
GeneralizedSavitzky-Golayfilters for
identificationofnonstationarysystems
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Abstract

The problem of identification of nonstationary systems using noncausal estimation schemes is considered and a new class
of identification algorithms, combining the basis functions approach with local estimation technique, is described. Unlike
the classical basis function estimation schemes, the proposed local basis function estimators are not used to obtain interval
approximations of the parameter trajectory, but provide a sequence of point estimates corresponding to consecutive instants
of time. Based on the results of theoretical analysis conducted for nonstationary finite impulse response systems the paper
proposes two mechanisms for adaptive selection of the number of basis functions and the size of the local analysis window.

Key words: basis functions, identification and smoothing of nonstationary systems, Savitzky-Golay filters

1 Introduction

When system model is used for prediction purposes, the
identification task can be formulated as the problem of
finding the predictive (usually nonlinear) mapping from
the space of regression (input) variables to the space of
system outputs. In this case identification can be effi-
ciently carried out using explicit (Billings, 2013) or im-
plicit (machine-learning-based) (Liu, Principe & Haykin,
2011) nonlinear modeling techniques. In the current pa-
per, which is not prediction-oriented as it involves non-
causal estimation techniques, we consider the case where
the linear form of the process description is enforced by
the underlying application, such as channel equalization
(Tsatsanis & Giannakis, 1996) or parametric spectrum es-
timation (Dahlhaus, 2012), and the identification objec-
tive is to track parameters of the corresponding ground
truth model with the greatest possible accuracy. Note that
in both applications mentioned above noncausal estima-
tion is feasible.

The existing classical approaches to identification of non-
stationary stochastic systems/signals (along the lines in-
dicated above) can be coarsely divided into model-free and
model-based solutions. In the model-free case no explicit
description of process parameter variation is adopted. In-
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stead, assuming that unknown process parameters vary
“sufficiently slowly”, so that the process can be regarded
as locally stationary, identification can be carried out us-
ing the localized (weighted or windowed) versions of the
least squares or maximum likelihood estimators, or using
the stochastic gradient algorithms (Sayed, 2003). When
the model-based approach is taken, an explicit model
of parameter changes is incorporated, either determin-
istic or stochastic (Norton, 1975). In the deterministic
setup, parameter trajectories are approximated by linear
combinations of a certain number of known functions
of time, called basis functions (BF). Parameter esti-
mates can be obtained by means of local estimation of
the best-fitting approximation coefficients (Rao, 1970),
(Mendel, 1973), (Liporace, 1975), (Grenier, 1981),
(Hall, 1983), (Niedźwiecki, 1988), (Tsatsanis & Gian-
nakis, 1996), (Mrad, Fassois & Lewitt, 1998), (Zou et
al., 2003), (Poulimenos & Fassois, 2006).

In this paper we will describe and analyze a new
class of identification algorithms, combining the BF
approach with local estimation technique. Unlike
(Niedźwiecki, 1988), the proposed local basis functions
(LBF) estimators are not used to obtain interval approx-
imations of the parameter trajectory, but are regarded as
a source of point estimates corresponding to a particular
time instant t. This means that the estimation procedure
is carried out independently for each value of t, based on
the input/output data gathered in the local analysis in-
terval centered at t. Since the estimates obtained in this
way are noncausal, i.e., at each time instant t they rely
on both “past” and “future” (relative to t) process ob-
servations, they cannot be used in real-time applications
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such as adaptive prediction or adaptive control. However,
many other applications exist, such as the ones indicated
above, that are not time-critical in the sense that the
model-based decisions can be delayed by a certain num-
ber of sampling intervals. Such a processing mode is often
referred to as almost real time. Noncausal estimation
schemes can significantly reduce the bias component of
the mean square parameter estimation error. Owing to
this, their estimation performance is usually considerably
better than that of the comparable causal schemes.

On the qualitative level, the LBF approach can be con-
sidered an extension, to the process identification case, of
the signal smoothing technique known as Savitzky-Golay
(SG) filtering (Schafer, 2011) (filtering successive subsets
of adjacent data points with a low-degree polynomial by
the method of least squares). The paper extends, in sev-
eral directions, the earlier work on doubly exponentially
weighted basis function estimators (Niedźwiecki & Gack-
owski, 2013).

2 Estimation scheme

2.1 Notation

Consider a nonstationary stochastic process governed by
the equation

y(t) = ϕT(t)θ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, θ(t) = [θ1(t), . . . , θn(t)]T denotes the unknown n-
dimensional vector of time-varying process parameters,
ϕ(t) = [ϕ1(t), . . . , ϕn(t)]T denotes regression vector and
e(t) denotes white noise. The more explicit structure of the
regression vector, as well as detailed assumptions about
the sequences {θ(t)}, {ϕ(t)} and e(t)} will be discussed
later.

