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Abstract—The problem of identification of nonstationary mul-
tivariate autoregressive processes using noncausal local estima-
tion schemes is considered and a new approach to joint selection
of the model order and the estimation bandwidth is proposed.
The new selection rule, based on evaluation of pseudoprediction
errors, is compared with the previously proposed one, based on
the modified Akaike’s final prediction error criterion.

I. INTRODUCTION

ESTIMATION bandwidth and model order are two impor-
tant design parameters which should be carefully chosen

to successfully identify (track) nonstationary autoregressive
processes. In this paper we will show that both tasks can be
accomplished jointly by means of minimizing the pseudopre-
diction error based statistic.

A. Problem statement

Consider the problem of identification of a nonsta-
tionary discrete-time m-dimensional signal {y(t), t =
. . . ,−1, 0, 1, . . .}, y(t) = [y1(t), . . . , ym(t)]T, governed by
the following time-varying vector autoregressive (VAR) model
of order n

y(t) =

n∑
i=1

Ai(t)y(t− i) + e(t), cov[e(t)] = ρ(t) (1)

where A1(t), . . . ,An(t) denote time-varying m×m matrices
of autoregressive coefficients, and {e(t)} denotes a sequence
of zero-mean independent random variables with a time-
varying covariance matrix ρ(t).

Due to their simplicity and good predictive capabilities,
autoregressive models have found their way to a large number
of practical applications in different fields such as biomedicine
[1], [2], [3], [4], telecommunications [5], [6], and geophysics
[7], [8], [9], among many others. Since parameters of au-
toregressive models have usually no physical significance,
identification of such models is not a goal in itself – it is
the means of solving practical problems, in the sense that the
corresponding solutions depend explicitly on the estimates of
model coefficients.

We will focus on noncausal local estimation techniques,
which have recently gained strong support from the theory
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of locally stationary processes developed by Dahlhaus [10],
[11], [12]. Noncausality means that local parameter estimates
at a given time instant t are based on both “past” observations
{y(s), s ≤ t} and “future” observations {y(s), s ≥ t} of the
analyzed signal {y(s)}. Even though not suitable for real-
time applications, such as adaptive signal prediction, noncausal
estimation schemes can be used in applications that are not
time-critical in the sense that the model-based decisions can be
postponed, or at least delayed by a certain number of sampling
intervals. Parametric spectrum estimation, adaptive predictive
coding and signal reconstruction are good examples of such
applications. The main advantage of noncausal estimation
compared with the causal one is due to significant reduction of
the bias component of the mean squared parameter estimation
error (MSE). Owing to this property, one can extend the size
of the local analysis window which results also in reduction
of the variance component of MSE.

B. Motivation and state of the art

When identifying a nonstationary VAR process, one has
to make two important decisions. First, one has to choose
the most appropriate structure of the VAR model, i.e., decide
how many and which autoregressive coefficients are significant
enough to deserve estimation. Second, one should decide
upon the estimation bandwidth, i.e., the frequency range in
which parameter changes can be tracked “successfully” [13].
Estimation bandwidth is inversely proportional to the effective
number of signal samples incorporated in the local estimation
procedure, often called its estimation memory. Both choices
are important and directly influence identification results.

The model structure should be sufficiently complex to
comply with the spectral richness of the analyzed time series,
as well as with its hidden inter-channel dependency pattern,
but not overly complex to avoid estimation of “insignificant”
model parameters.

The choice of the estimation bandwidth is equally important.
It is known that the optimal bandwidth, trading off the bias
and variance components of the mean squared parameter esti-
mation error, depends on the degree of signal nonstationarity
[10].

Finally, we note that when the analyzed signal is nonsta-
tionary both decisions should be made locally (since process
characteristics and their rate of variation may change over
time) and jointly (since they are linked via the principle
of parsimony, according to which the number of estimated
parameters should stay in a reasonable proportion to the
effective number of samples used for their estimation [13]).

In the classical formulation, the problem of selection of the
model structure is usually simplified and stated as the problem

Postprint of: Niedźwiecki M., Ciołek M., On Noncausal Identification of Nonstationary Multivariate Autoregressive Processes, IEEE 
TRANSACTIONS ON SIGNAL PROCESSING, Vol. 67, iss. 3 (2019), pp. 769-782, DOI: 10.1109/TSP.2018.2885480

© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/TSP.2018.2885480


of selection of the model order n. In the stationary case
the problem of order selection can be solved by identifying
models of different orders and then choosing the best fitting
variant using one of the available order selection criteria which
penalize high-order solutions – such as the Akaike’s final
prediction error (FPE) and information (AIC) criteria [14],
[15], the Schwarz’s Bayesian information criterion (BIC) [16],
or the Rissanen’s minimum description length criterion [17].
Under local stationarity assumptions some of these criteria can
be extended to localized estimators – see e.g. [18].

Most of the more recent work on model structure selection
is focused on the problem of identification of sparse VAR
models, i.e., models in which some, if not most, of the
entries of the matrices of autoregressive coefficients are set
to zero and not estimated. Such a formulation is usually
referred to as a subset autoregression [19]. However, unlike
the classical “estimate, then select” approach described earlier,
the sparse identification procedures achieve their goal in a
direct way by minimizing the extended measure of fit which,
in addition to the classical component such as the weighted
sum of squared modeling errors, includes a model sparseness
enforcing regularizer. When the regularizing term takes the
form of the l1 norm of the vector of estimated coefficients,
such solution is known as the LASSO (least absolute shrinkage
and selection operator) estimator [20], or – in a more general
formulation – group LASSO estimator [21]. Although the
majority of research on sparse identification is focused on the
time-invariant case, some extensions to the time-varying case
are also available – see e.g. [22].

