represented in the AgileSafe Practices
Knowledge Base as Factors. Each Factor can be evaluated in a 5-
point scale:
1. Team Size (based on Ambler’s survey [21])
(Number of developers working in the project)
A – Under 10 developers; B – From 10 to 50 developers; C –
From 50 to 100 developers; D – 100’s of developers; E – 1000’s of
developers
2. Geographical Distribution (based on Ambler’s survey [21])
(Where are the team members located physically?)
A – Co-located; B – Same building; C – Within driving distance;
D – some working from home; E – Globally distributed
3. Domain Complexity
(How complicated is the target domain of the product?)
A – Straightforward; B - Predictable; C – Quickly changing; D –
Complicated; E – Intricate/Emerging
4. Organisational Distribution
(What is the affiliation of the people working in the project, how
is the work organised?)
A – Collaborative; B – Different teams; C – Different
departments; D – Different partner companies; E – Contractual

5. Technical Complexity
(How complicates is the technological side of the project?)
A – Homogenous; B - Multiple technology; C – New technology;
D - System/embedded solutions; E – Heterogeneous/Legacy
6. Organisational Complexity
(What are the structures of the company, how are they
managed?)
A – Flexible, intuitive; B – Flexible, structured; C – Stable,
evolutionary; D – Stable, planned; E – Rigid
7. Enterprise Discipline
(What lies in the centre of attention of the company
management?)
A – Project focus; B – Mostly project focused; C – Balanced; D –
Mostly enterprise focused; E – Enterprise focus
Note that the Regulatory Compliance factor of [19] has been
omitted in the above list. This is because this particular factor
gets special attention in AgileSafe and is being covered by other
processes of .Figure 2.
To illustrate application of AgileSafe, we refer to a GlucoMet
case study. The GlucoMet project concerns developing
continuous glucose monitoring-enabled insulin pump system.
The subject of the case study has been based on the remarks
included in the following papers [22] [23] as well as the case
study described in [24].Its characteristics are described in Table
1.

Table:1 GlucoMet project characteristics

Id 1
Name GlucoMet
Description Continuous glucose monitoring-enabled

insulin pump system
Regulatory
Requirements

ISO 14971 [25]

Characteristics Factor Values
 Team Size B – From 10 to 50

developers;
 Geographical

Distribution
B – Same building;

 Domain
Complexity

D – Complicated;

 Organisational
Distribution

B – Different teams;

 Technical
Complexity

B - Multiple technology;
D - System/embedded
solutions;

 Organisational
Complexity

B – Flexible, structured;

 Enterprise
Discipline

A – Project focus;

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

XXXX, June, 2018, XXXX K. Łukasiewicz et al.

These project characteristics, as presented in Table 1, have the
potential to respond well to both, agile and disciplined practices.
It is a safety-critical project, operating in a complicated domain
but at the same time the size of the team, distribution and
complexity of the organization open the possibility to introduce
agility.
4.1.1 AS.P.8 Add to the Knowledge Base. AgileSafe maintains a
Knowledge Base, which provides for matching the project
characteristics with the suitable agile practices. The algorithms
which suggest practices to the User are implemented in this
Knowledge Base in the form of SWRL [26] rules. This is why the
project characteristics need to be added to the Knowledge Base
in order to obtain suggestions of practices suitable for this
Project.

4.2 AS.P.6 Assert Conformance
In order to assert that the safety assurance requirements
imposed by the appropriate regulatory documents have been
built into the Project, AgileSafe uses assurance cases. The main
idea is to provide assurance cases for the software development
process as well as the end product itself. While the latter serves
to demonstrate product conformance with a given standard or a
guideline, the former is used to demonstrate that the selected
software development practices provide sufficient assurance to
the resulting product. By this combined approach the User can
ensure that the selected practices are suitable for this particular
Project with its safety requirements imposed by the standards.
The assurance argument patterns are derived from the relevant
standards, regulations and guidelines. They follow the Trust-IT
approach taken while applying argument structures to support
application of standards. [27], [28], [29].
In order to increase usability of AgileSafe, the NOR-STA
Argevide tool [30] has been chosen for managing the AgileSafe
arguments set. NOR-STA offers a semi-graphical language
(called TCL) which can be used to represent arguments and