The identification approach pursued in this paper will be
based on the method of basis functions, namely, we will
assume that in the local time interval Tk(t) = [t−k, t+k]
of length lk = 2k+1, centered at t, each process parameter
can be expressed as a linear combination of m linearly
independent basis functions, namely

θj(t+ i) =

m∑
l=1

ajl,m|kfl|k(i)

j = 1, . . . , n, i ∈ Ik = [−k, k]

(2)

where

fl|k(i) = f0
l

(
i

k

)
, l = 1, . . . ,m, i ∈ Ik (3)

and f0
l (s), s ∈ [−1, 1], l = 1, . . . ,m denote continuous-

time square integrable basis generating functions defined
on the interval [−1, 1]. The subspace of the space of all
square summable sequences defined on Ik spanned by the
basis functions (3) will be further denoted by Fm|k.

If no prior knowledge about the nature of parameter vari-
ation is available, selection of the basis has to rely on some
general approximation guidelines. The most frequently
used general purpose bases are comprised of powers of
time (Taylor series approximation)

f0
l (s) = sl−1, l = 1, . . . ,m (4)

or harmonic functions (Fourier series approximation)

f0
1 (s) = 1, f0

2l(s) = sin[πsl], f0
2l+1(s) = cos[πsl] (5)

l = 1, . . . ,m0, m = 2m0 + 1.

Denote by αjm|k = [aj1,m|k, . . . , a
j
m,m|k]T the vector

of coefficients describing evolution of the j-th sys-
tem parameter θj(t) in the interval Tk(t) and let

αm|k =
[
(α1

m|k)T, . . . , (αnm|k)T
]T

. Finally, denote by

ψm|k(t, i) = ϕ(t + i) ⊗ fm|k(i) the generalized regression
vector where ⊗ denotes Kronecker product of the respec-
tive vectors/matrices and fm|k(i) = [f1|k(i), . . . , fm|k(i)]T

is the vector of basis functions.

Combining (1) with (2) and using the shorthand notation
introduced above, the local process model which will be
the subject of identification, can be written down in the
following compact form

y(t+ i) = ψT
m|k(t, i)αm|k + e(t+ i)

E[e2(t+ i)] = ρ, i ∈ Ik.
(6)

It should be stressed that the local process description
obtained after replacing the quantities αm|k and ρ in (6)
with the corresponding estimates α̂m|k(t) and ρ̂m|k(t) will
be further regarded as a pointwise, rather than interval,
process model, valid only at the instant t (i = 0). This
means that unlike (Niedźwiecki, 1988), the parameter fit-
ting procedure, described below, will be carried out inde-
pendently for each value of t. Such a technique is usually
called sliding window approach.

2.2 Identification procedure

Our identification procedure will be based on the method
of weighted least squares (WLS)

α̂m|k(t) = arg min
αm|k

k∑
i=−k

wk(i)[y(t+ i)−ψT
m|k(t, i)αm|k]2

where {wk(i), i = −k, . . . , k}, wk(0) = 1, denotes a non-
negative, symmetric bell-shaped window of width 2k + 1
used for localization purposes. We will further assume that
wk(i) = w0(i/k), where w0(s), s ∈ [−1, 1] denotes the
continuous-time window generating function.

Straightforward calculations lead to

α̂m|k(t) = P−1
m|k(t)pm|k(t) (7)
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where

Pm|k(t) =

k∑
i=−k

wk(i)ψm|k(t, i)ψT
m|k(t, i)

pm|k(t) =

k∑
i=−k

wk(i)y(t+ i)ψm|k(t, i)

(8)

– provided, of course, that the matrix Pm|k(t) is nonsin-
gular. The estimate of the noise variance can be obtained
in the form

ρ̂m|k(t) =
1

Lk

k∑
i=−k

wk(i)[y(t+ i)−ψT
m|k(t, i)α̂m|k(t)]2

=
1

Lk
[ck(t)− pT

m|k(t)α̂m|k(t)] (9)

where ck(t) =
∑k
i=−k wk(i)y2(t+ i) and

Lk =

k∑
i=−k

wk(i) ∼= k

∫ 1

−1

w0(s)ds (10)

denotes the effective window width.

Finally, based on (2), the instantaneous estimate of θ(·)
can be evaluated

θ̂m|k(t) = Fm|kα̂m|k(t), Fm|k = In ⊗ fT
m|k(0). (11)

The estimators θ̂m|k(t) and ρ̂m|k(t) will be further referred
to as local basis function (LBF) estimators.