The problem of selection of the estimation bandwidth is
specific to identification of nonstationary processes and less
explored than the problem of model structure selection. In
the univariate case bandwidth scheduling can be based on the
intersection of confidence intervals (ICI) rule proposed in [23]
and further developed in [24]. However, no extension of this
approach to multivariate processes seems to exist. In our recent
paper [25] we proposed a solution to the bandwidth selection
problem based on the modified FPE criterion. This solution
will be further explained below.

C. The model stability issue

While in some applications such as short-term adaptive
prediction or model-based Granger causality analysis [26],
stability of a local VAR model is not a sine qua non ap-
plicability condition, in some other ones, such as predictive
coding of signals (where the autoregressive model is used
to generate signals based on the encoded model parameters),
signal simulation (where the model is used to generate artificial
data similar to the analyzed one) or signal interpolation [27],
it is the obvious requirement. There are also applications, such
as parametric spectrum estimation [28], where the local model
instability does not seem to have a noticeable influence on the
obtained estimation results but it makes the estimation proce-
dure conceptually defective (note that whenever this happens
the spectral estimates are evaluated in terms of parameters of
an unstable model). Therefore, for practical reasons, one is

usually interested in creating models that fulfill the following
uniform stability condition

At all time instants t, all zeros of the
characteristic polynomial

B(z−1, t) = det

[
I−

n∑
i=1

Ai(t)z
−i

]
are uniformly bounded away from (remain
strictly inside) the unit circle in the complex plane.

(2)

Remark

Condition (2) is not sufficient. To prove stability some addi-
tional, smoothness constraints must be imposed on parameter
trajectories. In the univariate case strict analysis of condi-
tions that guarantee uniform exponential stability of the time-
varying autoregressive model can be found in [29]. When
models are obtained via signal identification, (2) is usually
a sufficient condition for their practical applicability.

In spite of its practical importance, the model stability
issue is surprisingly absent from the statistical literature on
identification of VAR processes. It is known that only a few
existing estimation schemes (such as the Yule-Walker type
algorithms or normalized lattice algorithms [30]) guarantee
that the condition (2) is met by the resultant models. In
particular, there are no stability guarantees if the VAR model
is sought in the unconstrained sparse form (unless a specific
sparsity structure is enforced, as in [31]). In the univariate case
model stability can be reinstated by projecting unstable poles
of the forming filter into the stability region, and by modifying
the variance of the driving noise accordingly. However, no
such procedure seems to exist in the multivariate case.

D. Contribution and relation to the previous work

The paper presents two asymptotically equivalent local iden-
tification methods – noncausal variants of the weighted least
squares estimators and stability-preserving weighted Yule-
Walker estimators – with joint estimation bandwidth and
model order adaptation. As shown in [25], the problem of joint
bandwidth-order optimization can be solved by means of ap-
plying the modified Akaike’s FPE criterion. In the same paper
we have demonstrated that the cross-validation approach based
on comparison of local leave-one-out signal interpolation er-
rors is not suitable for the purpose of bandwidth optimization.
In the current contribution we will suggest replacement of
interpolation errors with pseudoprediction errors. We will
show that if the cross-validation approach is reformulated
in this way, the obtained results are comparable with those
provided by the FPE approach. The paper extends results
obtained earlier for univariate processes, presented in [32].

E. Glossary of the most frequently used abbreviations and
symbols

FPE final prediction error
NWLS noncausal weighted least squares
NWYW noncausal weighted Yule-Walker
PPE pseudoprediction error
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k bandwidth parameter
K number of bandwidth variants
K the set of bandwidth parameters
Lk effective window width
m signal dimension
M half-width of the decision window
n model order
N maximum model order
N the set of model orders
Nk equivalent window width
t discrete time
wk(i) weighting sequence
vk(i) data taper

(̂·) NWLS estimate

(̃·) NWYW estimate

II. SHORTHAND NOTATION

Note that the l-th component of the multivariate signal
{y(t)} can be written down in the form

yl(t) = ϕ
T(t)θl(t) + el(t), l = 1, . . . ,m (3)

where ϕ(t) = [yT(t − 1), . . . ,yT(t − n)]T

denotes the mn × 1 regression vector and θl(t) =
[al1,1(t), . . . , alm,1(t), . . . , al1,n(t), . . . , alm,n(t)]

T denotes
the mn× 1 vector of parameters characterizing the l-th signal
“channel”. Note also that equation (1) can be rewritten in the
following equivalent shorthand forms

y(t) = [A1(t) . . .An(t)]ϕ(t) + e(t)

=

 θT1 (t)
...

θTm(t)

ϕ(t) + e(t) = ΦT(t)θ(t) + e(t)
(4)

where Φ(t) is the m2n×m matrix of the form

Φ(t) = Im ⊗ϕ(t) =

 ϕ(t) O
. . .

O ϕ(t)


(⊗ denotes Kronecker product of the corresponding vec-
tors/matrices) and

θ(t) = [θT1 (t) . . .θ
T
m(t)]T = vec{[A1(t) . . .An(t)]

T}

is the m2n × 1 vector made up of all autoregressive coeffi-
cients.

III. NONCAUSAL WEIGHTED LEAST SQUARES ESTIMATORS

A. Estimation scheme

The noncausal weighted least squares (NWLS) estimate of
θ(t) is given in the form

θ̂k(t) = argmin
θ

k∑
i=−k

vk(i) ‖ y(t+ i)−ΦT(t+ i)θ ‖2

= G−1k (t)rk(t)

(5)

where

Gk(t) =

k∑
i=−k

vk(i)Φ(t+ i)ΦT(t+ i)

rk(t) =

k∑
i=−k

vk(i)Φ(t+ i)y(t+ i)

(6)

and {vk(i), i = −k, . . . , k}, vk(0) = 1, denotes a nonnegative,
symmetric bell-shaped window of width 2k + 1 used for
localization purposes – as a result the estimates evaluated at
the instant t depend more heavily on the most recent mea-
surements than on the measurements collected in the remote
past and future. We will further assume that vk(i) = f(i/k),
where f(·) is the analog window generating function defined
on the interval [−1, 1]. Owing to the fact that the regression
matrix Gk(t) is block diagonal with identical blocks

Gk(t) = Im ⊗Rk(t) =

 Rk(t) O
. . .