integrate them with external documents. A discussion of the
relationship between TCL argument model and the OMG
Structured Assurance Case Metamodel (SACM) [31] can be
found in [32].
All of the arguments in the method are developed separately for
each applicable standard in order to support separate
certification processes and are based on the standard structure.
There are three types of assurance arguments in AgileSafe:
Practices Compliance Argument, Project Practices Compliance
Argument and Project Compliance Argument. The first two focus
on the software development practices being able to produce
necessary conformance material and the last one presents the
argumentation based on the actual artefacts collected in the
Project.
4.2.1 AS.P.4 Generate Project Practices Compliance Argument .
Project Practices Compliance Argument is a Practices
Compliance Argument adapted to a specific Project and is
determined by the Project Practices Set specific to this project.
The Project Practices Compliance Argument refers only to the
practices used in the particular Project along with the
description of evidence they are providing. Its structure is
defined in the Project Practices Compliance Pattern. The
structure is similar to the Practices Compliance Argument
Pattern. An example of Project Practices Compliance Argument
is described in the Figure 4, based on the extract of ISO 14971
argumentation for GlucoMet project.
In TCL language, an argument is a hierarchical structure where
the elements of the hierarchy are represented from left to right
(as opposed to top-down representation). The following TCL
elements are dedicated to representing elements of arguments.
Argument conclusion is represented by a claim () node. A

node of type argumentation strategy (denoted) links the
claim with the corresponding premises and uses a rationale node
(denoted) to explain and justify the inference leading from
the premises to the claim. A premise is a sort of assertion and
can be in particular another claim to be further justified by its
own premises, or a fact (denoted) represented by an

Figure 4 An excerpt of Project Practices Compliance Argument for ISO 14971 in NOR-STA tool

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Introducing Agile Practices Into Development Processes of Safety
Critical Software

XXXX, June, 2018, XXXX

assertion to be demonstrated by the supporting evidence. Two
elements of the TCL language serve as universal tools for

structuring information: the information node (denoted) and

the reference node (denoted). The reference nodes are used to
integrate external documents, in particular the documents
containing the evidence supporting the argumentation.
The User generates Project Practices Compliance Argument by
limiting the Practices Compliance Argument only to the nodes
he or she implements in his/her Project.
The Practices Compliance Arguments represent the connection
between practices from Knowledge Base and standard
requirements without any input from Project, they are easily
reusable. Once prepared for a given standard, a Practices
Compliance Argument should only be updated when the
Knowledge Base gets updated with new practices.
4.2.2 AS.P.5 Prepare Project Compliance Argument . Based on the
Project Practices Compliance Argument a Project Compliance
Argument is being prepared. This is the actual argument, in
which the User collects the evidence in the suitable nodes. Each
evidence node has a connected Fact, taken form Project Practices
Compliance Argument, explaining why the given artefacts serve
as evidence for this particular standard requirement. The
structure of this argument is outlined in the Figure 5, which
depicts an excerpt of GlucoMet Project Compliance Argument
for ISO 14971.

Figure 5 An excerpt of Project Compliance Argument for
ISO 14971 in NOR-STA tool

4.3 AS.P.9 Choose Practices
As a result of using AgileSafe the User is presented with a
Suggested Practices Set. This set contains software development
practices which were deemed to be most suitable based on the
Project Characteristics and safety requirements depending on
the Project. This list may contain several Practices that concern
the same aspect of software development or produce similar
artefacts, making them redundant. A User makes the final choice
which Practices should be used in a given Project and creates the
Project Practices Set. These chosen Practices are then used to
build Project Practices Compliance Argument and their artefacts
fill the Project Compliance Argument.
4.3.1 AS.P.3 Select Practices. The AgileSafe AS.P.3 Select Practices
process is the inner process of the method. Suggestions of
practices for a given Project are prepared at this stage.

The AS.P.3 Select Practices process is based on two types of
information about a Project: regulatory requirements it needs to
meet and its Project Characteristics.
The suggesting algorithms are implemented in the form of
SWRL rules in the Knowledge Base. If a given Practice satisfies
any of the requirements of the standard needed by the Project
and at the same time is suitable for the Project context as
described in the Project Characteristics, such Practice is treated
as potentially suitable for the given Project and is added to the
Suggested Practices Set.

