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Abstract Distortional buckling of axially compressed columns of box-like composite cross sections with and
without internal diaphragms is investigated in the framework of one-dimensional theory. The channel members
are composed of unidirectional fibre-reinforced laminate. Two approaches to the member orthotropic material
are applied: homogenization based on the theory of mixture and periodicity cells, and homogenization based
on the Voigt–Reuss hypothesis. The principle of stationary total potential energy is applied to derive the
governing differential equation. The obtained buckling stress is valid in the linear elastic range of column
material behaviour. Numerical examples address simply supported columns, and analytical critical stress
formulas are derived. The analytical and FEM solutions are compared, and sufficient accuracy of the results
is observed.

List of symbols

a Height of cross section
f Fibre volume fraction
n Number of half-waves of a buckling mode
r0 Polar radius of gyration
u Displacement of cross section corner
vlt Homogenized Poisson’s ratio
vl Poisson’s ratio in the longitudinal direction
vt Poisson’s ratio in the transverse direction
vm Poisson’s ratio of the matrix
vf Poisson’s ratio of fibres
x; y; z Cartesian coordinate system
A Area of cross section
Dl Elastic modulus in the longitudinal direction
Dt Elastic modulus in the transverse direction
El Homogenized Young’s modulus in the longitudinal direction
Et Homogenized Young’s modulus in the transverse direction
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E-mail: szymcze@pg.edu.pl

M. Kujawa (B)
Department of Structural Mechanics, Faculty of Civil and Environmental Engineering,
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Em Young’s modulus of the matrix
Ef Young’s modulus of fibres
G Homogenized shear modulus
Gm Shear modulus of the matrix
Gf Shear modulus of fibres
J0 Polar moment of inertia
Jg Moment of inertia of wall cross section in the longitudinal direction
Jp Moment of inertia of wall cross section in the transverse direction
Js Free torsion moment of inertia of wall cross section
Ks Torsional stiffness of cross section
Kg Longitudinal stiffness of cross section
Kγ Distortional stiffness of cross section
K γ Diaphragm stiffness
L Length of column
L0 Characteristic length of column
Mp Bending moment of walls in the transverse direction
Mg Bending moment of walls in the longitudinal direction
P Compressive axial load
Pcr Critical distortional buckling load
U I Potential energy of compressive load due to bending
U I I Potential energy of compressive load due to torsion
V Elastic strain energy
Vg Potential energy of elastic bending
Vp Potential energy of cross-sectional distortion
Vs Potential energy of torsion
γ Distortion angle
δ Wall thickness
η Coefficient of characteristic length of column
σb Buckling stress
σcr Critical buckling stress
σcr,min Minimum critical buckling stress
Π Total potential energy

1 Introduction

In structural engineering problems, one-dimensional classical theories are often applied to investigate mathe-
maticalmodels of columns, assumingnon-deformablemember cross sections [21,34,35,39,40].Unfortunately,
this assumption is not valid in many structural engineering areas, e.g. in stability analysis of thin-walled mem-
bers without diaphragms. To date, many papers have addressed the stability of members, including distortion
of the member cross section, and analytical and numerical models of classical rods, plates, shells and thin-
walled structures are currently in their development phases [13,26–29,37,38]. A number of works refer to the
generalized beam theory (GBT) [1,2,5,10,11,14,30,31] and the finite strip method (FSM) [6,7,16,23]. The
works [3,24] show the cases in which both methods are similar. It should be noted that in the same cases, the
GBT and the FSM can be more computationally efficient than the finite element method (FEM) [41]. However,
it is still very rare to find papers that consider distortional stability loss using a closed-form analytical solution.
The articles [8,22,32] address a distortional form of stability loss in a column composed of isotropic elastic
material due to cross section deformation. The present article is motivated by the need to complement the
adequate research in the field.

This paper addresses a particular form of stability loss of a column of a closed deformable square cross
section composed of orthotropic composite materials (see Fig. 1). Only elastic distortional buckling analysis
is considered here. The analytical and numerical models of the column are taken into account. The differential
equation for the problem is derived by means of the stationary energy principle. The column is composed of
unidirectional fibre-reinforced laminate [4,9,17–20,25,36]. Two approaches to orthotropic modelling of the
member material are applied: homogenization based on the theory of mixtures [21] and periodicity cells and
homogenization based on the Voigt–Reuss hypothesis [4].
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Fig. 1 Schematic diagram of the column and expected mode of distortional buckling

Numerical examples of simply supported axially compressed columns are presented. A comparative study
of analytical and FEM results is also provided.

This paper continues the previous research described in [22,32,33]. At present, this research is focused
on solving the problem posed in [22,32], assuming that the column is made of unidirectional fibre-reinforced
laminate [33] with regard to plane stress. Furthermore, in developing the theoretical description, attention is
paid to the influence of internal diaphragms on the stability of columns.