O Rk(t)


where

Rk(t) =

k∑
i=−k

vk(i)ϕ(t+ i)ϕT(t+ i),

the NWLS estimate can be expressed and evaluated in the
decomposed form as follows

θ̂k(t) = [θ̂T1|k(t), . . . , θ̂
T
m|k(t)]

T

θ̂l|k(t) = argmin
θl

k∑
i=−k

vk(i)[yl(t+ i)−ϕT(t+ i)θl]
2

= R−1k (t)rl|k(t), l = 1, . . . ,m

(7)

where

rl|k(t) =

k∑
i=−k

vk(i)yl(t+ i)ϕ(t+ i).

This means that the local estimates (7), which can be ob-
tained by considering each channel separately, coincide with
the global estimate (5) obtained by considering all channels
jointly. This property, owned to the fact that all channels share
the same regression vector ϕ(t), was noticed for the first time
in [33] (for least squares estimators).

The NWLS estimate of ρ(t) can be obtained from

ρ̂k(t) =
1

Lk

k∑
i=−k

vk(i)[y(t+ i)−ΦT(t+ i)θ̂k(t)]×

× [y(t+ i)−ΦT(t+ i)θ̂k(t)]
T

=
1

Lk

{
Sk(t)− [θ̂1|k(t) . . . θ̂m|k(t)]

T×

× [r1|k(t) . . . rm|k(t)]
}

(8)

where

Sk(t) =

k∑
i=−k

vk(i)y(t+ i)yT(t+ i)
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and the quantity

Lk =

k∑
i=−k

vk(i) ∼= k

∫ 1

−1
f(x)dx

denotes the effective window width.

B. Recursive computability

Even though, in principle, any bell-shaped function f(·) can
be used for window generation purposes, from the practical
viewpoint the most interesting alternatives are those that allow
for recursive computation of θ̂k(t) and ρ̂k(t). We will show
that the Hann (raised cosine) window

vk(i) =
1

2

[
1 + cos

πi

k + 1

]
=

1

2

{
1 + Re

[
ej

πi
k+1

]}
(9)

meets this requirement. To see that this is the case let

Uk(t) =

k∑
i=−k

ϕ(t+ i)ϕT(t+ i)

Wk(t) =

k∑
i=−k

ej
πi
k+1ϕ(t+ i)ϕT(t+ i) .

Observe that both quantities defined above are recursively
computable

Uk(t+ 1) = Uk(t)−ϕ(t− k)ϕT(t− k)
+ϕ(t+ k + 1)ϕT(t+ k + 1)

Wk(t+ 1) = e−j
π
k+1 Wk(t) +ϕ(t− k)ϕT(t− k)

+ ej
πk
k+1ϕ(t+ k + 1)ϕT(t+ k + 1)

and that

Rk(t) =
1

2
Uk(t) +

1

2
Re[Wk(t)] .

The quantities r1|k(t), . . . , rm|k(t) and Sk(t) can be computed
recursively in an analogous way.

Remark 1
Since the sliding-window subtract-add recursive algorithms for
updating the quantities Rk(t) and Sk(t) are not exponentially
stable but only marginally stable, they diverge at a slow (linear)
rate as the number of steps becomes large. For this reason both
quantities should be periodically reset by direct (nonrecursive)
computation.

C. Estimation bandwidth scheduling

Estimation bandwidth, i.e., the frequency range in which
signal parameters can be tracked “successfully” [13] depends
on the window size. For small values of k, NWLS estimators
quickly adapt to parameter changes (small estimation bias) at
the cost of increased variability (large estimation variance).
The opposite happens for large values of k. Therefore, to
guarantee good tracking results, the bandwidth parameter k
should be adjusted so as to trade off the bias and variance
components of the mean squared parameter estimation error.

For unknown and/or time-varying rate of signal nonstation-
arity such bandwidth optimization can be carried out using

parallel estimation schemes. In this approach several estima-
tion algorithms, equipped with different bandwidth settings
k ∈ K = {k1, . . . , kK}, are simultaneously run and compared.
At each time instant only one of the competing algorithms is
selected, i.e., the estimated parameter and variance trajectories
have the form θ̂k̂(t)(t) and ρ̂k̂(t)(t), respectively, where

k̂(t) = argmin
k∈K

Jk(t) (10)

and Jk(t) denotes the local decision statistic. For comments
on the recommended choice of K see Remark 3 at the end of
Section IV.B.

As shown in our recent paper [25], Section 4.2, the problem
of bandwidth selection can be solved using the modified
Akaike’s final prediction error criterion. Taking this approach,
one can adopt

Jk(t) = FPEk(t) =

[
1 + mn

Nk

1− mn
Nk

]m
detρ̂k(t) (11)

where

Nk =

[∑k
i=−k vk(i)

]2
∑k
i=−k v

2
k(i)

∼= k

[∫ 1

−1 f(x)dx
]2

∫ 1

−1 f
2(x)dx

(12)

denotes the so-called equivalent window width.
In the same paper, we have demonstrated that the cross-

validation approach based on evaluation of local leave-one-
out signal interpolation errors (see Section 4.1 in [25]) is not
suitable for the purpose of estimation bandwidth selection.
In the current contribution we will show that if interpolation
errors are replaced with pseudoprediction errors, one obtains
a well-behaved bandwidth selection criterion. Following [34],
we will introduce the notion of a holey NWLS estimator

θ̂◦k(t) = argmin
θ

k∑
i=−k
i 6=0

vk(i) ‖ y(t+ i)−ΦT(t+ i)θ ‖2 .