4.4 AS.P.7 Apply Practices
Upon determining Project Practices Set and developing
assurance arguments, the User can implement the solution in his
or her Project. By following the practices from Project Practices
Set the User would produce artefacts - evidence that should then
be placed in the corresponding nodes of the Project Compliance
Argument.

5. IMPROVING AGILESAFE
The Improve AgileSafe use case implements a learning loop of
AgileSafe. In order to further improve the method and tailor its
advice to the User’s needs more accurately, the knowledge
stored in the method should be reviewed and updated on a
regular base.
In particular, the User can introduce new software development
practices to the pool of the practices from which the suggested
practices are selected, as illustrated in Figure 6. Another activity
focuses on preparing Practices Compliance Arguments for new
standards, not yet covered by AgileSafe and/or updating already
existing Practices Compliance Arguments to cover the new
practices being introduced to the Knowledge Base.

Figure 6 Improve AgileSafe use case diagram

5.1 AS.P.3.1 Update practices
In order to introduce a new practice to the Knowledge Base, the
User should gather available information about the practice and
analyze it according to the new practice template, as shown in
the example of Backlog Splitting in Table 2.

Table 2 Example of practice description

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

XXXX, June, 2018, XXXX K. Łukasiewicz et al.

Id 1
Name SafeScrum Backlog splitting
Description “In SafeScrum, all requirements are split into

safety critical requirements and other
requirements and inserted into separate product
backlogs. Alternatively, the safety requirements
are tagged. Adding a second backlog is an
extension of the original Scrum process and is
needed to separate the frequently changed
functional requirements from the more stable
safety requirements. With two backlogs we can
keep track of how each item in the functional
product backlog relates to the items in the safety
product backlog, i.e. which safety requirements
that are affected by which functional
requirements. This can be done by using simple
cross-references in the two backlogs and can also
be supported with an explanation of how the
requirements are related if this is needed to fully
understand a requirement. The staffing of the
Sprint team and the duration of the sprint (30
days is common), together with the estimates of
each item decides which items that can be
selected for development. Sometimes also e.g. the
Safety responsible or the RAMS responsible takes
part in the selection of which items have to be
prioritized.“ [33]

Discipline Architecture No
 Deployment No
 Development Yes
 Environment No
 Project Management Yes
 Requirements Yes
 Test No
Capability Factor Values
 Team Size A – Under 10 developers; B

– From 10 to 50 developers;
C – From 50 to 100
developers; D – 100’s of
developers;

 Geographical
Distribution

A – Co-located; B – Same
building; C – Some working
from home; D – Within
driving distance; E –
Globally distributed

 Domain
Complexity

A – Straightforward; B -
Predictable; C – Quickly
changing; D – Complicated;
E – Intricate/Emerging

 Organisational
Distribution

A – Collaborative; B –
Different teams; C –
Different departments; D –
Different partner companies;

E – Contractual
 Technical

Complexity
A – Homogenous; B -
Multiple technology; C –
New technology; D -
System/embedded solutions;

 Organisational
Complexity

1 – Flexible, intuitive; 2 –
Flexible, structured; 3 –
Stable, evolutionary; 4 –
Stable, planned;

 Enterprise
Discipline

1 – Project focus; 2 – Mostly
project focused; 3 –
Balanced; 4 – Mostly
enterprise focused;

Used in: Name of the
Regulation and
regulatory
requirement

General
Practice

Fact

 ISO 14971 3.1
Risk
management
process 3.1.b The
process shall
include risk
evaluation

Identified
risk can be
maintained
and
evaluated in
a separate
backlog form

SafeScrum
Backlog
Splitting
practice
generates a
separate
backlog for
analysis and
evaluation
of risk

 Etc.

A Discipline field contains a list of disciplines within which the
practice operates (one or more). In the Capability field, for each
factor, a list of predefined circumstances in which the practice
works best (one or more, for each factor) is presented. These
Factors are identical to the ones in the Project Characteristics.
The Used in field presents a link to the Regulatory Requirement
that the Practice (under General Practice) complies with. The
Fact is the statement of the Practice’s contribution to the
compliance.
At this stage of AgileSafe maturity, it is up to the User who
introduces the practice to decide how well a given practice can
respond to the specific project Factors and regulatory
requirements of standards.