3 Basic properties of LBF estimators

3.1 Basis orthonormalization

To simplify our further developments, we will rewrite the
LBF algorithm in terms of the orthonormal basis set of
Fm|k. Define the inner (dot) product of the sequences f(i)

and g(i), i ∈ Ik in the form 〈f, g〉 =
∑k
i=−k w(i)f(i)g(i),

‖ f ‖2= 〈f, f〉. The basis set of Fm|k orthonormal with
respect to the adopted inner product, further referred to
as w-orthonormal basis set of Fm|k, will be denoted by

f̃1|k(i), . . . , f̃m|k(i), i ∈ Ik. Note that such a basis set obeys

the condition
∑k
i=−k wk(i)f̃m|k(i)f̃T

m|k(i) = Im where

f̃m|k(i) = [f̃1|k(i), . . . , f̃m|k(i)]T. The w-orthonormal basis
can be obtained from the original basis by means of ap-
plying the Gram-Schmidt procedure, or using the follow-

ing linear transformation f̃m|k(i) = Q
−1/2
m|k fm|k(i) where

Q
−1/2
m|k = [Q

1/2
m|k]−1, Qm|k =

∑k
i=−k wk(i)fm|k(i)fT

m|k(i)

and Q
1/2
m|k denotes any square root of the matrix Qm|k.

After this modification the LBF estimator of θ(t) takes
the form

θ̃m|k(t) = F̃m|kα̃m|k(t), F̃m|k = In ⊗ f̃T
m|k(0) (12)

where α̃m|k(t) = P̃−1
m|k(t)p̃m|k(t) and the quantities

P̃m|k(t) and p̃m|k(t) are defined in an analogous way as
Pm|k(t) and pm|k(t), respectively.

One can easily show that θ̃m|k(t) = θ̂m|k(t) which means
that, as expected, the change of the basis of the subspace
Fm|k has no influence on the obtained estimation results.

The noise variance estimate takes the form analogous to
(9)

ρ̃m|k(t) =
1

Lk
[ck(t)− p̃T

m|k(t)α̃m|k(t)] = ρ̂m|k(t). (13)

3.2 Static characteristics

To obtain analytical results, we will assume that (1) is a
finite impulse response (FIR) system, i.e., ϕ(t) = [u(t −
1), . . . , u(t− n)]T where u(t) denotes an observable input
sequence. Furthermore, we will assume that

(A1) {u(t)} is a zero-mean wide sense stationary Gaussian
sequence, persistently exciting of order at least n, with
an exponentially decaying autocorrelation function
ru(i) = E[u(t)u(t− i)]:

∃ 0 < c1 <∞, 0 < β < 1 : |ru(i)| ≤ c1β|i|, ∀i

(A2) {e(t)}, independent of {u(t)}, is a sequence of zero-
mean independent and identically distributed random
variables with variance ρ.

(A3) In the time interval Tk(t) the true process parameters
obey (2), i.e., all parameter trajectories belong to the
subspace Fm|k spanned by the basis functions.

Note that under (A3) it holds that

y(t+ i) = ψ̃T
m|k(t, i)α0

m|k + e(t+ i), i ∈ Ik (14)

where α0
m|k =

[
In ⊗Q

T/2
m|k

]
αm|k denotes the vector

of true basis function coefficients and ψ̃m|k(t, i) =[
In ⊗Q

−1/2
m|k

]
ψm|k(t, i) = ϕ(t+ i)⊗ f̃m|k(i).

Denote by ∆α̃m|k(t) = α̃m|k(t) − α0
m|k the estimation

error. It is straightforward to check that

∆α̃m|k(t) = P̃−1
m|k(t)ξm|k(t)

ξm|k(t) =

k∑
i=−k

wk(i)ψ̃m|k(t, i)e(t+ i).
(15)
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Using a similar technique as that adopted in (Niedźwiecki,
1988), one can show that under the assumption (A1) the

matrix P̃m|k(t) converges in the mean squared sense to a

constant matrix limk→∞ P̃m|k(t) = Φ⊗ Im = P̄m m.s.,

where Φ = E[ϕ(t)ϕT(t)] > 0. This limiting result justi-
fies the following approximation valid for sufficiently long
analysis intervals

∆α̃m|k(t) ∼= P̄−1
m ξm|k(t). (16)

All further analytical results will be based on (16). The
errors that arise in consequence of adopting this ap-
proximation can be analyzed in an analogous way as in
(Niedźwiecki, 1988).