(13)

In the original formulation, developed for the purpose of
identification of nonstationary finite impulse response (FIR)
systems, the holey estimator of θ(t) completely eliminates
from the estimation process the measurement y(t) collected
at the instant t. Note that while this is true in the FIR case,
where the regression vector ϕ(t) is made up of past input
measurements, in the autoregressive case exclusion of the
term vk(0) ‖ y(t) − ΦT(t)θ ‖2 from the sum in (13) does
not guarantee independence1 of the estimate θ̂◦k(t) of y(t),
simply because y(t) is a component of the regression vectors
ϕ(t+1), . . . ,ϕ(t+n) [and hence a component of the matrices
Φ(t+ 1), . . . ,Φ(t+ n)] included in (13).

Based on θ̂◦k(t), one can compute a pseudoprediction ŷ◦k(t)
of y(t), and the corresponding pseudoprediction error (PPE)

ε◦k(t) = [ε◦1|k(t), . . . , ε
◦
m|k(t)]

T = y(t)−ΦT(t)θ̂◦k(t)

= y(t)−
n∑
i=1

Â◦i (t)y(t− i). (14)

1Hereafter the term “independent” is used in its deterministic sense.
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The name “pseudoprediction” refers to the fact that the vector
of parameter estimates θ̂◦k(t) depends on y(t), which is the
predicted quantity.

The proposed decision statistics, based on evaluation of the
local pseudoprediction errors, take the form

Jk(t) = PPEk(t) = det

{
M∑

i=−M
ε◦k(t+ i)[ε◦k(t+ i)]T

}
(15)

or

Jk(t) = PPE∗k(t) = tr

{
M∑

i=−M
ε◦k(t+ i)[ε◦k(t+ i)]T

}

=

M∑
i=−M

‖ ε◦k(t+ i) ‖2
(16)

where (2M + 1) > m is the width of the local decision
window [t − M, t + M ] centered at t. The value of M is
a user-dependent “knob”. It should be sufficiently large to
avoid erratic behavior of the decision rule, but not overly
large to guarantee its adaptivity. In many practical situations
M ∈ [10, 25] is a good choice. Generally, the results of
selection are pretty insensitive to the adopted value of M .

We will show that the PPE/PPE∗ statistics can be evaluated
without implementing the holey estimator.

Proposition 1

It holds that

ε◦k(t) =
εk(t)

1− bk(t)
(17)

where

εk(t) = y(t)−ΦT(t)θ̂k(t)

bk(t) = ϕ
T(t)R−1k (t)ϕ(t).

Proof

It is straightforward to show that

θ̂◦k(t) =


θ̂◦1|k(t)

...
θ̂◦m|k(t)


where

θ̂◦l|k(t) = argmin
θl

k∑
i=−k
i 6=0

vk(i)[yl(t+ i)−ϕT(t+ i)θl]
2

= [R◦k(t)]
−1r◦l|k(t)

and [since vk(0) = 1]

R◦k(t) = Rk(t)−ϕ(t)ϕT(t)

r◦l|k(t) = rl|k(t)− yl(t)ϕ(t).

Exploiting the fact that rl|k(t) = Rk(t)θ̂l|k(t), and using the
matrix inversion lemma [35], one arrives at the expression

θ̂◦l|k(t) =

[
R−1k (t) +

R−1k (t)ϕ(t)ϕT(t)R−1k (t)

1−ϕT(t)R−1k (t)ϕ(t)

]
×

× [Rk(t)θ̂k(t)− yl(t)ϕ(t)].

Substituting this expression into

ε◦l|k(t) = yl(t)−ϕT(t)θ̂◦l|k(t)

one obtains

ε◦l|k(t) =
yl(t)−ϕT(t)θ̂l|k(t)

1−ϕT(t)R−1k (t)ϕ(t)

l = 1, . . . ,m

which is identical with (17).

IV. NONCAUSAL WEIGHTED YULE-WALKER ESTIMATORS

NWLS estimators do not guarantee uniform stability of
the resultant models. The stability problem can be overcome
if estimation is carried out using noncausal weighted Yule-
Walker (NWYW) estimators.

A. NWLS embedding

We will show that the NWYW estimators can be reinter-
preted as local least squares estimates obtained for the tapered
data sequence

yk(t+ i|t) = wk(i)y(t+ i), i ∈ [−k, k]

where {wk(i), i = −k, . . . , k}, wk(0) = 1, is a nonnegative,
symmetric, bell-shaped data taper. Similarly as in the case of
NWLS estimators, we will assume that wk(i) = g(i/k), where
g(·) is the continuous time taper generation function defined on
[−1, 1]. Suppose that the data sequence y(t−k), . . . ,y(t+k)
is extended with n zero samples at its beginning and at its end,
and that the data taper wk(t − k), . . . , wk(t + k) is extended
likewise. Note that under such extensions it holds that yk(t+
i|t) = 0 for i ∈ [−k−n,−k−1] and i ∈ [k+1, k+n]. Finally,
let ϕk(t+ i|t) = [yT

k (t+ i− 1|t), . . . ,yT
k (t+ i− n|t)]T.

Consider the following local least squares estimates of
θ1(t), . . . ,θm(t)

θ̃l|k(t) = argmin
θl

k+n∑
i=−k

[yl|k(t+ i|t)−ϕT
k (t+ i|t)θl]2

= Q−1k (t)ql|k(t), l = 1, . . . ,m (18)

where

Qk(t) =

k+n∑
i=−k

ϕk(t+ i|t)ϕT
k (t+ i|t)

ql|k(t) =

k+n∑
i=−k

yl|k(t+ i|t)ϕk(t+ i|t).
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First of all, note that Qk(t) is a block Toeplitz matrix of the
form

Qk(t) =


P0|k(t) P1|k(t) . . . Pn−1|k(t)

PT
1|k(t) P0|k(t)

...
...