5.2 AS.P.2 Develop/Update Practices Compliance
Argument

The AS.P.2 process focuses on preparing the Practices
Compliance Arguments for the standards that are required for
the given Project. The User needs to check whether Practices
Compliance Arguments for the needed standards are already
available in the AgileSafe Knowledge Base. If so, they should be
revised and updated, if needed. Otherwise, a new Practices
Compliance Argument for a needed standard should be
developed and inserted to the Knowledge Base.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Introducing Agile Practices Into Development Processes of Safety
Critical Software

XXXX, June, 2018, XXXX

The structure of Practices Compliance Arguments is based on
the standard requirements. The Practices Compliance Arguments
are generic and focus on the conformance of practices from
Knowledge Base with particular requirements of the considered
standard. For each such requirement they propose an
argumentation strategy and the range of software engineering
practices used for collecting evidence demonstrating the
compliance. They also contain explicit justification that the
argumentation strategy is adequate on the condition that the
evidence is collected and integrated with the argument. A list of
claims concerning different types of practices, which may
contribute to satisfying the standard demand, is presented, each
claim postulating the potential of a given practice to generate the
evidence needed to demonstrate compliance.
Figure 7 presents an excerpt of Practices Compliance Argument
for ISO 14971 represented in the NOR-STA tool.

6. CONCLUSIONS
The AgileSafe method presented in this paper is a method, which
allows an introduction of agile practices into the safety-critical
software development while importantly delivering a solution
for asserting conformance with applicable regulatory
requirements.
In order to facilitate the implementation of the method,
AgileSafe uses tool support: NOR-STA tool [27] for managing
and developing assurance arguments and Protégé [34] for
Knowledge Base operations.

To this date, elements of AgileSafe have been implemented in
student projects. The method has been also evaluated by a group
of experts from Poland and Norway, as well as two
developers/Scrum Masters from a safety-critical company in
Norway.
The results are positive and indicate AgileSafe potential of
bringing added value to safety critical software development
processes.
Nevertheless, some further work is needed to make the method
more readily applicable for the industry. The directions for
further progress include expansion of a starting pool of practices
available in the Knowledge Base, availability of ready to use
Practices Compliance Arguments for most commonly used
standards as well as incorporating some experts and Users
feedback as a part of teaching of the method.

References
[1] John C. Knight. 2002. Safety critical systems: challenges and directions.

In Proceedings of the 24th International Conference on Software
Engineering (ICSE '02). ACM, New York, NY, USA, 547-550..

[2] Ge, X., Paige, R.F. and McDermid, J.A. 2010. An iterative approach for
development of safety-critical software and safety arguments. Proceedings -
2010 Agile Conference, AGILE 2010. (2010), 35-43..

[3] Boehm and Richard Turner. 2003. Balancing Agility and Discipline: A Guide
for the Perplexed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA..

[4] Petersen, K., & Wohlin, C. 2010. The effect of moving from a plan-driven to an
incremental software development approach with agile practices. Empirical
Software Engineering, 15(6), 654-693

[5] Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. 2002. Agile software
development methods: Review and analysis, VTT publication 478, Espoo,
Finland, 107p..

[6] Drobka, J., Noftz, D. and Raghu R. 2004. Piloting XP on four mission-critical
projects. IEEE Softw., 21(6), pp.70-75

Figure 7 An excerpt of Practices Compliance Argument for ISO 14971 in NOR-STA tool

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

XXXX, June, 2018, XXXX K. Łukasiewicz et al.

[7] Lindvall M., Muthig D., Dagnino A., Wallin C., Stupperich M., Kiefer D., May
J. & Kähkönen T. 2004. Agile Software Development in Large Organizations.
Computer, 37(12), pp. 26-34

[8] Weiguo L., Xiaomin F. 2009. Software Development Practice for FDA-
Compliant Medical Devices. Proceedings of the 2009 International Joint
Conference on Computational Sciences and Optimization, Sanya, China

[9] McHugh, M., McCaffery, F. and Coady, G. 2014. An Agile Implementation
within a Medical Device Software Organisation. Communications in
Computer and Information Science, pp.190-201.

