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Abstract: A sensor working in multiple domains may offer enhanced information about the
properties of an investigated analyte, including those containing biological species. It has already
been shown that a dual-domain sensing capability, i.e., in optical and electrochemical domains,
can be offered by lossy-mode resonance (LMR) sensors based on indium-tin-oxide (ITO) thin
film. The spectral response of the LMR sensors depends on the refractive index (RI) at the ITO
surface. In this work, we discuss a capability for enhancing the electrochemical properties of
these sensors by electrodeposition of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate)
(PEDOT:PSS) on the ITO surface. This conjugated polymer shows high electrical conductivity,
high optical transmittance, as well as good chemical stability, and thus can be used as a transparent
electrode. We have found that the PEDOT:PSS deposition improves the reversibility of the
electrochemical reduction/oxidation reactions by 2.5 times with no negative impact on LMR-based
measurements of the RI of the analyte.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, increasing demand for novel diagnostic and analytical methods capable of
investigating various biological targets at ultralow quantities has been observed [1]. When the
label-free sensing concept is considered, where no fluorescent marker is applied and just binding
phenomena between a biological receptor and a target at the sensor surface are monitored, the
targets can be investigated in their natural state, and without a requirement for their additional
modification or amplification. In the case of optical sensors, the label-free sensing concept relies
on monitoring changes in the refractive index (RI) in the vicinity of the sensor surface [2]. An
increase in RI corresponds to an increase in density, that is induced by biological binding events
and can be monitored optically in real time [3].
Optical fiber sensors, due to their set of unique properties such as their small size, immunity

to electromagnetic interference, and capability of multiparameter and remote sensing, have
gathered significant attention of the scientific community. A number of optical fiber sensors
capable of measurement of RI with high sensitivity have already been reported [4–6]. Due to
their immunity to optical power fluctuations, sensors based on resonance effects such as surface
plasmon resonance or lossy-mode resonance (LMR) [7–9] are desired. Among the advantages of
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LMR sensors is that many materials, which include metal and semiconductor oxides or nitrides,
some carbon-based materials, as well as various polymers, can be used as thin films supporting
the LMR effect [7,10,11]. An indium tin oxide (ITO) thin film deposited on fused silica glass
may offer suitable properties for LMR observations. ITO is also well known for its low electrical
resistivity, and due to its band-gap, it is often used as an electrochemical (EC) working electrode
[12]. For this reason, ITO-based electrodes typically substitute those made of gold wherever
optical absorption at the electrode surface needs to be monitored during the EC process [13]. In
contrast to other transparent electrode materials, such as boron-doped diamond, thin ITO films
can be deposited at a relatively low temperature on various substrates and shapes [14]. When ITO
is used as an LMR-supporting thin film, a combined optical and EC analysis can be performed to
deliver an enhanced set of data about the investigated analytes [3,15,16]. EC-enhanced optical
measurements open up the possibility for detection of a variety of organic compounds and
heavy metals, but also allow for sensor surface treatment in the EC domain, followed by optical
detection. It is worth noting that tuning the properties of ITO to allow both high-quality LMR
and EC response to be achieved is still challenging. The most recent reports of the EC response
to the presence of a reduction/oxidation (redox) probe in a solution are unsatisfactory, i.e., weakly
defined reduction (Ired) and oxidation (Iox) current peaks were recorded using an ITO-LMR
sensor [3,15,16]. Moreover, the difference in potentials corresponding to these peaks (∆E) is
significantly higher than observed for other commercially available electrodes, including those
based on ITO. These parameters, namely Ired, Iox and ∆E are crucial when label-free sensing
applications in the EC domain are considered [17].

In this work, we propose electropolymerization of a conducting polymer on the ITO-coated opti-
cal fiber. The approachmakes it possible to improve the EC properties of the device when the LMR
effect has already been achieved. Poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate)
(PEDOT:PSS) was chosen for electropolymerization by means of chronoamperometry (CA), and
its further investigations were done with cyclic voltammetry (CV). PEDOT:PSS is a conjugated
polymer showing high electrical conductivity (up to 550 S cm−1) and good chemical stability in
a doped state [18]. When polymerized as a thin film, PEDOT:PSS can be used as a transparent
electrode with optical transmittance reaching up to 80% [19]. What is more, PEDOT:PSS is
often used in various EC biosensors targeted towards e.g., pesticides [20], glucose [21], ascorbic
acid [22] and dopamine [23]. In this work, we particularly focus on the influence of PEDOT:PSS
electropolymerization on optical and EC properties of the ITO-LMR optical fiber sensor.