. . . P1|k(t)
PT
n−1|k(t) . . . PT

1|k(t) P0|k(t)


where

Pl|k(t) =

k∑
i=−k+l

yk(t+ i|t)yT
k (t+ i− l|t).

Note also that qT
1|k(t)

...
qT
m|k(t)

 =

k+n∑
i=−k

yk(t+ i|t)ϕT
k (t+ i|t)

= [P1|k(t) . . .Pn|k(t)]

and 
θ̃T1|k(t)

...
θ̃Tm|k(t)

 = [Ã1|k(t) . . . Ãn|k(t)]

Using (18) and exploiting the fact that Qk(t) = QT
k (t), one

obtains 
θ̃T1|k(t)

...
θ̃Tm|k(t)

Qk(t) =

 qT
1|k(t)

...
qT
m|k(t)


which, after combining all previous results, can be rewritten
in the form

[Ã1|k(t) . . . Ãn|k(t)]Qk(t) = [P1|k(t) . . .Pn|k(t)]. (19)

Using a similar technique, one can show that

ρ̃k(t) =
1

Lk

k+n∑
i=−k

[yk(t+ i|t)−ΦT
k (t+ i|t)θ̃k(t)]×

× [yk(t+ i|t)−ΦT
k (t+ i|t)θ̃k(t)]T

=
1

Lk

{
P0|k(t)−


θ̃T1|k(t)

...
θ̃Tm|k(t)

 [q1|k(t) . . .qm|k(t)]
}

=
1

Lk

[
P0|k(t)−

n∑
i=1

Ãi|k(t)P
T
i|k(t)

]
(20)

where Φk(t+ i|t) = Im ⊗ϕk(t+ i|t).
Since relationships (19) and (20) can be recognized as Yule-

Walker equations for a stationary VAR process (provided that
the true autocorrelation matrices E[y(t)yT(t− l)] are replaced
with their local (tapered) estimates Pl|k(t)/Lk), the quantities
θ̃k(t) and ρ̃k(t) can be interpreted as noncausal weighted
Yule-Walker estimators. Furthermore, it can be shown that
when the process {y(t)} is persistently exciting in some
deterministic or stochastic sense, the matrix Qk(t) is positive

definite2 at all times t, which guarantees that the obtained
models satisfy the uniform stability condition (2) – see Com-
plement C8.6 in [35].

We note that when n � k, it holds that ϕk(t + i|t) ∼=
wk(i)ϕ(t + i), and since yk(t + i|t) = wk(i)y(t + i), one
arrives at θ̃k(t) ∼= θ̂k(t) provided that

vk(i) = w2
k(i), i ∈ [−k, k] . (21)

This means that under the condition (21) the NWYW estima-
tors will yield approximately the same results as the NWLS
estimators. Note also that when vk(i) is the raised cosine
window (9), the “equivalent” data taper is

wk(i) =
√
vk(i) = cos

πi

2(k + 1)
. (22)

The cosinusoidal taper of this form allows for recursive
computation of the quantities Qk(t) and ql|k(t), l = 1, . . . ,m
– see Section 3.4 in [25].

Remark 2
Statistical properties of weighted (tapered) Yule-Walker es-
timators, which belong to a more general class of tapered
Whittle estimators, were studied by Dahlhaus [36]. As shown
in [36], tapering allows one to reduce both estimation bias and
estimation variance of classical Yule-Walker estimators. For
short data frames the improvement may be significant [25].

B. Estimation bandwidth scheduling

Paralleling developments made in Section III, we will define
the holey estimator θ̃◦k(t) in the form

θ̃◦k(t) = argmin
θ

k+n∑
i=−k
i 6=0

‖ yk(t+ i|t)−ΦT
k (t+ i|t)θ ‖2 (23)

and the corresponding pseudoprediction error in the form

η◦k(t) = [η◦1|k(t), . . . , η
◦
m|k(t)]

T = y(t)−ΦT(t)θ̃◦k(t)

= y(t)−
n∑
i=1

Ã◦i|k(t)y(t− i)

leading to

Jk(t) = PPEk(t) = det

{
M∑

i=−M
η◦k(t+ i)[η◦k(t+ i)]T

}
(24)

or

Jk(t) = PPE∗k(t) = tr

{
M∑

i=−M
η◦k(t+ i)[η◦k(t+ i)]T

}

=

M∑
i=−M

‖ η◦k(t+ i) ‖2 .

(25)

2Since xTQk(t)x =
∑k+n

i=−k[x
Tϕk(t + i|t)]2 ≥ 0 for any mn-

dimensional vector x, the matrix Qk(t) is “by construction” nonnegative
definite.
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We will show that, similarly as it was done in Section III, both
statistics can be evaluated without implementing the holey
estimator.

Proposition 2

It holds that

η◦k(t) = ηk(t) +
ck(t)

1− dk(t)
γk(t) (26)

where

ηk(t) = y(t)−ΦT(t)θ̃k(t)

γk(t) = y(t)−ΦT
k (t|t)θ̃k(t)

ck(t) = ϕ
T(t)Q−1k (t)ϕk(t|t)

dk(t) = ϕ
T
k (t|t)Q−1k (t)ϕk(t|t).

Proof

Note that

θ̃◦k(t) =


θ̃◦1|k(t)

...
θ̃◦m|k(t)


where

θ̃◦l|k(t) = [Q◦k(t)]
−1q◦l|k(t)

= [Qk(t)−ϕk(t|t)ϕT
k (t|t)]−1×

× [ql|k(t)− yl(t)ϕk(t|t)]

=

[
Q−1k (t) +

Q−1k (t)ϕk(t|t)ϕT
k (t|t)Q

−1
k (t)

1−ϕT
k (t|t)Q

−1
k (t)ϕk(t|t)

]
×

× [Qk(t)θ̃l|k(t)− yl(t)ϕk(t|t)]

= θ̃l|k(t)−
Q−1k (t)ϕk(t|t)

1−ϕT
k (t|t)Q

−1
k (t)ϕk(t|t)

×

× [yl(t)−ϕT
k (t|t)θ̃l|k(t)]

Based on this result, one obtains

η◦l|k(t) = yl(t)−ϕT(t)θ̃◦l|k(t) = yl(t)−ϕT(t)θ̃l|k(t)

+
ϕT(t)Q−1k (t)ϕk(t|t)

1−ϕT
k (t|t)Q

−1
k (t)ϕk(t|t)

[yl(t)−ϕT
k (t|t)θ̃l|k(t)]

= ηl|k(t) +
ck(t)

1− dk(t)
γl|k(t), l = 1, . . . ,m

which is equivalent to (26).