2 Elastic energy of distortional buckling

The major concern of this work is the distortional stability of an axially compressed composite thin-walled
column with a box quadratic cross section stiffened by two diaphragms, where both ends are free to warp
(see Fig. 1). The differential equation for the problem is derived by means of the stationary potential energy
principle [35]. The total potential energy Π is the sum of the elastic strain energy V in the deformed walls of
the column and the energy U of the axial loads. Two simplified homogenization methods for modelling the
material are applied as follows: the first is related to the theory of mixture and periodicity cells (A) [21], and the
second is based on the Voigt–Reuss hypothesis (B) [4]. The homogeneous orthotropic material for composite
plates based on the theory of mixture and periodicity cells (A) [21] leads to the following formulas:

El = Em(1 − f ) + Ef f,

Et = Em
Em

(
1 − √

f
) + Ef

√
f

Em[1 − √
f
(
1 − √

f
)] + Ef

√
f
(
1 − √

f
) ,

G = Gm
Gm

√
f
(
1 − √

f
) + Gf [1 − √

f
(
1 − √

f
)]

Gm
√

f + Gf
(
1 − √

f
) ,

vlt = vm

(
1 − √

f
)

+ vf
√

f ,

Elvtl = Etvlt, (1)

where El and Et are the homogenizedYoung’smoduli for compositematerials in the longitudinal and transverse
directions, respectively, Em and Ef are the Young’s moduli for the matrix and fibres, respectively, G is the
homogenized shear modulus, Gm and Gf are the shear moduli for the matrix and fibres, respectively, vm and
vf are the Poisson’s ratios for the matrix and fibres, respectively, f is the fibre volume fraction, and vl and vt
are the homogenized Poisson’s ratios in the longitudinal and transverse directions, respectively.

The second homogenization method based on the Voigt–Reuss hypothesis (B) [4] leads to the following:

El = Em(1 − f ) + Ef f,

Et = EfEm

Ef − Ef f + Em f
,

G = GfGm

Gf − Gf f + Gm f
,
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vlt = vm(1 − f ) + vf f,

Elvtl = Etvlt. (2)

Due to plane stress, the Young’s moduli of elasticity in both directions should be modified to the elastic moduli
in the longitudinal and transverse directions,

Dl = El

1 − vltvtl
= El

1

1 − Et
El

v2lt

,

Dt = Et
1

1 − Et
El

v2lt

. (3)

2.1 The potential energy of cross-sectional distortion

The pattern of element cross-sectional distortion is shown in Fig. 1 and is defined by the distortional angle
γ . The potential energy of the cross-sectional distortions Vp due to wall bending in the transverse direction is
expressed by

Vp = 1

2
4

∫ L

0

∫ a

0

M2
p (s, z)

Dt Jp
dsdz = 24Dt Jp

a

∫ L

0
γ 2dz = 1

2
Kγ

∫ L

0
γ 2dz, (4)

where Mp(s, z) = Mp(z)
(
2s
a − 1

)
and Mp(z) = Mp = 6Dt Jp

a2
2u = 6Dt Jp

γ
a is the bending moment of the

wall in the transverse direction as shown in Fig. 17a of Appendix A (variable s is shown in Fig. 1), Dt is the
elastic modulus of the wall material in the transverse direction, Jp = δ3

12 is the moment of inertia of the wall
cross section in the transverse direction, a is the height of the cross section, and the distortional stiffness Kγ

is defined as

Kγ
def= 48Dt Jp

a
= 4Dt

a
δ3, (5)

where δ is the wall thickness.

2.2 Bending potential energy of the column in the longitudinal direction

The elastic potential energy Vg of the column in the longitudinal direction is (see Fig. 17b of Appendix A)

Vg = 1

2
4

∫ L

0

M2
g

Dl Jg
dz = 1

2
Kg

∫ L

0
γ ′′2dz, (6)

where Mg = −Dl Jgu′′ = −Dl Jg
a
2γ ′′ is the bending moment of the walls in the longitudinal direction,

Jg = δa3
12 is the moment of inertia of the wall cross section in the longitudinal direction, Dl is the elastic

modulus of the wall material in the longitudinal direction, and the longitudinal stiffness Kg is defined as

Kg
def= Dl Jga

2 = Dla5

12
δ. (7)

2.3 Potential energy of torsion of the cross section walls

Furthermore, the energy of torsion of the cross section walls Vs is taken into account (see Appendix A):

Vs = 1

2
4GJs

∫ L

0
γ ′2dz = 2

3
Gδ3a

∫ L

0
γ ′2dz = 1

2
Ks

∫ L

0
γ ′2dz, (8)

where G is the shear modulus, Js = 1
3aδ3 is the free torsion moment of inertia of the wall, and the torsional

stiffness Ks is defined as

Ks
def= 4

3
Gaδ3. (9)
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Distortional buckling of composite thin-walled columns

2.4 Potential energy of end loads

It is supposed that the axial load P is uniformly distributed over the column cross section at both ends
(see Figs. 17a, c of Appendix A). Hence, the total energy is the sum of the energy due to bending and the
energy due to torsion of the walls. The first term corresponding to bending is

U I = −1

2
4
P

4

∫ L

0
u′2dz = −1

2
P

(a
2

)2 ∫ L

0
γ ′2dz = −1

8
Pa2

∫ L

0
γ ′2dz, (10)

where u = γ a
2 is the displacement of the cross section corner (see Fig. 1 and Fig. 17a of Appendix A).