2. Experimental

2.1. ITO-LMR sensor fabrication and optical testing

The LMR structures were fabricated using approx. 15 cm-long 400/840 µm core/cladding
diameter polymer-clad silica fiber samples, where 2.5 cm of polymer cladding was removed from
the fiber central section [15]. Next, the electrically conductive and optically transparent ITO
films were deposited by reactive magnetron sputtering of the ITO target (In2O3-SnO2—90/10
wt % and a purity of 99.99%). The magnetron, whose axis was perpendicular to the substrate,
was supplied by a Cito1310 (13.56MHz, 300 W) RF source (Comet AG, Flamatt, Switzerland).
The experiments were carried out at pressure p= 0.1 Pa in an argon atmosphere. The fibers were
rotated in the chamber during the process to uniformly cover with ITO the exposed fiber core
section.
To determine the RI sensitivity of the fabricated ITO-LMR devices, they were investigated

in mixtures of water/glycerine with different proportions of these components resulting in
nD = 1.33–1.45 RIU. Before immersing the sensors in subsequent mixtures their RI was measured
using an AR200 automatic digital refractometer (Reichert Inc., Buffalo, NY, USA). The RI
sensing studies were conducted without any applied bias potential. The optical transmission of
the ITO-LMR structure was interrogated in the range λ= 350–1050 nm using a HL-2000 white
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light source and a USB4000 spectrometer (Ocean Optics, USA). The optical transmission (Ti)
in the specified spectral range was measured as counts in the specified integration time (up to
100ms) and referred to the transmission of the fiber without the ITO coating (T0). The results
were normalized and presented as T=Ti-T0. The temperature of the solutions was stabilized at
25 °C.

For the combined optical and EC analysis, the ITO-LMR sensor was installed in the measure-
ment setup to record the Ti during each stage of the EC processing [15]. The Ti was monitored
and the data were acquired approx. every 2 s. For comparison of the results, the following
parameters were selected: (1) LMR wavelength (λR), and (2) T at the slope of the resonance at
the arbitrary chosen λ=700 nm (T700).

2.2. Electropolymerisation and EC setup

The CA processing and CV measurements were performed with a Palmsens Emstat 3+ po-
tentiostat/galvanostat controlled by the PSTrace 5 software. We used the ITO-LMR sensor,
a platinum wire, and Ag/AgCl/0.1 M KCl as the working (WE), counter (CE), and reference
(REF) electrodes, respectively. The electropolymerization on ITO-LMR sensor was conducted
by chronoamperometry by treated at constant potential 1.25V vs. REF for 120 s in 0.1 M NaSO4
containing 15mM EDOT and 0.1 M PSS. The procedure allowed for electropolymerization of
EDOT with a PSS counterion at the surface of the ITO-LMR sensor. The obtained at these
conditions PEDOT:PSS film thickness may reach up to 800 nm [24,25]. The EC property,
i.e., response to redox probes, before and after the electropolymerization was verified in 1mM
ferrocenedimethanol in 0.5 M Na2SO4 solution at a scan rate of 50mV·s−1. The measurement
cell used for the optical-EC investigation of the optical fiber sensor is shown schematically in
Fig. 1.
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Fig. 1. Schematically shown experimental setup used for EDOT-PSS electropolymerization
with optical monitoring of the ITO-LMR device.

The EC impedance spectroscopy (EIS) measurements were carried out to investigate process
changes in space charge capacitance and resistance of charge transfer between the electrode and
the electrolyte, whose detection is crucial. EIS is known for high precision and is frequently used
to evaluate heterogeneous charge-transfer parameters and a double-layer structure [1]. During an
EIS analysis, the impedance at a certain frequency (Zi) is measured. When the WE is immersed
in the electrolyte containing redox probe, it polarizes at the formal potential (Ef) of a particular
redox reaction. The Ef , also known as the mid-peak potential, is defined as a half of the sum of the
oxidation and reduction potential. For a reversible and diffusion-controlled redox reaction, at Ef
the reduced and oxidized species diffuse at equal rates. Following that, EIS measurements were
performed for ITO-coated and PEDOT:PSS-ITO-coated optical fiber structures at a determined
Ef of ferrocenedimethanol redox reaction. The spectra were recorded in the frequency range
20 kHz – 0.1Hz and with a 10mV amplitude. The measured impedances were analyzed with
an EIS Analyzer using an electric equivalent circuit (EEQC). The EEQC consists of different
components, such as resistors, capacitors, a coil or Warburg elements of features, that correspond
to the real processes occurring at the electrode/electrolyte interface. In other words, the EEQC
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shows the same electrical response as the WE. A modified Powell algorithm [26] was used with
an amplitude weighting ra as in Eq. 1, where N is the number of points, M is the number of
parameters, ω is the angular frequency, and P1. . . PM are model parameters. The rc is defined as
in Eq. 2, where i corresponds to the measured values of impedance, and icalc is attributed to the
calculated values.

ra = (ω,P1 . . . PM) = r2c/(N −M) (1)

r2c =
N∑

i=1

(Z ′i − Z ′icalc
)2 + (Z ′′i − Z ′′icalc

)2

Z ′i
2 + Z ′icalc

2 (2)