Note that according to assumption (A2) it holds that
E[ξm|k(t)] = 0, which entails E[∆α̃m|k(t)] ∼= 0 and conse-

quently E[θ̃m|k(t)] = E[θ̂m|k(t)] ∼= θ(t). Hence, in the case

considered, the LBF estimator θ̃m|k(t) is (approximately)
unbiased. To obtain expression for its covariance matrix,
note that

cov[α̃m|k(t)] = E[∆α̃m|k(t)∆α̃T
m|k(t)]

∼= P̄−1
m E[ξm|k(t)ξT

m|k(t)] P̄−1
m (17)

Since P̄−1
m = Φ−1 ⊗ Im and E[ξm|k(t)ξT

m|k(t)] = ρ [Φ ⊗
Wm|k] where Wm|k =

∑k
i=−k w

2
k(i)f̃m|k(i)f̃T

m|k(i), one ar-

rives at

cov[α̃m|k(t)] ∼= ρ [Φ−1 ⊗ Im] [Φ⊗Wm|k][Φ−1 ⊗ Im]

= ρ[Φ−1 ⊗Wm|k] (18)

which stems from the identity (A⊗B)(C⊗D) = AC⊗
BD. Finally,

cov[θ̃m|k(t)] = cov[θ̂m|k(t)] = F̃m|kcov[α̃m|k(t)]F̃T
m|k

∼= ρ[In ⊗ f̃T
m|k(0)][Φ−1 ⊗Wm|k][In ⊗ f̃m|k(0)] =

ρΦ−1

Nm|k
(19)

where

Nm|k = [̃fT
m|k(0)Wm|k f̃m|k(0)]−1

=

{
k∑

i=−k

[wk(i)f̃T
m|k(0)f̃m|k(i)]2

}−1

(20)

is the quantity that will be further referred to as equiv-
alent number of observations. The name stems from the
fact that in the time invariant case the covariance matrix
of the LBF estimator is the same as the covariance ma-
trix of the LS estimator incorporating Nm|k data points.
Note that Nm|k depends on m and differs from the effec-
tive number of observations, given by (10). It is is propor-
tional to the window size k [which can be shown using the
integral approximation technique – cf. (10)] and inversely
proportional to the number of basis functions m – the lat-
ter effect is illustrated in Fig. 1.
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Fig. 1. Dependence of the equivalent number of observations
Nm|k on the number of basis functions [polynomial basis, rect-
angular window of width 101].

3.3 Dynamic characteristics

To study parameter matching characteristics of LBF es-

timators we will again use the approximation P̃−1
m|k(t) ∼=

P̄−1
m . However, unlike previously, the only assumption we

will make about the sequence {θ(t)} is that

(A3∗) {θ(t)} is independent of {u(t)} and {e(t)}.

Note that (A3∗) does not imply that parameter trajec-
tories belong to the subspace Fm|k, i.e., that system pa-
rameters can be exactly modeled as linear combinations
of basis functions.

Denote by θ̄m|k(t) = EΩk(t)[θ̃m|k(t)] the average path of
parameter estimates, where the expectation is carried over
Ωk(t) = {ϕ(t + i), e(t + i), i ∈ Ik}. It is easy to derive
the following relationship that holds under (A1), (A2) and
(A3∗)

θ̄m|k(t) ∼= [Φ−1 ⊗ f̃T
m|k(0)]

k∑
i=−k

wk(i)[Φθ(t+ i)]⊗ f̃m|k(i)

=

k∑
i=−k

hm|k(i)θ(t+ i) (21)

where

hm|k(i) = wk(i)f̃T
m|k(0)f̃m|k(i), i ∈ Ik (22)

is the sequence that will be further referred to as the im-
pulse response associated with the LBF estimator. Ac-
cording to (21), the mean path of parameter estimates
{θ̄m|k(t)} can be approximately viewed as an output of
a linear noncausal filter with impulse response {hm|k(i)}
excited by the process {θ(t)}.

Note that [cf. (20)]
∑k
i=−k h

2
m|k(i) = Nm|k. Addition-

ally, it can be shown that if a constant function f(i) =
1,∀i ∈ Ik, belongs to the subspace Fm|k, it holds that∑k
i=−k hm|k(i) = 1 which means that (22) is an impulse

response of a lowpass filter.

Based on (21), one can easily quantify matching capa-

bilities of θ̃m|k(t) in the frequency domain. Suppose that
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Fig. 2. Dependence of parameter matching characteristics
(polynomial basis, rectangular window) on the number of basis
functions m (for Nm|k = 101, upper figure) and on equivalent
number of observations Nm|k (for m = 5, lower figure).

θl(t) – the l-th component of θ(t) – is a wide-sense sta-
tionary random process with a spectral density function
Slθ(ω), ω ∈ (−π, π]. Then the mean squared value of the
bias error can be expressed in the form

EΘ{[θ̄lm|k(t)− θl(t)]2} ∼=
1

π

∫ π

0

Em|k(ω)Slθ(ω)dω (23)

where averaging is carried out over the set Θ of different
realizations of the parameter trajectory,

Em|k(ω) = |1−Hm|k(ω)|2 , (24)

and

Hm|k(ω) =

k∑
i=−k

hm|k(i)e−jωi (25)

denotes frequency response associated with the LBF es-
timator. The function Em|k(ω) will be further referred

to as parameter matching characteristic of θ̃m|k(·). It is
clear from (23) that good estimation performance can be
achieved only in the case where the spectral density func-
tion Slθ(ω) matches the passband region of Em|k(ω). The
passband widens with growing number of basis functions.
Using the integral approximation technique it is also pos-
sible to show that its width is inversely proportional to
the window size k (and hence to Nm|k). Both effects can
be clearly seen in Fig. 2.