When n � k, it holds that ϕk(t|t) ∼= ϕ(t), leading to
ηk(t) ∼= γk(t), ck(t) ∼= dk(t) and

η◦k(t)
∼=

γk(t)

1− dk(t)

which resembles (17).
It is important to note that the holey NWYW estimator

defined above differs from the one proposed in our earlier
paper [25] – in the latter case dependence of θ̃◦k(t) on y(t)
was completely removed (at the cost of some extra bias errors).

Similarly as in the NWLS case, bandwidth selection can
be also performed using the modified Akaike’s FPE criterion,
namely, by setting

Jk(t) = FPEk(t) =

[
1 + mn

Nk

1− mn
Nk

]m
detρ̃k(t) (27)

where

Nk =

[∑k
i=−k w

2
k(i)

]2
∑k
i=−k w

4
k(i)

∼= k

[∫ 1

−1 g
2(x)dx

]2
∫ 1

−1 g
4(x)dx

.

Remark 3
For NWYW estimators the dependence of the mean squared
parameter estimation error on k was studied in [10] using
the concept of infill asymptotics. In this approach the discrete
time parameter trajectory of an AR process is regarded as
a result of sampling a prototype continuous time trajectory.
When a fixed-length time interval is sampled over a finer
and finer grid of points as the sample size increases, one
arrives at a family of increasingly stationary AR processes
amenable to asymptotic analysis. Assuming that all processes
constituting this family obey the uniform stability condition
(2), and that the prototype trajectory is sufficiently smooth
(uniformly bounded first, second and third derivatives) the
following formula can be derived [10]

E
[
‖ θ̃k(t)− θ(t) ‖2

]
∼=
b1(t)

k
+ b2(t)k

4 (28)

where the first term on the right side of (28) corresponds to
the variance component of MSE, and the second term is its
(squared) bias component. Since the coefficients b1(t) > 0
and b2(t) > 0 are usually unknown, this result is of little
practical value. However, it allows one to optimize bandwidth
parameters of the parallel estimation scheme. Based on (28),
it can be shown that to maximize the overall estimation
bandwidth of such a scheme, the parameters k1, . . . , kK should
form a geometric progression [25], i.e.,

ki+1 = γik1, i = 1, . . . ,K − 1

where the scaling coefficient γ > 1 depends on the assumed
acceptable performance degradation margin and does not de-
pend on b1(t) and b2(t). As shown in [25], for the acceptable
degradation margin of 10% the corresponding value of γ is
equal to 1.57.

As to the choice of the number of algorithms working in
parallel, it often suffices to take K = 3, i.e., to combine the
short memory algorithm, the nominal memory algorithm and
the long memory one.

Due to asymptotic equivalence of NWLS and NWYW
estimators, the recommendations presented above carry on to
parallel estimation schemes made up of NWLS algorithms.

V. JOINT SELECTION OF ESTIMATION BANDWIDTH AND
MODEL ORDER

So far we have considered the situation where the order of
autoregression n is known a priori. If this is not the case, one
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can consider a family of VAR models of different orders and
different bandwidth settings

θ̂n|k(t) = vec{[Â1,n|k(t) . . . Ân,n|k(t)]
T}, ρ̂n|k(t)

n ∈ N = {1, . . . , N}, k ∈ K

obtained using the NWLS approach. Selection of the most
appropriate values of n and k can be based on minimization
of the pseudoprediction error statistic

{n̂(t), k̂(t)} = arg min
n∈N
k∈K

PPEn|k(t) (29)

where

PPEn|k(t) = det

{
M∑

i=−M
ε◦n|k(t+ i)[ε◦n|k(t+ i)]T

}
(30)

and ε◦n|k(t) denotes pseudoprediction error, which – according
to Proposition 1 – can be expressed as an appropriately scaled
version of an easier to compute error

εn|k(t) = y(t)−
n∑
i=1

Âi,n|k(t)y(t− i).

Alternatively, one can use the “trace” version of (30).
As shown in [25], the same goal can be achieved by

minimizing over n and k the FPE statistic

FPEn|k(t) =

[
1 + mn

Nk

1− mn
Nk

]m
detρ̂n|k(t). (31)

Finally, one can consider mixed strategies, where FPE is used
for model order selection and PPE for bandwidth selection or
vice versa.

Extensions of the techniques described above to NWYW
estimators is straightforward.

VI. COMPUTATIONAL ASPECTS

The NWYW and NWLS approaches are computationally
attractive. As already shown, in both cases for a given k
computations can be carried out in a time-recursive way.

The Whittle-Wiggins-Robinson (WWR) algorithm [35],
which can be used to solve Yule-Walker equations (19)-
(20) is order-recursive, which means that as a byproduct of
computation of θ̃n|k(t) = vec{[Ã1,n|k(t) . . . Ãn,n|k(t)]

T},
ρ̃n|k(t), one obtains parameters of all lower-order models
θ̃i|k(t), ρ̃i|k(t), i < n. Additionally, as shown in Complement
8.6 of [35], the block lower-triangular Cholesky factors of the
matrices Q−1i|k (t), i = 1, . . . , n – the order-dependent variants
of Q−1k (t) – can be expressed in terms of the quantities
evaluated by the WWR algorithm. Hence, there is no need
to perform matrix inversion when calculating pseudopredic-
tion errors according to (26). The per sample computational
load of the parallel estimation scheme incorporating NWYW
algorithms is of order O(KN2m3). The additional cost of
carrying out model selection using the FPE/PPE approach is
of order O(KNm3) and constitutes a small fraction of the
overall computational load.