3. Result and discussion

Before the EDOT-PSS electropolymerization, the response of the ITO-LMR sensor to the
applied potential was verified. The attenuation band in the monitored spectrum is originated
by a resonance effect. The LMR is dependent on the thin film thickness since the thickness
determines propagation conditions for the lossy modes [27]. In can be seen in Fig. 2 that during
CV measurements, the optical spectrum did not experience any significant alterations. The
corresponding CV curve is shown in Fig. 4A. For a better insight, in Fig. 2C both the λR and
T700 were plotted vs. the measurement number that corresponds to the applied potential. During
the measurements, λR stayed almost constant, which means that there was no influence of the
potential on the LMR. For the previously investigated ITO-LMR sensors [12–14], where ITO was
deposited at a higher pressure, it was shown that the changes in applied potential had a significant
impact on the LMR. The negligible influence observed here corresponds to the properties of the
ITO coating deposited at a lower pressure, i.e., the ITO layer contains more crystalline forms,
so its bandgap is different than for ITO deposited at a higher pressure [28]. Moreover, the lack
of potential influence can be explained by a mismatch between energy levels for ITO and the
ferrocenedimethanol redox probe [16]. The simultaneously recorded EC response for one of the
cycles is shown in Fig. 4, and it will be discussed later together with the results obtained after the
electropolymerization.
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3. Result and discussion 

Before the EDOT-PSS electropolymerization, the response of the ITO-LMR sensor to the 
applied potential was verified. The attenuation band in the monitored spectrum is originated 
by a resonance effect. The LMR is dependent on the thin film thickness since the thickness 
determines propagation conditions for the lossy modes [27]. In can be seen in Fig. 2 that 
during CV measurements, the optical spectrum did not experience any significant alterations. 
The corresponding CV curve is shown in Fig. 4A. For a better insight, in Fig. 2C both the λR 
and T700 were plotted vs. the measurement number that corresponds to the applied potential. 
During the measurements, λR stayed almost constant, which means that there was no 
influence of the potential on the LMR. For the previously investigated ITO-LMR sensors [12-
14], where ITO was deposited at a higher pressure, it was shown that the changes in applied 
potential had a significant impact on the LMR. The negligible influence observed here 
corresponds to the properties of the ITO coating deposited at a lower pressure, i.e., the ITO 
layer contains more crystalline forms, so its bandgap is different than for ITO deposited at a 
higher pressure [28]. Moreover, the lack of potential influence can be explained by a 
mismatch between energy levels for ITO and the ferrocenedimethanol redox probe [16]. The 
simultaneously recorded EC response for one of the cycles is shown in Fig. 4, and it will be 
discussed later together with the results obtained after the electropolymerization. 

 
Fig. 2. Optical response of the ITO-LMR sensor to potential scanning (4 scans) with scan rate 50 mV/s in 1 mM 

ferrocenedimethanol in 0.1M KCl, where (A) shows spectrum presented as T=Ti-T0, where Ti and T0 are the optical 
transmissions of the ITO coated and uncoated fiber respectively, (B) magnification of selected part of the spectrum 
with shown evolution of T700 and λR, and (C) resonance wavelength and T at λ=700 nm for all the measurements. 

Fig. 2. Optical response of the ITO-LMR sensor to potential scanning (4 scans) with
scan rate 50mV/s in 1mM ferrocenedimethanol in 0.1M KCl, where (A) shows spectrum
presented as T=Ti-T0, where Ti and T0 are the optical transmissions of the ITO coated
and uncoated fiber respectively, (B) magnification of selected part of the spectrum with
shown evolution of T700 and λR, and (C) resonance wavelength and T at λ=700 nm for all
the measurements.
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Table 1. Oxidation and reduction potentials and currents obtained for CV recorded in 1 mM
ferrocenedimethanol in 0.1M KCl with the ITO-LMR sensor before and after PEDOT:PSS deposition.

Sample Eox [V] Ered [V] ∆E=Eox – Ered [V] Iox [µA] Ired [µA]

ITO-LMR 0.485 −0.025 0.51 20 16

PEDOT:PSS/ITO-LMR 0.311 0.101 0.21 73 71

Next, electropolymerization of EDOT was performed on the ITO-LMR sensor. Its optical
response during the process is shown in Fig. 3. Significant alteration of the spectrum can
be observed. The λR, initially at 578.56 nm, gradually shifts within 60 s (approx. 30 initial
measurements) towards longer wavelengths reaching 594.73 nm (∆λR = 16.17 nm). The T700
follows the trend for λR. After the initial 60 s, a significantly lower influence of the process on
the T700 was observed too (Fig. 3(C)). The results confirm the PEDOT:PSS film deposition on
the ITO-LMR sensors, i.e., a direction of the shift corresponds to an increase in RI at the ITO
surface, which is followed by deposition of the film [3]. It must be noted that mainly the right
slope of the resonance is influenced by the deposition. The effect may be caused by non-uniform
polymer deposition around the fiber, possibly induced by some distribution in the ITO resistivity.
Non-uniform coating distribution around the fiber may induce asymmetrical mode coupling and
thus less pronounced resonances are observed in the transmission spectrum [29].