The second potential energy part U I I is related to the torsion and is the sum of the energy of the walls,

U I I = −1

2
4
P

4
r20

∫ L

0
γ ′2dz = −1

2
Pr20

∫ L

0
γ ′2dz, (11)

where r20 is the square of the polar radius of gyration of a single wall and is given by

r20 = J0
A

=
1
12 (a

3δ + δ3a)

aδ
= 1

12
(a2 + δ2), (12)

where J0 is the polar moment of inertia and A is the wall cross-sectional area.

2.5 Total potential energy

The total potential energy Π is the sum of the energy parts as follows:

Π = Vp + Vg + Vs +U I +U I I . (13)

Considering the individual components, we obtain

Π = 1

2
Kγ

∫ L

0
γ 2dz + 1

2

(
Ks − 1

4
Pa2 − Pr20

) ∫ L

0
γ ′2dz + 1

2
Kg

∫ L

0
γ ′′2dz. (14)

A necessary condition for stationary total potential energy (14) leads to the differential equation [32]

Kgγ
I V +

{ Pa2

12

[
4 +

( δ

a

)2] − Ks

}
γ ′′ + Kγ γ = 0. (15)

Equation (15) can be rewritten as
γ I V + 2αγ ′′ + β2γ = 0, (16)

where

2α = 1

Kg

{ Pa2

12

[
4 +

( δ

a

)2] − Ks

}
= P(4a2 + δ2) − 16aGδ3

a5δDl
(17)

and

β2 = Kγ

Kg
= 48

Dtδ
2

Dla6
. (18)

The general solution of Eq. (16) is

γ (z) = C1 sin(t1z) + C2 cos(t1z) + C3 sin(t2z) + C4 cos(t2z), (19)

where t1 and t2 are

t1 =
√

α −
√

α2 − β2, t2 =
√

α +
√

α2 − β2.

The constants C1, C2, C3 and C4 should be determined by means of the corresponding boundary conditions.
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3 Buckling of a simply supported column

Let us consider a simply supported column of length L compressed by axial end loads P (see Fig. 1).
Substituting the boundary conditions

z = 0, γ = 0, γ ′′ = 0,

z = L , γ = 0, γ ′′ = 0

into Eq. (19), we arrive at the system of linear algebraic equations

C2 + C4 = 0,

−C2t
2
1 − C4t

2
2 = 0,

C1 sin(t1L) + C3 sin(t2L) = 0,

−C1t
2
1 sin(t1L) − C3t

2
2 sin(t2L) = 0. (20)

The system’s solution is
t22 L

2 = n2π2, (21)

where n is the number of half-waves of a buckling mode.
A number of operations results in

2α = n2π2

L2 + β2 L2

n2π2 . (22)

Subsequently, the buckling load Pn
b corresponding to the number of buckling mode half-waves n is derived,

Pn
b = π2a5Dln2δ

L2(4a2 + δ2)
+ 48δ3DtL2

π2n2a(4a2 + δ2)
+ 16aGδ3

4a2 + δ2
. (23)

Next, the buckling stress is expressed in terms of m = nπ
L ,

σb = m2 a4Dl

4(4a2 + δ2)
+ 1

m2

12δ2Dt

a2(4a2 + δ2)
+ 4δ2G

4a2 + δ2
. (24)

The critical buckling stress σcr is assumed to be theminimum buckling stress with respect to the integer number
of buckling half-waves n. To find the minimum stress, we incorporate its relation with the relative length of
the column shown in Fig. 2. Applying the graph shown in Fig. 2, it is possible to find the number of half-waves
of a buckling mode n corresponding to the critical buckling stress σcr.

The minimum critical buckling load results from the first derivative of the buckling load (24) with respect
to m,

dσb
dm

= 0, (25)

which leads to the column length corresponding to the minimum critical stress (note that L is usually known,
so the characteristic length L0 and number of half-waves n are investigated)

L = ηL0, (26)

where L0 is equal to

L0 = 1

2
πa 4

√
1

3

Dl

Dt

(a
δ

)2
. (27)

Substituting results (25) into formula (24), it is possible to find the minimum critical buckling stress

σcr,min = 2δ
(
a
√
3DlDt + 2δG

)

4a2 + δ2
. (28)

The buckling critical stress versus member length relation, scaled by the characteristic length L0, is illustrated
in Fig. 2.