[10] International Organization for Standardization 2006. IEC 62304:2006 Medical
device software -- Software life cycle processes, [online] Available at:
https://www.iso.org/standard/38421.html (Visited: 1/03/2018)

[11] SINTEF 2017, [online] Available at: http://www.sintef.no/ (Visited: 20/03/2018)
[12] Norwegian University of Science and Technology 2017, [online] Available at:

https://www.ntnu.edu/ (Visited: 20/03/2018)
[13] Mycklebust, T., Stålhane, T. and Hanssen, G. 2016. Use of Agile Practices

when developing Safety-Critical software. In: Proceedings of The 34th
International System Safety Conference (ISSC)

[14] Weinstock C. and John B. Goodenough. 2009. Towards an Assurance Case
Practice for Medical Devices. TECHNICAL NOTE Software Engineering
Institute October.[online] Available at:
http://www.sei.cmu.edu/reports/09tn018.pdfAvailable at:
http://www.sei.cmu.edu/reports/09tn018.pdf (Visited: 20/03/2018)

[15] Food and Drug Administation. 2015. A Mobile Medical Applications. Guidance
for Industry and Food and Drug Administration Staff

[16] Bloomfield, R., Chozos, N. and Cleland, G. 2012. Supplement G: Safety case use
within the medical devices industry. Supplements to: Using safety cases in
industry and healthcare. [online] London: The Health Foundation, pp.G2-G17.
Available at:
http://www.health.org.uk/sites/default/files/UsingSafetyCasesInIndustryAndH
ealthcare_supplements.pdf. (Visited: 10/03/2018)

[17] AMASS (Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems) 2018. [online] Available at:
https://www.amass-ecsel.eu/ (Visited: 30/05/2018)

[18] SafeCer 2018 [online] Available at:
https://www.sp.se/en/index/research/dependable_systems/safecer/Sidor/defau
lt.aspx (Visited: 30/05/2018)

[19] Ambler, S. 2010. IBM agility@scale: Become as Agile as You Can Be. IBM
Global Services

[20] Kruchten, P. 2011. Contextualizing agile software development. Journal of
Software: Evolution and Process, 25(4), pp.351-361

[21] Ambler, S. 2012. Summer 2012 DDJ State of the IT Union Survey. [online]
Available at: http://www.ambysoft.com/surveys/stateOfITUnion201209.html
(Visited: 10/03/2018)

[22] Chen Y., Lawford M., Wang H..2014. Insulin Pump Software Certification.
Foundations of Health Information Engineering and Systems. FHIES 2013.
Lecture Notes in Computer Science. 8315().pp 87-106

[23] Zhang, Y., Jones, P. L., & Klonoff, D. C..2010. Second Insulin Pump Safety
Meeting: Summary Report. Journal of Diabetes Science and Technology, 4(2),
pp 488–493..

[24] Górski J., Łukasiewicz K..2013.Towards Agile Development of Critical
Software. Software Engineering for Resilient Systems. SERENE 2013. Lecture
Notes in Computer Science, 8166(), Springer.

[25] International Organization for Standardization .2007. ISO 14971:2007 Medical
devices -- Application of risk management to medical devices, [online]
Available at: https://www.iso.org/standard/38193.html (Visited 01/03/2018)

[26] SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 2004.
[online] Available at:
https://www.w3.org/Submission/SWRL/https://www.w3.org/Submission/SWR
L/

[27] NOR-STA project Portal. 2017. [online] Available at: www.nor-sta.eu (Visited:
30/05/2018)

[28] Cyra, L. and Górski, J. 2011. Support for argument structures review and
assessment. Reliability Engineering & System Safety, 96(1), pp.26-37

[29] Górski, J., Jarzębowicz, A. and Miler, J. 2012. Validation of Services Supporting
Healthcare Standards Conformance. Metrology and Measurement Systems,
19(2), pp.269-282

[30] Argevide. 2017. [online] Available at: http://www.argevide.com/ (Visited:
30/05/2018)

[31] Structured Assurance Case Metamodel (SACM), version 2.0, Object
Management Group. 2017.

[32] Relationship between TCL and SACM 2.0.
https://www.argevide.com/documents/ (Visited: 02/06/2018)

[33] Stålhane, T., Myklebust, T., and Hanssen, G.K. 2012. The application of Safe
Scrum to IEC 61508 certifiable software. ESREL 2012, Helsinki, Finland.

[34] Musen, M.A. 2015. The Protégé project: A look back and a look forward. AI
Matters. Association of Computing Machinery Specific Interest Group in
Artificial Intelligence, 1(4), June 2015.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.iso.org/standard/38421.html
http://mostwiedzy.pl