Next, electropolymerization of EDOT was performed on the ITO-LMR sensor. Its optical 
response during the process is shown in Fig. 3. Significant alteration of the spectrum can be 
observed. The λR, initially at 578.56 nm, gradually shifts within 60 s (approx. 30 initial 
measurements) towards longer wavelengths reaching 594.73 nm (ΔλR = 16.17 nm). The T700 
follows the trend for λR. After the initial 60 s, a significantly lower influence of the process on 
the T700 was observed too (Fig. 3(C)). The results confirm the PEDOT:PSS film deposition on 
the ITO-LMR sensors, i.e., a direction of the shift corresponds to an increase in RI at the ITO 
surface, which is followed by deposition of the film [3]. It must be noted that mainly the right 
slope of the resonance is influenced by the deposition. The effect may be caused by non-
uniform polymer deposition around the fiber, possibly induced by some distribution in the 
ITO resistivity. Non-uniform coating distribution around the fiber may induce asymmetrical 
mode coupling and thus less pronounced resonances are observed in the transmission 
spectrum [29]. 

 
Fig. 3. Optical response of the ITO-LMR sensor to EDOT electropolymerization in 0.5 Na2SO4 at 1.25 V during  
a 120 s long process, where (A) shows the evolution of the spectrum, (B) magnification of selected part of the 

spectrum with shown evolution of T700 and λR, and (C) the shift of the resonance wavelength and T at λ = 700 nm. 

CV is an EC technique often used for verification of changes at an electrode surface. 
PEDOT:PSS electrode typically exhibits wide potential range of c.a. 1-1.5 V, but it concerns 
the full range when this electrode works in a buffer solution. In the case of the electrode 
immersed in an electrolyte containing ferrocyanide redox probe, the difference between 
oxidation and reduction peaks reaches 450 mV or even 200 mV [30]. Low ΔE is attributed to 
improved conductivity and mass transfer between redox species and surface of the polymer 
electrode [31,32]. Hence, the EC properties of the ITO-LMR sensor before and after 
electropolymerization were compared (Fig. 4(A)). For the sensor, prior to the 
electropolymerization, reversible reduction and oxidation peaks corresponding to one electron 
process are not well-defined, and ΔE = 510 mV. As a result of the electropolymerization 
process, ΔE has been reduced by factor of 2.4, reaching ΔE = 210 mV. A similar ΔE value is 
often achieved for glassy carbon, boron-doped diamond or gold electrodes [12,33]. For 
commercially available ITO films deposited on glass slides, ΔE is close to 100 mV. It must 
also be emphasized that the polymer deposition resulted in better definition of both Iox and 
Ired, which are higher for the sensor coated with PEDOT:PSS. The absolute values of the 
currents are nearly equal, which indicates a high reversibility of the redox reaction. The key 
EC parameters received from the CV curves are summarized in Table 1. 

 

Fig. 3. Optical response of the ITO-LMR sensor to EDOT electropolymerization in 0.5
Na2SO4 at 1.25V during a 120 s long process, where (A) shows the evolution of the
spectrum, (B) magnification of selected part of the spectrum with shown evolution of T700
and λR, and (C) the shift of the resonance wavelength and T at λ= 700 nm.

CV is an EC technique often used for verification of changes at an electrode surface. PE-
DOT:PSS electrode typically exhibits wide potential range of c.a. 1-1.5V, but it concerns the full
range when this electrode works in a buffer solution. In the case of the electrode immersed in an
electrolyte containing ferrocyanide redox probe, the difference between oxidation and reduction
peaks reaches 450mV or even 200mV [30]. Low ∆E is attributed to improved conductivity and
mass transfer between redox species and surface of the polymer electrode [31,32]. Hence, the
EC properties of the ITO-LMR sensor before and after electropolymerization were compared
(Fig. 4(A)). For the sensor, prior to the electropolymerization, reversible reduction and oxidation
peaks corresponding to one electron process are not well-defined, and ∆E= 510mV. As a result of
the electropolymerization process, ∆E has been reduced by factor of 2.4, reaching ∆E= 210mV.
A similar ∆E value is often achieved for glassy carbon, boron-doped diamond or gold electrodes
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[12,33]. For commercially available ITO films deposited on glass slides, ∆E is close to 100mV.
It must also be emphasized that the polymer deposition resulted in better definition of both Iox
and Ired, which are higher for the sensor coated with PEDOT:PSS. The absolute values of the
currents are nearly equal, which indicates a high reversibility of the redox reaction. The key EC
parameters received from the CV curves are summarized in Table 1.