3.4 Recursive computability

LBF estimators are computationally expensive. The com-
putational load can be substantially reduced if the ba-
sis set and window shape are chosen so as to guarantee

recursive computability of θ̂m|k(t) = θ̃m|k(t). The sim-
plest choice which guarantees this property is the polyno-
mial (4) or harmonic (5) basis and cosinusoidal window
wk(i) = cos πi2k . First, note that the vector of powers of
time is recursively forward/backward computable. In par-
ticular, one can easily check that

fm|k(i− 1) = Γm|kfm|k(i) (26)

where

Γm|k =


1 0 . . . 0

− 1
k 1 0

. . .

(m−1
m−1)

(−k)m−1

(m−1
m−2)

(−k)m−2 . . . 1


and

(
n
k

)
= n!

k!(n−k)! denotes binomial coefficient. The

same relationship holds for the harmonic basis fm|k(i) =[
1, sin πi

k , cos πik , . . . , sin
πim0

k , cos πim0

k

]T
, m = 2m0 + 1.

In this case Γm|k is a block diagonal matrix of the form

Γm|k = bl diag{1,G1|k, . . . ,Gm0|k}

where

Gl|k =

 cos πlk − sin πl
k

sin πl
k cos πlk

 .
Second, observe that wk(i) = Re{vk(i)} where vk(i) =

ej
πi
2k denotes the recursively computable complex-valued

window

vk(i− 1) = γkvk(i), γk = e−j
π
2k . (27)

Exploiting (26) and (27), one can compute the quantities
Pm|k(t) and pm|k(t) recursively using the following algo-
rithms

Pm|k(t) = Re{Rm|k(t)}, pm|k(t) = Re{rm|k(t)}

Rm|k(t) =

k∑
i=−k

vk(i)ψm|k(t, i)ψT
m|k(t, i)

= γk[In ⊗ Γm|k]
{

Rm|k(t− 1)

− vk(−k)A(t− k − 1)⊗Bm|k(−k)
}

[In ⊗ ΓT
m|k]

+ vk(k)A(t+ k)⊗Bm|k(k)

(28)
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rm|k(t) =

k∑
i=−k

vk(i)y(t+ i)ψm|k(t, i)

= γk[In ⊗ Γm|k]
{

rm|k(t− 1)

− vk(−k)c(t− k − 1)⊗ fm|k(−k)
}

+ vk(k)c(t+ k)⊗ fm|k(k)

(29)

where A(t) = ϕ(t)ϕT(t), c(t) = y(t)ϕ(t) and Bm|k(i) =

fm|k(i)fT
m|k(i), i ∈ Ik.

Another bell-shaped window which in combination with
the polynomial or harmonic basis allows for recursive com-
putation of Pm|k(t) and pm|k(t) (albeit at a higher compu-
tational cost) is the classical Hann, i.e., raised cosine, win-
dow wk(i) = 0.5

[
1 + cos πik

]
= 0.5

{
1 + Re[ejπi/k]

}
. Fi-

nally, recursive computability is guaranteed if the adopted
window is rectangular wk(i) = 1, i ∈ Ik, i.e., if no weight-
ing is applied.

Remark

The sliding window substract-add recursive algorithms,
such as the ones presented above, are not exponentially
stable, but only marginally stable (since γk and all eigen-
values of Γk are located on the unit circle in the complex
plane), and hence they diverge at a slow (linear) rate when
the number of time steps becomes very large. This effect
is due to unbounded accumulation of roundoff errors. For
this reason the derived recursive algorithms should be pe-
riodically reset by direct (nonrecursive) computation of
the quantities Pm|k(t) and pm|k(t).

3.5 Comparison with the interval basis function approach

In this section we will show why the proposed point esti-

mators θ̂m|k(t) yield better results than the classical in-
terval ones θ∗m|k(t + l|t), l ∈ Ik, which approximate pa-

rameter trajectory in the entire analysis interval Tk(t) =
[t− k, t+ k].

First of all, note that the interval estimates can be ob-
tained using the formulas

θ∗m|k(t+ l|t) = F∗m|k(l)α̂m|k(t)

F∗m|k(l) = In ⊗ fT
m|k(l)

l ∈ Ik.
(30)

In the case of BF estimation with non-preferential, i.e.,
rectangular windowing (which is a natural choice in such
a case), one can derive the following relationships

cov[θ∗m|k(t+ l|t)] ∼=
ρΦ−1

N∗m|k(l)
, N∗m|k(l) = [̃fT

m|k(l)f̃m|k(l)]−1

EΩk(t)[θ
∗
m|k(t+ l|t)] ∼=

k∑
i=−k

h∗m|k(i, l)θ(t+ i) (31)

h∗m|k(i, l) = f̃T
m|k(l)f̃m|k(i)

which, under the same assumptions as those used before,
parallel the relationships (19) and (21), respectively. Note

that θ∗m|k(t|t) = θ̂m|k(t), F∗m|k(0) = Fm|k, N∗m|k(0) =

Nm|k and h∗m|k(i, 0) = hm|k(i).