To determine the critical buckling load Pcr or stress σcr, it is first necessary to find the characteristic length
coefficient of the column η (26); next, the number of half-waves n is taken from Fig. 2. Substituting the number
of half-waves n into (24), the critical buckling stress is obtained.
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n=2 n=3 n=4 n=5n=1

1 2 3 4 5

L/L0

cr
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b

Fig. 2 Critical buckling stress versus ratio of the member length to its characteristic value
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L/2

L/2
K

Fig. 3 Column with an additional internal diaphragm

4 Effect of diaphragm introduction

This paper studies the behaviour of thin-walled columns with closed square cross sections with two sup-
ports/diaphragms on freely warping column ends. In practice, to increase the critical load, additional internal
diaphragms may be added (see Fig. 3). The best locations of diaphragms are in the cross sections in the middle
of each half-wave where the mode amplitude occurs. For the appropriate diaphragm stiffness, the number of
the half-waves increases twofold, increasing the critical stresses.

We first examine the case of a single half-wave as a bucklingmode. The analysis is focused on theminimum
stiffness of the internal diaphragm located in the column middle K γ needed to double the number of half-
waves (see Fig. 17d of Appendix A). The effect of such a diaphragm is equivalent to a rigid support; thus, no
distortion occurs here, and eventually, the critical buckling stress (24) increases.

The solution of (16) satisfies the boundary conditions formulated due to the column part from the left
support to the internal diaphragm:

z = 0, γ = 0,

z = 0, γ ′′ = 0,

z = L/2, γ ′ = 0. (29)

The first two boundary conditions represent the simply supported end; third condition expresses symmetry of
distortion along the column axis. The solution satisfying these three boundary conditions (29) reads

γ (z) = C1

[
sin(t1z) − t1 cos(ρ1)

t2 cos(ρ2)
sin(t2z)

]
, (30)
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Table 1 Material properties for fibres and the matrix

Glass fibres Epoxy matrix

Density (kg/m3) 2450 1246
Young’s modulus (GPa) 71 3.5
Kirchhoff’s modulus (GPa) 30 1.25
Poisson’s ratio (–) 0.22 0.33

where ρ1 = 1
2 t1L , ρ2 = 1

2 t2L .
Moreover, we have the fourth condition in the diaphragm location

z = L/2, Kgγ
′′′ = 1

2
K γ γ. (31)

Substitution of Eqs. (30) into (31) leads to the diaphragm stiffness formula

K γ = 4Kg
t1

√
α2 − β2 cos(ρ1)

sin(ρ1) − t1 cos(ρ1)
t2 cos(ρ2)

sin(ρ2)
. (32)

Equation (32) represents the relation between the critical load Pcr and the diaphragm stiffness, if for example
its value reaches zero then

cos(ρ1) = 0 → ρ1 = 1

2
t1L = 1

2
πn, (33)

and the critical buckling load of the column without the internal diaphragm is stated by (23).
In order to find the diaphragm stiffness corresponding to a higher buckling mode n = 2, it is necessary to

determine the coefficients α, t1, t2 [see Eqs. (17), (18) and (19)] due to the critical load related to this higher
mode.

It should be emphasized that the additional diaphragm introduced in the middle cross section leads to
higher critical stresses, while the ratio of the column length to its characteristic length η is less then

√
2 ≈ 1.41

(see Fig. 2).
When thenumber of half-wavesn in the bucklingmode is higher, all half-wave sections should be considered

separately as simply supported columns of length L/n. Consequently, the n diaphragms should be situated in
the middle cross sections of each half-wave.

5 Examples—analytical and numerical solutions

Consider an axially compressed thin-walled column of square cross section made of unidirectional fibre-
reinforced composite material, as shown in Fig. 5. The material properties of the epoxy matrix and glass fibres
are presented in Table 1.

The numerical and analytical solutions presented in this paper are related to the axially compressed simply
supported column shown in Fig. 5.

Numerical analyses are carried out by means of ABAQUS software [15]. To estimate the critical buckling
loads/stresses, a linear perturbation procedure (LBA) is applied. In the FEManalysis, due to the symmetry of the
column cross section, only a quarter of each column was discretized, and the appropriate boundary conditions
are presented in Fig. 5. To confirm the correctness of the assumed boundary conditions (see Figs. 4, 5) resulting
from the symmetry of the static diagram, additional analysis of columns considering the entire cross-sectional
geometry is carried out. Identical solutions are obtained in both cases with and without consideration of
symmetry in the numerical models. The columns are modelled by finite membrane-strain shell elements with
reduced integration type—S4R (0.02 × 0.02 m2), i.e. 40 elements along the full cross section. The total
number of finite elements in all cases is equal to 8000 for L = 4 m. The material behaviour is modelled by
a linearly elastic orthotropic lamina-type procedure available in ABAQUS [15]. The parameters of material
model types (A) and (B) (E1 = El, E2 = Et, v12 = vlt,G12 = G13 = G23 = G and v21 = (E2/E1)v12) are
determined by Eqs. (1) and (2). The values of material parameters are shown in Table 2. The diaphragms in the
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(a)