Table 1. Oxidation and reduction potentials and currents obtained for CV recorded in 1 mM ferrocenedimethanol in 
0.1M KCl with the ITO-LMR sensor before and after PEDOT:PSS deposition. 

Sample Eox [V] Ered [V] ΔE = Eox – Ered [V] Iox [µA] Ired [µA] 
ITO-LMR 0.485 -0.025 0.51 20 16 

PEDOT:PSS/ITO-LMR 0.311 0.101 0.21 73 71 
 
 

 
Fig. 4. (A) CV recorded in 1 mM ferrocenedimethanol in 0.1 M KCl with the ITO-LMR sensor before and after 

PEDOT:PSS deposition. The potential and currents corresponding to redox peaks are indicated in Table 1. (B) EIS 
response recorded at the redox formal potential for ITO-LMR sensor with and without PEDOT:PSS coating. The 

inset in (B) is a close-up of the initial part of the figure. 

 
Additionally, at the Ef of the redox reaction, EIS was also recorded and presented in Fig. 

4(B). When bare ITO was interfacing the electrolyte containing the redox probe, a semicircle 
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The designed EEQC consists of the following components: i) resistances: Re - attributed to
the electrolyte resistance, Rp – the polymer resistance itself, RCT - charge transfer resistance, ii)
constant phase element (CPE) that models the behavior of a double layer, and iii) twoWarburg-like
components, which will be discussed later. Independently on the investigated working electrode,
the electrolyte resistance is at the same level, and equals to 590 Ω and 667 Ω for ITO and
ITO/PEDOT:PSS, respectively. The difference may result from some slight changes in the
geometric arrangement of electrodes for both the cases, but it does not impact on the overall
impedance value.
The CPE is attributed to the space charge capacitance, and its impedance is described by

Z =Q−1(iω)−m, where Q is a CPE parameter, m is exponential and in both cases reaches c.a.
0.9. According to Bard et al. [34], for m= 1, it stands for an ideal capacitance, while for
m= 0.5 indicates highly dispersed capacitance, that is typical for porous electrodes. The Warburg
component labelled as W represents the impedance of semi-infinite diffusion to/from a flat
electrode. This component contributes equally to the real (ReZ) and imaginary (ImZ) parts of the
impedance: ReZ(ω)=AW/ω0.5 and ImZ(ω)= -AW/ω0.5, where AW is the Warburg coefficient.
In comparison to the bare ITO, for a PEDOT:PSS-coated substrate, the EEQC includes an

additional section consisting of Wo and Rp, where they represent finite length diffusion at a
reflective boundary and ωor stands for the Warburg coefficient, whereas WOC = d/D0.5. The
impedance of the Wo component is given by Eq. 3. Wo is typically applied for modelling
of diffusion processes occurring in a polymer matrix and sometimes is termed subdiffusion
impedance [35].

ZW0 (ω) =
ωor
√
ω
(1 − j) coth[WOC

√
jω] (3)

The difference between both of the electrode materials can be seen when the EEQC segment
attributed to the charge transfer is considered. The values for those elements are listed in Table 2.
The ITO/PEDOT:PSS electrode exhibits much higher capacitance and lower charge transfer
resistance, while the Warburg diffusion is 2.6 times lower for the electrode coated with ITO only.
The PEDOT:PSS film enhances the transfer of electric charges between the electrolyte and ITO.
Therefore, the presence of PEDOT:PSS significantly enhances the EC response.

Table 2. The values of EEQC parameters responsible for charge transfer and diffusion.

Element / Unit ITO ITO/PEDOT:PSS

CPE / Ω−1sn 1.76×10−5 (m= 0.86) 5×10−4 (m= 0.91)

R1 / Ω 2608.2 1.5

W / Ω s−0.5 2399.8 912.7

The PEDOT:PSS/ITO-LMR sensor, simultaneously to EC interrogation, was again tested
optically (Fig. 6). Afterwards, the film deposition alterations in the spectrum are more intense
when compared to those before the deposition. Both the λR and T700 respond to the applied
potential. The λR reaches its maximum and minimum for 0.1V and 0.3V applied potential,
respectively, while the relation for T700 is inverted due to its location on the right slope of the
resonance. This phenomenon can be explained by modulation of the RI of the ITO, which is an
n-type semiconductor when charges are delivered, and changes in RI of the solution at the sensor
surface when ions from the electrolyte are attracted or pushed away from the sensor surface [16].
After the PEDOT:PSS deposition, the charge transfer because of substantial resistances R and W
decrease, as indicated in Table 2.
Finally, the optical response to RI changes at the PEDOT:PSS/ITO-LMR sensor has been