The square-root order-recursive algorithm for computation
of the NWLS estimates θ̂i|k(t), ρ̂i|k(t) and R−1i|k (t), i =
1, . . . , n, is also a classical one and can be found e.g. in [37].

VII. SIMULATION RESULTS

It is known that every zero-mean stationary VAR pro-
cess characterized by parameters {ρ,A1, . . . ,An} has an
equivalent lattice representation {σ,∆1, . . . ,∆n}, where σ =
E[y(t)yT(t)] and ∆i, i = 1, . . . , n denote the matrices of
normalized reflection coefficients (partial autocorrelation co-
efficients) obeying the following stability condition [smax(·)
denotes the maximum singular value of the respective matrix]

smax(∆i) < 1, i = 1, . . . , n.

Generation of a two-dimensional (m = 2) nonstationary
VAR process was based on three time-invariant “anchor”
models specified in the lattice form and obtained by means
of identification of three different fragments of a stereo audio
recording: the 2-nd order model M2 = {σ2,∆1,2,∆2,2}, the
4-th order model M4 = {σ4,∆1,4, . . . ,∆4,4} and the 6-th
order model M6 = {σ6,∆1,6, . . . ,∆6,6} – all parameters are
listed below.

M2:

∆1,2 =

[
0.9808 0.0375

−0.0333 0.9806

]
,∆2,2 =

[
−0.9864 0.0043
0.0056 −0.9838

]

σ2 =

[
0.0025 −0.0002

−0.0002 0.0013

]
M4:

∆1,4 =

[
0.6869 −0.0502
0.6162 0.4843

]
,∆2,4 =

[
−0.7596 0.4759
−0.2216 −0.5751

]
∆3,4 =

[
0.7596 0.1349

−0.0863 0.6461

]
,∆4,4 =

[
−0.4311 0.1303
−0.2740 −0.4002

]

σ4 =

[
0.0004366 0.0000151
0.0000151 0.0001626

]
M6:

∆1,6 =

[
0.9895 −0.0017
0.0094 0.9868

]
,∆2,6 =

[
−0.5170 −0.6811
−0.5255 −0.4615

]
∆3,6 =

[
0.3435 0.3403

−0.4453 0.2691

]
,∆4,6 =

[
−0.3377 −0.3732
0.3144 −0.4107

]
∆5,6 =

[
0.4616 0.3769

−0.3874 0.3688

]
,∆6,6 =

[
−0.2836 −0.2263
−0.0509 −0.3226

]

σ6 =

[
0.0041 0.0032
0.0032 0.0065

]
.

The simulation scenario is symbolically depicted in Fig. 1.
According to this scenario, in the time intervals [1, t1], [t2, t3),
[t3, t4], [t5, t6) and [t6, Tsim] the simulated process was gov-
erned by the time-invariant anchor models M2, M4, M6, M4

and M2, respectively, and in the intervals (t1, t2) and (t4, t5) –
by time-varying models obtained by morphing the model M2

into M4, and the model M6 into M4, respectively. Finally, the
generating model was subject to two jump changes, from M4

to M6 at the instant t3, and from M4 to M2 at the instant t6.
Morphing of the model {σA,∆A

1 , . . . ,∆
A
n }, valid at the

instant tA, into the model {σB ,∆B
1 , . . . ,∆

B
n }, valid at the
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Fig. 1: Simulation scenario.
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Fig. 2: Single-channel evolutionary spectrum of the simulated
nonstationary autoregressive process (upper figure) and a typ-
ical process realization (lower figure).

instant tB , was realized using the following model stability
preserving rule

σ(t) = µ(t)σA + [1− µ(t)]σB

∆i(t) = µ(t)∆A
i + [1− µ(t)]∆B

i

i = 1, . . . , n

µ(t) =
tB − t
tB − tA

, t ∈ (tA, tB)

after replacing the nonexistent reflection coefficients with
zeros (if applicable).

The evolutionary spectrum (defined below) of the generated
process and a typical process realization are shown in Fig. 2.

The parallel estimation scheme was made up of 60 constant-
bandwidth (k1 = 225, k2 = 337, k3 = 505) constant-order
(n = 1, . . . , 20) NWYW algorithms. The cosinusoidal taper
(22) was applied (N1 = 300, N2 = 450, N3 = 675). Note that,
as recommended in [25], the equivalent memory settings form
a geometric progression. The width 2M + 1 of the decision
window was set to 35. Generation of y(t) was started 1000
time instants prior to t = 1 and was continued for 1000 time
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Fig. 3: Histograms of model order estimates obtained for 100
process realizations (N = 20, Tsim = 11000). Each time bin
covers 250 samples.

instants after t = Tsim, so that all competing algorithms had
enough data to start their operation at the instant 1 and finish
it at the instant Tsim.

To check performance of the compared algorithms under
different degrees of signal nonstationarity, 3 different values
of Tsim were considered: Tsim = 5500 (S1 – high speed of
parameter variation), Tsim = 11000 (S2 – medium speed of
parameter variation, two times smaller than S1) and Tsim =
22000 (S3 – low speed of parameter variation, four times
smaller than S1).