Similarly as in the case of point estimators, one can define
parameter matching characteristic at the location l in the
form

E∗m|k(ω, l) = |1−H∗m|k(ω, l)|2

where

H∗m|k(ω, l) =

k∑
i=−k

h∗m|k(i, l)e−jωi

denotes the “frequency response” of θ∗m|k(t+ l|t).

Fig. 3 shows dependence of the equivalent number of ob-
servations N∗m|k(l) and parameter matching characteris-

tic E∗m|k(ω, l) of the estimator θ∗m|k(t + l|t) on the lo-

cation parameter l. The plots were obtained for polyno-
mial bases of order 3 and 5. Note that the estimation
bandwidth monotonically decreases for growing |l|, and
that the same happens, although not in a monotonic way,
in the case of equivalent number of observations. The
straightforward consequence of these facts is significant in-
crease of both bias and variance components of the mean
squared parameter matching errors at both ends of the
analysis interval – the hardly surprising effect considering
the fact that only one-sided information (only the “past”
samples or only the “future” ones) is available at both
ends of Tk(t). In contrast with this, the point estimators

θ̂m|k(t) = θ∗m|k(t+ l|t)|l=0, which benefit from the access

to both “past” and “future” data samples, provide the
best estimation accuracy.

4 Adaptive selection of the window size and the
number of basis functions

The mean squared parameter matching error can be de-
composed into the bias component σbm|k(t) and variance

component σvm|k(t)

E[‖ θ̂m|k(t)− θ(t) ‖2] = σbm|k(t) + σvm|k(t) (32)

where σbm|k(t) =‖ θ̄m|k(t) − θ(t) ‖2 and σvm|k(t) =

tr{cov[θ̂m|k(t)]}. Under assumptions (A1), (A2) and

(A3∗) the lower bound on cov[θ̂m|k(t)] is set by (19).

As shown in Sections 3.2 and 3.3, when the number of
basis functions is fixed and the window size is increased,
the variance component [see (19)] decreases and the bias
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Fig. 3. Dependence of the equivalent number of observations N∗m|k(l) and parameter matching characteristic E∗m|k(ω, l) on the

location l within the rectangular window of width lk = 2k + 1 = 101: a) polynomial basis of order m = 3 (two upper figures), b)
polynomial basis of order m = 5 (two lower figures). Since the plots are symmetric with respect to l = 0 they are shown only for
l ∈ [0, k].

component increases. Similarly, for a fixed window size in-
creasing the number of basis functions allows one to reduce
the bias component but, at the same time, the variance
component increases. It is therefore clear that the values
of m and k should be chosen so as to trade-off the bias
and variance components of the mean squared matching
error. Moreover, depending on the way system parame-
ters change with time, the bias/variance compromise may
require choosing different values of m and k in different
time intervals. In this section we will propose procedures
that allow for adaptive scheduling of m and k.

The proposed solution is based on parallel estimation.
We will consider MK LBF algorithms, equipped with
different settings m ∈ M = {m1, . . . ,mM}, k ∈ K =
{k1, . . . , kK}, that are run simultaneously. At each time in-
stant only one of the competing algorithms is selected, i.e.,
the estimated parameter and variance trajectories have

the form θ̂
m̂(t)|̂k(t)

(t) and ρ̂
m̂(t)|̂k(t)

(t) where

{m̂(t), k̂(t)} = arg min
m∈M
k∈K

Jm|k(t) (33)

and Jm|k(t) denotes the local decision statistic.

4.1 Final prediction error based approach

Denote by Ω′k(t) = {ϕ′(t + i), e′(t + i), i ∈ Ik} another
realization of the input-output data, independent of the
set Ωk(t) = {ϕ(t+i), e(t+i), i ∈ Ik} used for identification
purposes. Following (Akaike, 1970), as a local performance

measure we can use the following quantity

δm|k(t) = EΩk(t),Ω′
k
(t)

{[
y′(t)− [ϕ′(t)]Tθ̃m|k(t)

]2}
(34)

called by Akaike final prediction error (FPE). Final predic-
tion error quantifies prediction accuracy when the model
is verified using an independent data set.