verified. For any label-free sensing applications, the sensor must be sensitive to RI changes at
its surface. As shown in [15–16], ITO–LMR optical fiber sensors without additional coatings
are suitable for this application. To preserve the possibility of multiple domain detection the
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Fig. 6. Optical response of the PEDOT:PSS/ITO-LMR sensor to potential scanning (4 scans) at a rate of 50 mV/s in 1 
mM ferrocenedimethanol in 0.1M KCl, where (A) shows the evolution of the spectrum, (B) magnification of selected 
part of the spectrum with shown evolution of T700 and λR, and (C) the shift of resonance wavelength and T at λ=700 

nm. 
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are suitable for this application. To preserve the possibility of multiple domain detection the 
optical response of the PEDOT:PSS/ITO-LMR sensor must not be disturbed. In Fig. 7(A), a 
well-defined LMR can be seen. It experiences a shift towards higher wavelengths when the 
RI increases. Referring to spectra presented above, measured in the electrolytes with redox 
probes or EDOT and PSS, the resonance is initially shifted towards shorter wavelengths due 
to the lower RI of the external medium. The significant response to RI after the 
electropolymerization proves that the PEDOT:PSS does not disturb the optical sensing effect, 
i.e., the surface is not blocked by the polymer films and does not prevent interactions with an 
external medium. 

Fig. 6. Optical response of the PEDOT:PSS/ITO-LMR sensor to potential scanning (4
scans) at a rate of 50mV/s in 1mM ferrocenedimethanol in 0.1M KCl, where (A) shows the
evolution of the spectrum, (B) magnification of selected part of the spectrum with shown
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optical response of the PEDOT:PSS/ITO-LMR sensor must not be disturbed. In Fig. 7(A), a
well-defined LMR can be seen. It experiences a shift towards higher wavelengths when the RI
increases. Referring to spectra presented above, measured in the electrolytes with redox probes
or EDOT and PSS, the resonance is initially shifted towards shorter wavelengths due to the lower
RI of the external medium. The significant response to RI after the electropolymerization proves
that the PEDOT:PSS does not disturb the optical sensing effect, i.e., the surface is not blocked by
the polymer films and does not prevent interactions with an external medium.

 
Fig.7. Optical response of the PEDOT:PSS/ITO-LMR sensor to external RI (n), where (A) shows evolution of the 

spectrum, and (B) shift in the resonance wavelength. 

4. Conclusion 
We investigated the possibility to enhance the sensing properties of an ITO-LMR sensor 

by electropolymerization of PEDOT:PSS on ITO surface. As a result of the process the 
reduction-oxidation peak-to-peak separation was significantly reduced, and the current peaks 
became more pronounced. Most importantly, after the PEDOT:PSS deposition, the sensor still 
stayed sensitive to external refractive index. This fact allows such an approach to be 
considered as suitable for improving the properties of opto-electrochemical label-free sensors. 
The deposition of a conducting polymer like PEDOT:PSS is a low-cost solution to enhance 
the electrochemical properties of the ITO-LMR devices.  
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4. Conclusion

We investigated the possibility to enhance the sensing properties of an ITO-LMR sensor by
electropolymerization of PEDOT:PSS on ITO surface. As a result of the process the reduction-
oxidation peak-to-peak separation was significantly reduced, and the current peaks became more
pronounced. Most importantly, after the PEDOT:PSS deposition, the sensor still stayed sensitive
to external refractive index. This fact allows such an approach to be considered as suitable
for improving the properties of opto-electrochemical label-free sensors. The deposition of a
conducting polymer like PEDOT:PSS is a low-cost solution to enhance the electrochemical
properties of the ITO-LMR devices.

Funding

Narodowe Centrum Nauki (NCN) (2014/14/E/ST7/00104, 2016/21/B/ST7/01430); Narodowe
CentrumBadań i Rozwoju (NCBR) (347324/12/NCBR/2017); North Atlantic Treaty Organization
(NATO) (SPS G5147).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. D. Nidzworski, K. Siuzdak, P. Niedziałkowski, R. Bogdanowicz, M. Sobaszek, J. Ryl, P. Weiher, M. Sawczak,

E. Wnuk, W. A. Goddard, A. Jaramillo-Botero, and T. Ossowski, “A rapid-response ultrasensitive biosensor for
influenza virus detection using antibody modified boron-doped diamond,” Sci. Rep. 7(1), 15707 (2017).

2. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid
level measurement,” Opt. Lett. 36(17), 3425–3427 (2011).

3. R. Bogdanowicz, P. Niedziałkowski, M. Sobaszek, D. Burnat, W. Białobrzeska, Z. Cebula, P. Sezemsky, M. Koba, V.
Stranak, T. Ossowski, and M. Śmietana, “Optical Detection of Ketoprofen by Its Electropolymerization on an Indium
Tin Oxide-Coated Optical Fiber Probe,” Sensors 18(5), 1361 (2018).

4. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt.
Lett. 34(3), 322–324 (2009).

5. M. Janik, A. K. Myśliwiec, M. Koba, A. Celebańska, W. J. Bock, and M. Śmietana, “Sensitivity Pattern of
Femtosecond Laser Micromachined and Plasma-Processed In-Fiber Mach-Zehnder Interferometers, as Applied to
Small-Scale Refractive Index Sensing,” IEEE Sens. J. 17(11), 3316–3322 (2017).

6. M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Towards refractive index sensitivity of long-period gratings
at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition,” Opt. Express
24(11), 11897–11904 (2016).

7. I. D. Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy Mode Resonance Generation With
Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications,” J. Lightwave Technol. 28(1), 111–117 (2010).

8. N. Paliwal and J. John, “Lossy Mode Resonance (LMR) Based Fiber Optic Sensors: A Review,” IEEE Sens. J.
15(10), 5361–5371 (2015).

9. Q. Wang and W.-M. Zhao, “A comprehensive review of lossy mode resonance-based fiber optic sensors,” Opt. Lasers
Eng. 100, 47–60 (2018).

10. M. Śmietana, M. Dudek, M. Koba, and B. Michalak, “Influence of diamond-like carbon overlay properties on
refractive index sensitivity of nano-coated optical fibres,” Phys. Status Solidi A 210(10), 2100–2105 (2013).

11. K. Kosiel, M. Koba, M. Masiewicz, and M. Śmietana, “Tailoring properties of lossy-mode resonance optical fiber
sensors with atomic layer deposition technique,” Opt. Laser Technol. 102, 213–221 (2018).

12. J. Stotter, Y. Show, S. Wang, and G. Swain, “Comparison of the Electrical, Optical, and Electrochemical Properties
of Diamond and Indium Tin Oxide Thin-Film Electrodes,” Chem. Mater. 17(19), 4880–4888 (2005).

13. J. Agrisuelas, D. Giménez-Romero, J. J. García-Jareño, and F. Vicente, “Vis/NIR spectroelectrochemical analysis of
poly-(Azure A) on ITO electrode,” Electrochem. Commun. 8(4), 549–553 (2006).

14. D. C. Paine, T.Whitson, D. Janiac, R. Beresford, C. O. Yang, and B. Lewis, “A study of low temperature crystallization
of amorphous thin film indium–tin–oxide,” J. Appl. Phys. 85(12), 8445–8450 (1999).

15. M. Śmietana, M. Sobaszek, B. Michalak, P. Niedziałkowski, W. Białobrzeska, M. Koba, P. Sezemsky, V. Stranak, J.
Karczewski, T. Ossowski, and R. Bogdanowicz, “Optical Monitoring of Electrochemical Processes With ITO-Based
Lossy-Mode Resonance Optical Fiber Sensor Applied as an Electrode,” J. Lightwave Technol. 36(4), 954–960 (2018).

16. M. Śmietana, P. Niedziałkowski, W. Białobrzeska, D. Burnat, P. Sezemsky, M. Koba, V. Stranak, K. Siuzdak, T.
Ossowski, and R. Bogdanowicz, “Study on Combined Optical and Electrochemical Analysis Using Indium-tin-oxide-
coated Optical Fiber Sensor,” Electroanalysis 31(2), 398–404 (2019).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1038/s41598-017-15806-7
https://doi.org/10.1364/OL.36.003425
https://doi.org/10.3390/s18051361
https://doi.org/10.1364/OL.34.000322
https://doi.org/10.1364/OL.34.000322
https://doi.org/10.1109/JSEN.2017.2695544
https://doi.org/10.1364/OE.24.011897
https://doi.org/10.1109/JLT.2009.2036580
https://doi.org/10.1109/JSEN.2015.2448123
https://doi.org/10.1016/j.optlaseng.2017.07.009
https://doi.org/10.1016/j.optlaseng.2017.07.009
https://doi.org/10.1002/pssa.201300059
https://doi.org/10.1016/j.optlastec.2018.01.002
https://doi.org/10.1021/cm050762z
https://doi.org/10.1016/j.elecom.2006.01.022
https://doi.org/10.1063/1.370695
https://doi.org/10.1109/JLT.2018.2797083
https://doi.org/10.1002/elan.201800638
http://mostwiedzy.pl


Research Article Vol. 9, No. 7 / 1 July 2019 / Optical Materials Express 3078

17. G. Li, Z. Li, X. You, J. Chen, and S. Tang, “A novel label-free and sensitive electrochemical biosensor for Hg2+
based on ligase-mediated formation of DNAzyme,” Talanta 161, 138–142 (2016).

18. L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical
properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313-314, 356–361
(1998).