U 0=3=1U R

RU 0=3=2UU1=U2=0

U1=U2=0U 2,2U,y R

RU 3,3U,zRU 1,1U,x

L/2U1=U2=0

K =infinity
Fibres directionl

t

(b)

U 0=3=1U R

RU 0=3=2U

L/2

0.5K

0.5K
U1=U2=0

U1=U2=0

K =specified

l
t

Fibres direction

K

K

column
cross-section

Fig. 4 Idea of supports (diaphragms) for one internal diaphragm—n = 2, assuming a infinite stiffness of the diaphragm and b a
specified stiffness of the diaphragm

U1=U2=0

U1=U2=0

y RU 2,2U,

RU 1,1U,x
RU 3,3U,z

Fibres directionl t

U1=U2=0

U1=U2=0

Expected mode
of distortional buckling

for n=1

L/2

L/2

z, 3

x, 1 y, 2

P

P

a

a

x, 1
y, 2

RU 0=3=1U

RU 0=3=2U

z, 3

x, 1
y, 2

l - longitudinal direction
t - transverse direction

Fibres direction

Fig. 5 Schematic FEM model, load, imposed boundary conditions and fibre direction (without symmetry and considering sym-
metry)
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Table 2 Material parameters at different fibre volume fractions f for two types of homogenization (A) and (B)

f Material’s homogenization
type

Material’s homogenization
type

Material’s homogenization
type

Material’s homogenization
type

(A)(B) (A) (B) (A) (B) (A) (B)

El (GPa) Et (GPa) G (GPa) vlt (–)

0.2 17.000 5.8414.322 1.6691.546 0.2810.308
0.4 30.500 8.4245.648 2.4662.027 0.2600.286
0.6 44.000 12.7748.148 4.0392.941 0.2450.264
0.8 57.500 22.64214.618 7.9595.357 0.2320.242

U 0=3=1U R

RU 0=3=2U

U1=U2=0

U1=U2=0

U 2,2U,y R

RU 1,1U,x

RU 3,3U,z
L/2

L/2

I

I

I-I

y, 2

x, 1

Fig. 6 Buckling mode at n = 1 for the full geometry of the column cross section and, based on symmetry, a quarter of the column
cross section (L = 4 m, a = 0.2 m, δ = 0.001 m)

Table 3 Critical buckling stresses and numbers of half-waves n for material model types (A) and (B) at different fibre volume
fractions f

Glass–epoxy, L = 4 m, a = 0.2 m, δ = 0.001 m

f σcr,min n Critical buckling stress σcr (MPa)

(A) (B) Analyt. FEM Analy. FEM Diff. (%) Analy. FEM Diff. (%)

(A) and (B) (A) (B)

0.2 44.4 38.1 1 1 45.2 39.4 13 40.4 35.0 13
0.4 70.8 57.8 1 1 74.1 64.4 13 65.2 56.3 14
0.6 104.6 83.1 1 1 108.7 94.8 13 93.9 81.1 14
0.8 159.8 127.6 1 1 161.1 141.5 12 135.6 118.0 13

Table 4 Critical buckling stresses and number of half-waves n—additional numerical examples

L = 6 m, a = 0.25 m, δ = 2 mm

Material type σcr,min No. of half-wave n Critical buckling stress (MPa)

Analyt. (MPa) Analyt. FEM Analyt. FEM Diff. (%)

LBA ψ = 1 ψ = 0.9 LBA ψ = 1 ψ = 0.9

Boron–epoxy 461.44 1 1 461.64 415.48 403.19 13 3
Graphite–epoxy 223.39 1 1 278.29 250.46 225.36 19 10
Aramid–epoxy 142.97 1 1 144.36 129.92 124.73 14 4
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Table 5 Specified stiffness of diaphragms K γ Eq. (32) for different fibre volume fractions f (glass–epoxy, material model type
(A), L = 4 m, a = 0.2 m, δ = 0.001 m)

Specified stiffness of diaphragms analytical solution—(32)

f 0.2 0.4 0.6 0.8

K γ (Nm) 943.3 1749.3 2498.6 3071.0

Table 6 Buckling stress for a columnwith one diaphragm (n = 2) at different fibre volume fractions f = 0.2 and 0.8 (glass–epoxy,
material model type (A), L = 4 m, a = 0.2 m, δ = 0.001 m)

Buckling stress for a column with a diaphragm numerical solution—FEM

K γ = infinity K γ = specified

f 0.2 0.8 0.2 0.8
σcr (MPa) 87.5 306.1 87.5 306.2

columns are modelled using a Spring/Dashpot type connection: points to ground (for “simplified” numerical
models based on symmetry) or two points (for full geometry numerical models) [15] (see Figs. 4, 6).