Under assumptions (A1)-(A3) it holds that (see Ap-
pendix)

δm|k(t) = ρ

(
1 +

n

Nm|k

)
(35)

E[ρ̂m|k(t)] ∼= ρ

(
1− n

Mm|k

)
(36)

where

Mm|k =
Lk∑k

i=−k w
2
k(i)f̃T

m|k(i)f̃m|k(i)
. (37)

Combining (35) and (36), one arrives at the following es-
timate of the final prediction error

δ̂m|k(t) =
1 + n

Nm|k

1− n
Mm|k

ρ̂m|k(t) (38)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The local measure of fit minimized in (33) can be set to

Jm|k(t) = δ̂m|k(t). (39)

4.2 Cross-validation approach

Denote by θ̂◦m|k(t) the holey LBF estimator of θ(t), i.e.,

the one that eliminates from the estimation process the
measurement y(t) collected at the instant t

θ̂◦m|k(t) = Fm|kα̂
◦
m|k(t) (40)

α̂◦m|k(t) = arg min
αm|k

k∑
i=−k
i 6=0

[y(t+ i)−ψT
m|k(t, i)αm|k]2

= [P◦m|k(t)]−1p◦m|k(t) (41)

where, since wk(0) = 1,

P◦m|k(t) = Pm|k(t)−ψm|k(t, 0)ψT
m|k(t, 0)

p◦m|k(t) = pm|k(t)− y(t)ψm|k(t, 0).

The interpolation error associated with (40) takes

the form ε◦m|k(t) = y(t) − ϕT(t)θ̂◦m|k(t) = y(t) −
ψT
m|k(t, 0)α̂◦m|k(t). Selection of m and k can be based on

minimization of the localized sum of squared interpola-
tion errors, i.e., one can adopt

Jm|k(t) =

L∑
l=−L

[ε◦m|k(t+ l)]2 (42)

where L (typically chosen from the interval [20,30]) deter-
mines the size of the local decision window.

The computational complexity of the cross-validation
(CV) approach described above can be significantly re-
duced by noting that

ε◦m|k(t) =
εm|k(t)

1− qm|k(t)
(43)

where εm|k(t) denotes residual error εm|k(t) = y(t) −
ϕT(t)θ̂m|k(t) = y(t)−ψT

m|k(t, 0)α̂m|k(t), and

qm|k(t) = ψT
m|k(t, 0)P−1

m|k(t)ψm|k(t, 0). (44)

According to (43), which can be easily derived using the
well-known matrix inversion lemma (Sayed, 2003), the
cross-validation statistic (42) can be evaluated without
actually implementing the holey estimation scheme.

Table 1
Parameter settings corresponding to three speeds of parameter
variation (SoV)

SoV slow medium fast

T 40000 20000 10000

ω1|T 0.015 0.03 0.06

ω2|T 0.02 0.04 0.08

5 Simulation results

In our simulation experiment parameter estimation was
carried out for a nonstationary two-tap FIR system

y(t) = θ1(t)u(t− 1) + θ2(t)u(t− 2) + e(t)

excited by the autoregressive input signal u(t) = 0.8u(t−
1) + v(t), var[v(t)] = 1, where {v(t)} denotes white noise
independent of {e(t)}. System parameters were modeled
as cosinusoidal linear chirps with instantaneous angular
frequencies increasing from zero to the prescribed values
over the simulation interval T (see Fig. 4)

θi(t) = cos[φi(t)], φi(t) =

t∑
s=1

ωi(s), ωi(s) =
s

T
ωi|T

i = 1, 2, t = 1, . . . , T.

Three simulation scenarios were checked, correspond-
ing to three speeds of parameter variation (SoV): slow,
medium and fast – the corresponding settings are shown
in Table 1. Finally, two signal to noise ratios (SNR =
E{[ϕT(t)θ(t)]2}/σ2

e) were considered: 25 dB (σ2
e = 0.01)

and 15 dB (σ2
e = 0.1).

Table 2 shows comparison of the mean squared parameter
estimation errors obtained for 9 LBF estimators (polyno-
mial basis, cosinusoidal window) corresponding to differ-
ent choices of design parameters k (50, 100, 200) andm (1,
3, 5), and for the proposed adaptive estimation schemes
with FPE-based and CV-based model selection. Note that
the CV criterion yields slightly (but consistently) better
results than the FPE criterion. In all cases discussed above
the proposed adaptive schemes yield either better or com-
parable results to those provided by the best LBF algo-
rithms with fixed settings. The advantages of the adaptive
tuning strategies are particularly visible in the presence
of fast parameter changes. Fig. 4 shows comparison of the
true parameter trajectories with those obtained for a fixed
choice of design parameters (k = 200, m = 3, SNR=15
dB) and for adaptively selected design parameters (CV).