19. Y. Chen, K. S. Kang, K. J. Han, K. H. Yoo, and J. Kim, “Enhanced optical and electrical properties of PEDOT: PSS
films by the addition of MWCNT-sorbitol,” Synth. Met. 159(17-18), 1701–1704 (2009).

20. G. Istamboulie, T. Sikora, E. Jubete, E. Ochoteco, J.-L. Marty, and T. Noguer, “Screen-printed poly(3,4-
ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors,”
Talanta 82(3), 957–961 (2010).

21. J. Park, H. K. Kim, and Y. Son, “Glucose biosensor constructed from capped conducting microtubules of PEDOT,”
Sens. Actuators, B 133(1), 244–250 (2008).

22. A. Bello, M. Giannetto, G. Mori, R. Seeber, F. Terzi, and C. Zanardi, “Optimization of the DPV potential waveform
for determination of ascorbic acid on PEDOT-modified electrodes,” Sens. Actuators, B 121(2), 430–435 (2007).

23. K.-C. Lin, T.-H. Tsai, and S.-M. Chen, “Performing enzyme-free H2O2 biosensor and simultaneous determination
for AA, DA, and UA by MWCNT–PEDOT film,” Biosens. Bioelectron. 26(2), 608–614 (2010).

24. B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, “Effects
of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors,” Macromolecules 42(17),
6741–6747 (2009).

25. A. U. Palma-Cando, B. A. Frontana-Uribe, J. L. Maldonado, and M. R. Hernández, “Control of Thickness of PEDOT
Electrodeposits on Glass/ITO Electrodes from Organic Solutions and its Use as Anode in Organic Solar Cells,”
Procedia Chem. 12, 92–99 (2014).

26. L. Lu, B. H. Brown, D. C. Barber, and A. D. Leathard, “A fast parametric modelling algorithm with the Powell
method,” Physiol. Meas. 16(3A), A39–A47 (1995).

27. I. Del Villar, M. Hernaez, C. R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F. J. Arregui, and I. R. Matias,
“Design rules for lossy mode resonance based sensors,” Appl. Opt. 51(19), 4298–4307 (2012).

28. L. Meng and M. P. dos Santos, “Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron
sputtering at different pressures,” Thin Solid Films 303(1-2), 151–155 (1997).

29. P. Zubiate, C. R. Zamarreño, I. D. Villar, I. R. Matias, and F. J. Arregui, “Experimental Study and Sensing Applications
of Polarization-Dependent Lossy Mode Resonances Generated by D-Shape Coated Optical Fibers,” J. Lightwave
Technol. 33(12), 2412–2418 (2015).

30. F. Abd-Wahab, A. Guthoos, H. Farhana, W. Salim, and W. W. Amani, “Solid-State rGO-PEDOT:PSS Transducing
Material for Cost-Effective Enzymatic Sensing,” Biosensors 9(1), 36 (2019).

31. Y. Hui, C. Bian, J. Wang, J. Tong, and S. Xia, “Comparison of Two Types of Overoxidized PEDOT Films and Their
Application in Sensor Fabrication,” Sensors 17(3), 628 (2017).

32. A. Benoudjit, M. M. Bader, and W. W. A. W. Salim, “Study of electropolymerized PEDOT:PSS transducers for
application as electrochemical sensors in aqueous media,” Sensing and Bio-sensing Research 17, 18–24 (2018).

33. G. M. Swain and R. Ramesham, “The electrochemical activity of boron-doped polycrystalline diamond thin film
electrodes,” Anal. Chem. 65(4), 345–351 (1993).

34. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition (Wiley, 2000).
35. E. Hernández-Balaguera, H. Vara, and J. L. Polo, “An electrochemical impedance study of anomalous diffusion in

PEDOT-coated carbon microfiber electrodes for neural applications,” J. Electroanal. Chem. 775, 251–257 (2016).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1016/j.talanta.2016.08.042
https://doi.org/10.1016/S0040-6090(97)00846-8
https://doi.org/10.1016/j.synthmet.2009.05.009
https://doi.org/10.1016/j.talanta.2010.05.070
https://doi.org/10.1016/j.snb.2008.02.029
https://doi.org/10.1016/j.snb.2006.04.066
https://doi.org/10.1016/j.bios.2010.07.019
https://doi.org/10.1021/ma901182u
https://doi.org/10.1016/j.proche.2014.12.046
https://doi.org/10.1088/0967-3334/16/3A/004
https://doi.org/10.1364/AO.51.004298
https://doi.org/10.1016/S0040-6090(97)00050-3
https://doi.org/10.1109/JLT.2015.2392791
https://doi.org/10.1109/JLT.2015.2392791
https://doi.org/10.3390/bios9010036
https://doi.org/10.3390/s17030628
https://doi.org/10.1016/j.sbsr.2018.01.001
https://doi.org/10.1021/ac00052a007
https://doi.org/10.1016/j.jelechem.2016.06.007
http://mostwiedzy.pl