The major analytical results are shown in Tables 3, 4, 5 and 6. Furthermore, Figs. 7, 8, 9, 10, 11, 12 and 13
show the relationships between the buckling stresses σcr and the column length L , cross-sectional height a and
wall thickness δ for five half-waves of the buckling modes and the minimum critical stresses σcr,min versus the
cross-sectional height a and wall thickness δ. The graphical relations shown in Figs. 7, 8, 9, 10, 11, 12 and 13
refer only to the material model type (A), but the characteristics and graphical representations of functions for
the material model type (B) exhibit only slight variations. The figures more accurately indicate the differences
between the (A) and (B) material model type solutions. It should be noted that the minimum critical buckling
stresses are affected only by the cross-sectional dimensions, i.e. the cross-sectional height a and wall thickness
δ, and are independent of the column length L . The relationship between the buckling stresses and the fibre
volume fraction f for material model types (A) and (B) is shown. As the fibre volume fraction ratio increases,
the critical stresses also increase. Unfortunately, the critical stress is significantly affected by the material
homogenization method. The results shown in Figs. 7, 8, 9, 10, 11, 12 and 13 are limited to the assumed
buckling stress range of 1000 MPa due to the range of material elasticity [12,17].

Additionally, the minimum critical stresses at different values of the wall thickness, related to the fibre
volume fraction f , for the different material homogenization techniques (A) and (B) are shown in Fig. 14.
Furthermore, the characteristic member lengths L0 related to the fibre volume fraction f for various material
type and homogenization methods (A) and (B) are shown in Fig. 15.

Table 3 shows the critical buckling stresses obtained with the proposed closed-form formula (24) and
FEM procedures, compared for selected examples. The comparison of the analytical and FEM-based solutions
indicates that the proposed closed-form analytical solutions are correct and acceptable from an engineering
point of view (deviations not greater than 10%). This difference seems relatively stable and independent of the
numerical example (see Table 3). A correction factor, ψ , for the critical buckling stress is therefore proposed.
The value of the correction factor ψ should be equal to 0.9. Discrepancies can occur between the results at the
limits of the individual ranges of n (the number of half-waves of a buckling mode) or if η (the coefficient of
the characteristic length of a column) is much smaller than 1 (see Fig. 2).

The proposed formula is confirmed by additional numerical analysis. Further examples are worked, assum-
ing alternative geometric and material parameters as follows:

– geometric parameters: L = 6 m, a = 0.25 m, δ = 2 mm,
– material parameters [17]: boron–epoxy—El = 207 GPa, Et = 21 GPa, G = 7 GPa, vlt = 0.3; graphite–
epoxy—El = 207 GPa, Et = 5 GPa, G = 2.6 GPa, vlt = 0.25; aramid–epoxy—El = 76 GPa, Et =
5.5 GPa, G = 2.1 GPa, vlt = 0.34.

The buckling stresses and numbers of half-waves n are shown in Table 4.
Furthermore, axially compressed columns are analysed, including one with a single internal diaphragm

(glass–epoxy, material model type (A), L = 4 m, a = 0.2 m, δ = 0.001 m). Numerical analysis is carried out
with the ABAQUS software. The numerical models are shown in Figs. 4 and 5.

Table 5 presents the stiffness of diaphragms for different fibre volume fractions, f = 0.2, 0.4, 0.6, 0.8,
in the case of glass–epoxy material type (A) for the following geometric parameters of the column: L =
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(A)                                    (B)
n a L a L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1      61.19      0.31      10         55.18        0.29      10
pt 2  2      97.15      0.19      10         87.61        0.18      10

f=0.2
a 0.5 m

1.0 10 mL

f=0.8
L [m]

a [m]

=0.001 m

[ a]b MP [ a]b MP

L [m]

a [m]

pt 1 pt 2 pt 1
pt 2

(A)                                    (B)
n a L a L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     215.30      0.31      10        184.90      0.29      10
pt 2  2     341.84      0.20      10        293.56      0.18      10

0

500

1000

0

500

1000

10

5

0.5

0.1

0.3

10

5

0.5

0.1

0.3

n=1 n=2
n=3

n=1

n=2 n=3

Fig. 7 Critical buckling stress σb versus cross-sectional height a and column length L for f = 0.2 and 0.8 (for n = 1 − 5,
δ = 0.001 m, material models (A) and (B))

(A)                                    (B)
n a L a L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     154.26      0.49     10        139.11       0.46      10
pt 2  2     245.00      0.31     10        220.91       0.29      10

f=0.2
a 0.5 m

1.0 10 mL

f=0.8
L [m]

a [m]

=0.004 m

[ a]b MP [ a]b MP

L [m]

a [m]

pt 1
pt 2 pt 1

pt 2

(A)                                    (B)
n a L a L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     542.81      0.50      10        466.13      0.46      10
pt 2  2     862.07      0.31      10        740.24      0.29      10