6 Conclusion

The problem of identification of a nonstationary stochastic
process was considered and solved using the time-localized
variant of the basis function approach. The proposed lo-
cal basis function (LBF) estimators generate a sequence of
point estimates of system parameters assuming that pa-
rameter trajectories can be locally approximated by linear

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 2
Mean squared parameter estimation errors obtained for 9 LBF estimators corresponding to different choices of design parameters
k (50, 100, 200) and m (1, 3, 5), and for the proposed adaptive estimation schemes with FPE-based and CV-based model selection.
The averages were computed for 100 process realizations, 3 speeds of parameter variation (SoV) and 2 signal-to-noise ratios (SNR).

SNR
SoV slow medium fast

k\m 1 3 5 1 3 5 1 3 5

50 6.0E-03 5.5E-03 8.6E-03 2.8E-02 5.7E-03 8.6E-03 1.9E-01 1.6E-02 8.9E-03

100 2.2E-02 2.7E-03 4.0E-03 1.7E-01 1.1E-02 4.3E-03 5.9E-01 2.5E-01 5.4E-02

15 dB 200 1.6E-01 9.1E-03 2.1E-03 5.8E-01 2.4E-01 4.9E-02 8.0E-01 6.6E-01 5.1E-01

FPE 4.2E-03 5.3E-03 7.1E-03

CV 3.7E-03 4.7E-03 6.9E-03

50 3.7E-03 5.5E-04 8.6E-04 2.5E-02 7.1E-04 8.6E-04 1.9E-01 1.1E-02 1.1E-03

100 2.1E-02 3.7E-04 4.1E-04 1.7E-01 9.0E-03 5.8E-04 5.9E-01 2.5E-01 5.1E-02

25 dB 200 1.6E-01 7.9E-03 3.4E-04 5.8E-01 2.4E-01 4.7E-02 8.0E-01 6.6E-01 5.1E-01

FPE 4.5E-04 6.1E-04 9.6E-04

CV 4.0E-04 5.5E-04 9.4E-04
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Fig. 4. Evolution of system parameters (a) and their estimates obtained for a fixed choice of design parameters (b) and for
adaptively selected design parameters (c).

combinations of a certain number of known functions of
time (basis functions). It was shown that two important
design parameters of LBF estimators – the number of ba-
sis functions and the size of the local analysis window – can
be selected in an adaptive, data-dependent fashion when
several competing LBF estimators, equipped with differ-
ent settings, are arranged in a parallel estimation scheme
and switched appropriately. The proposed two selection
criteria are based on the modified Akaike’s final predic-
tion error statistic and on leave-one-out cross-validation
approach, respectively. The resulting adaptive algorithms
are computationally attractive (recursively computable)
and yield results that are either better or only slightly in-
ferior to those provided by the best LBF algorithm with
fixed settings incorporated in the parallel scheme.
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APPENDIX [derivation of (35) and (36)]

In order to derive (35), note that y′(t) = [ϕ′(t)]Tθ(t) +
e′(t), E{[e′(t)]2} = ρ. Using these relationships and ex-
ploiting mutual independence of Ωk(t) and Ω′k(t), one ob-
tains under assumptions (A1)-(A3)

δm|k(t) = EΩk(t),Ω′
k
(t)

{[
e′(t)− [ϕ′(t)]T∆θ̃m|k(t)

]2}
= ρ+ EΩk(t),Ω′

k
(t)

{
[ϕ′(t)]T∆θ̃m|k(t)∆θ̃T

m|k(t)ϕ′(t)
}

= ρ

+ tr
{

EΩ′
k
(t)

[
ϕ′(t)[ϕ′(t)]T

]
EΩk(t)

[
∆θ̃m|k(t)∆θ̃T

m|k(t)
]}

∼= ρ

(
1 +

1

Nm|k
tr{In}

)
= ρ

(
1 +

n

Nm|k

)

where the third transition follows from (19).

To arrive at (36) note that

ρ̂m|k(t) = ρ̃m|k(t)

=
1

Lk

k∑
i=−k

wk(i)
[
e(t+ i)− ψ̃T

m|k(t, i)∆α̃m|k(t)
]2

=
1

Lk
zk(t)− 1

Lk
ξT
m|k(t)P̃−1

m|k(t)ξm|k(t)

where zk(t) =
∑k
i=−k wk(i)e2(t + i). Under assumptions

(A1)-(A3) it holds that E[zk(t)] = Lkρ and

E
[
ξT
m|k(t)P̃−1

m|k(t)ξm|k(t)
]
∼= E

[
ξT
m|k(t)P̄−1

m ξm|k(t)
]

= tr
{

P̄−1
m E

[
ξm|k(t)ξT

m|k(t)
]}

= ρ tr
{

[Φ−1 ⊗ Im][Φ⊗Wm|k]
}

= ρ tr
{
In ⊗Wm|k

}
= nρ

k∑
i=−k

w2
k(i)f̃T

m|k(i)f̃m|k(i)

where the last transition follows from (??) and from the
fact that tr{A⊗B} =tr{A}tr{B}. Combining all earlier
results, one obtains (36).
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