0

500

1000

0

500

1000

10

5

0.5

0.1

0.3

10

5

0.5

0.1

0.3

n=1 n=2

n=4

n=1

n=2

n=3

n=5
n=2

n=3

Fig. 8 Critical buckling stress σb versus cross-sectional height a and column length L for f = 0.2 and 0.8 (for n = 1 − 5,
δ = 0.004 m, material models (A) and (B))

4 m, a = 0.2 m, and δ = 0.001 m. Table 6 shows the numerical results (FEM) for the buckling stresses
of a column reinforced by one internal diaphragm in the middle of its length. It should be noted that the
numerical results shown in Table 6 confirm the validity of the analytical formula (32) proposed to determine
the stiffness of the diaphragm. Furthermore, as can be seen in the considered numerical examples (see the
solutions in Tables 3 and 6), including an internal diaphragm in the column leads to increased critical stresses
(by approximately 55%), particularly for the column at f = 0.2 from 39.4 MPa to 87.5 MPa and at f = 0.8
from 141.5MPa to 306.1MPa. The buckling modes of columns with internal diaphragms are shown in Fig. 16.
The buckling modes presented in Fig. 16 correspond to both of the analysed cases, i.e. K γ tends to infinity or
is specified by formula (32).
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L=4 m
a 0.5 m

0.001 0.01 m

(A)                                    (B)
n a a[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     112.10      0.17   0.001      101.67       0.16   0.001
pt 2  2     179.02      0.10   0.001      161.44       0.10   0.001

f=0.2 f=0.8

a [m]

[ a]b MP [ a]b MP

a [m]

pt 1
pt 2

pt 1
pt 2

0

500

1000

0

500

1000

0.5

0.1
0.3

0.002
0.006

0.1

0.5

0.3

n=1

n=2

n=1

n=2

n=3

n=2

[m]

0.01

0.002
0.006

[m]

0.01

(A)                                    (B)
n a a[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     396.70      0.17   0.001      340.67       0.16   0.001
pt 2  2     629.96      0.11   0.001      540.96       0.10   0.001

Fig. 9 Critical buckling stress σb versus cross-sectional height a and wall thickness δ for f = 0.2 and 0.8 (for n = 1 − 5,
L = 4 m, material models (A) and (B))

L=8 m
a 0.5 m

0.001 0.01 m

(A)                                    (B)
n a a[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1      71.01      0.26    0.001        64.03       0.25   0.001
pt 2  2     112.74     0.17    0.001       101.67      0.16   0.001

f=0.2 f=0.8

a [m]

[ a]b MP [ a]b MP

a [m]

pt 1pt 2
pt 1pt 2

0

500

1000

0

500

1000

0.5

0.1

0.3

0.002
0.006

0.1

0.5
0.3

n=1

n=2

n=1

n=2

n=3

n=2

[m]0.01

0.002
0.006

[m]

0.01

(A)                                    (B)
n a a[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     249.85      0.27   0.001      214.56       0.25   0.001
pt 2  2     396.70      0.17   0.001      340.67       0.16   0.001

n=3

n=4

n=5 n=4

Fig. 10 Critical buckling stress, σb, versus cross-sectional height, a, and wall thickness, δ, for f = 0.2 and 0.8 (for n = 1 − 5,
L = 8 m, material models (A) and (B))

6 Discussion and conclusions

The issue of the distortional elastic stability of axially loaded thin-walled columns of box-type quadratic cross
sections is discussed in this paper. The influence of internal diaphragms on the column stability is considered.
Analytical closed formulas are derived for critical stresses and minimum buckling stresses independent of the
number of the mode half-waves. The number of buckling mode half-waves can be determined by introducing
the characteristic length of the column. Analytical characteristic length formulas are also provided. The results
are compared with the FEM-based results obtained in the ABAQUS system [15].

When the columns are composed of materials with a low modulus of elasticity, high elastic limit dis-
tortional buckling may occur in the elastic range, which is important in practical cases. Structural polymer
composites/laminates (also considered in this paper) satisfy these conditions well (Fig. 17).

The simple formulas derived in the paper allow us to compute critical buckling loads, critical buckling
stresses or minimal critical buckling stresses comparable to the FEM results with sufficient accuracy. Based
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a=0.2 m
L 10 m

0.001 0.01 m

(A)                                    (B)
n L L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1      88.74      6.23   0.001       76.10         6.73   0.001
pt 2  2      97.53       10     0.001       89.84          10     0.001

f=0.2 f=0.8

[ a]b MP
[ a]b MP

L [m]

pt 1 pt 2 pt 1 pt 2

0

500

1000

0.002
0.006

2

10

n=1

n=2 n=1 n=2

n=3

n=2

[m]

0.01

0.002

0.006

[m]

0.01

(A)                                    (B)
n L L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     319.41      6.03   0.001      255.00      6.73   0.001
pt 2  2     341.95       10     0.001      301.03       10     0.001

n=4
n=5

0

500

1000

L [m]
6

n=3

2

10
6

Fig. 11 Critical buckling stress σb versus column length L and wall thickness δ for f = 0.2 and 0.8 (for n = 1 − 5, a = 0.2 m,
material models (A) and (B))

a=0.3 m
L 10 m

0.001 0.01 m

(A)                                    (B)
n L L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1      61.35        10     0.001       55.32        10      0.001
pt 2  2     193.39       10    0.0026     194.81       10     0.0031

f=0.2 f=0.8

[ a]b MP
[ a]b MP

L [m]

pt 1

pt 2 pt 1

pt 20

500

1000

0.002

0.006

2

10

n=1 n=2 n=1

n=2n=3 n=2

[m]

0.01

0.002
0.006
[m]

0.01

(A)                                    (B)
n L L[ a] [m] [m] [ a] [m] [m]b bMP MP

pt 1  1     217.33       10    0.001      185.36       10     0.001
pt 2  2     657.91       10   0.0025     652.76       10    0.0031

0

500

1000

L [m]6

2

10
6

Fig. 12 Critical buckling stress σb versus column length L and wall thickness δ for f = 0.2 and 0.8 (for n = 1 − 5, a = 0.3 m,
material models (A) and (B))

on all considered cases, the discrepancies between the analytical and numerical results should not exceed 10%
(with the correction factor ψ).

It should be noted that the buckling stresses increase with the fibre volume fraction, similar to the mini-
mum critical stress. Furthermore, the minimum critical stresses are slightly affected by the type of material
homogenization method (see Figs. 14, 15). The model (B) [4] case exhibits smaller critical stresses than in the
case of model (A) [21], but the difference is not great. It should be noted that, comparing the analytical values
calculated for (A) and (B) in Table 3, relative deviations of between 12% and 19% are found. This observation
is very important from an engineering (practical) point of view because in the estimation of effective material
parameters, uncertainties strongly affect the reliability of buckling analysis. Moreover, the characteristic length
depends significantly on the type of material homogenization method. In the case of simple homogenization
method (B) [4], the characteristic length is visibly greater than that in the model (A) case [21].

Finally, it should be noted that the numerical results obtained confirm the validity of the theoretical assump-
tions adopted for the theoretical considerations leading to the analytical solutions.
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(A)                                        (B)
aa[ a] [m] [m] [ a] [m] [m]

cr, min cr, minMP MP
pt         17.74           0.5     0.001        15.21           0.5    0.001

f=0.2 f=0.8

[ a]cr, min MP

[m]

0

500

1000

0.5

0.3

0.002

0.01

a [m]

0.1

0

500

1000

0.006

(A)                                        (B)
aa[ a] [m] [m] [ a] [m] [m]

cr, min cr, minMP MP
pt         63.87           0.5     0.001        50.99           0.5    0.001

pt

[ a]cr, min MP

pta [m] 0.5

0.3

0.1

[m]

0.002

0.01

0.006

Fig. 13 Minimum critical stresses σcr,min versus cross-sectional height a and wall thickness δ for f = 0.2 and 0.8 (for material
models (A) and (B))

(a)
800

600

400

200

0
0 1.00.80.60.40.2

[ a]cr,min MP

Glass-Epoxy
--- Material’s homogenization type (A)

Material’s homogenization type (B)

a=0.2 m
=1 mm

( =0)=17.04 MPacr,min f

f

(b)

0 1.00.80.60.40.2

800

600

400

200

0

a=0.2 m
=2 mm

Glass-Epoxy
--- Material’s homogenization type (A)

Material’s homogenization type (B)

[ a]cr,min MP

( =0)=34.14 MPacr,min f

f

Fig. 14 Minimum critical stresses σcr,min versus fibre volume fraction f for two wall thicknesses and for both material homoge-
nization types (A) and (B) at a δ = 1 mm and b δ = 2 mm

(a)

L0 [m]

Glass-Epoxy
--- Material’s homogenization type (A)

Material’s homogenization type (B)

6

5

4

3

2
0 1.00.80.60.40.2

f

a=0.2 m
=1 mm

(b)

L0 [m]

Glass-Epoxy
--- Material’s homogenization type (A)

Material’s homogenization type (B)

6

5

4

3

2
0 1.00.80.60.40.2

f

a=0.2 m
=2 mm

Fig. 15 Characteristicmember length L0 versusfibre volume fraction f for twowall thicknesses andbothmaterial homogenization
types (A) and (B) at a δ = 1 mm and b δ = 2 mm
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y, U2, 2UR

x, U1, 1UR

z, U3, 3UR

Fig. 16 Buckling modes for a column with one internal diaphragm for the full geometry of the cross section and for a quarter of
the cross section based on symmetry (L = 4 m, a = 0.2 m, δ = 0.001 m)
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Gdańsk, Poland.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

Appendix A
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Fig. 17 Figures complementing the analytical considerations: a the bending stiffness of the web in the transverse direction (the
case of bending of the column), b displacements of the wall subjected to bending, c axial end loads and axial displacements of
the support, and d the influence of diaphragm stiffness on the number of half-waves
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