Two performance measures were used to evaluate estimation
results: the squared parameter estimation error

dPAR(t) =‖ θ̃(t)− θ(t) ‖2

and the relative entropy rate

dRER(t) =
1

4π

∫ π

−π

{
tr
[(

S(ω, t)− Ŝ(ω, t)
)

Ŝ−1(ω, t)
]

− log det
[
S(ω, t)Ŝ−1(ω, t)

]}
dω

where S(ω, t) denotes the uniquely defined instantaneous
spectral density function of the time-varying VAR process [11]

S(ω, t) =AAA−1[e−jω,θ(t)] ρ(t)AAA−T[ejω,θ(t)]

AAA[e−jω,θ(t)] = I−
n∑
i=1

Ai(t)e
−ijω

j =
√
−1, ω ∈ (−π, π]

(32)

and Ŝ(ω, t) is the spectral density estimate obtained by means
of replacing θ(t) and ρ(t) in (32) with the corresponding
estimates. The relative entropy rate is an extension, to the
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multivariate case, of the well-known Itakura-Saito spectral
distortion measure [38].

Evaluation of different estimation schemes is based on
comparison of the mean scores obtained after combined time
and ensemble averaging of dPAR(t) and dRER(t) (over t ∈
[1, Tsim] and 100 independent realizations of {y(t)}): Table
I shows the mean squared parameter estimation errors, Table
II – the (squared) bias component of parameter MSE, and
Table III – the corresponding spectral estimation errors. In
each table the columns 2-4 show results obtained for the
fixed-bandwidth fixed-order algorithms (for different values
of k and n). The columns 5-6 show results yielded for a
fixed value of n by the bandwidth-adaptive algorithms based
on the pseudoprediction error criterion (PPE) and the final
prediction error criterion (FPE). Finally, the columns 7-9 show
results yielded (for different values of N ) by 3 joint order-
and bandwidth-adaptive algorithms: the one based exclusively
on the pseudoprediction error criterion (PPE), the one based
exclusively on the final prediction error criterion (FPE), and
the one incorporating the two-stage mixed PPE/FPE strategy
(Mix). In the latter case the FPE criterion is used (first) for
model order selection for each value of k

n̂k(t) = arg min
n∈N

FPEn|k(t), k ∈ K

and the PPE criterion is used (subsequently) for bandwidth
selection

k̂(t) = argmin
k∈K

PPEn̂k(t)|k(t).

The final decision takes the form {n̂k̂(t)(t), k̂(t)}.
In our second experiment the simulation scenario depicted

in Fig. 1 was preserved, but the assignment of models to
the intervals [1, t1], [t2, t3), [t3, t4], [t5, t6) and [t6, Tsim] was
randomized, namely, the model assigned to each interval was
randomly selected (with equal probabilities) from the set
M = {M2,M4,M6}, the only restriction being that each two
consecutive models had to be different (to avoid “fictitious”
transitions from Mi to Mi, i = 2, 4, 6). Tables IV and V show
the scores obtained by averaging the results of 100 random
assignment tests described above. Note that these scores are
very similar, both from the qualitative and quantitative point of
view, to the results presented in Tables I and III, respectively.

The following conclusions can be drawn after analysis of
the content of Tables I–V:

1) When the model order is not underestimated (n ≥ 6)
both bandwidth-adaptive schemes yield, in almost all
cases, better results than the fixed-bandwidth algorithms
they are made up of. For fast and medium-speed pa-
rameter variations the PPE criterion yields better results
than the FPE criterion.

2) When applied to joint order and bandwidth selection the
FPE criterion yields in most cases better results than
the PPE criterion. However, since FPE seems to have
better order selection properties (see e.g. Fig. 3), and
PPE has better bandwidth selection properties (see point
1 above), the best results are obtained when the mixed
strategy is applied, i.e., when both criteria are combined.
Moreover, when the model order is not underestimated

(n,N ≥ 6) such a mixed strategy yields better results
than any of the considered fixed-order fixed-bandwidth
algorithms (for all considered values of N ).

3) All adaptive schemes achieve an almost optimal (fifty-
fifty) balance between the bias and variance components
of the parameter estimation MSE (the variance compo-
nents of MSE can be calculated by subtracting from the
values shown in Table I the corresponding values shown
in Table II). For fixed-bandwidth algorithms the situation
is different. As expected, for smaller values of k MSE
is dominated by variance errors, while for larger values
of k – by bias errors.

Spectrum estimation results obtained using the mixed strategy
are shown in Fig. 4.

The results obtained when the trace version (25) of the PPE
criterion is used (not shown in Tables I–III) are slightly inferior
to those obtained when the determinant version (24) is applied.

Finally, we note that when the condition of equivalence (21)
holds true, the results obtained using the NWLS approach
(skipped because of the lack of space) are very similar, both
in the quantitative and qualitative sense, to those presented
above. The only important difference is that the time-varying
models obtained using this approach are not guaranteed to be
uniformly stable.

VIII. CONCLUSION

The problem of joint selection of the model order and
estimation bandwidth for the purpose of noncausal identifi-
cation of nonstationary multivariate autoregressive processes
was considered and its new solution, based on evaluation of
pseudoprediction errors, was proposed. It was shown that the
best estimation results can be obtained when the pseudopre-
diction based estimation bandwidth scheduling is combined
with model order selection based on the modified Akaike’s
final prediction error statistic.
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TABLE I: Parameter estimation MSE

Fast parameter variations

S1 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 21.401 21.343 21.264 21.385 21.383 21.385 21.383 21.385
2 16.835 16.997 17.268 16.856 16.883 16.866 16.883 16.856
3 10.930 11.285 11.890 10.875 11.011 10.787 10.997 10.862
4 5.772 5.979 6.353 5.717 5.810 5.721 5.781 5.688
5 2.654 2.985 3.625 2.597 2.714 2.498 2.620 2.507
6 1.546 2.018 2.934 1.471 1.596 1.234 1.418 1.307
7 1.758 2.106 2.895 1.627 1.743 1.308 1.419 1.318
8 1.997 2.230 2.891 1.802 1.904 1.375 1.445 1.365
9 2.268 2.413 3.013 2.010 2.118 1.440 1.485 1.403

10 2.549 2.604 3.150 2.226 2.337 1.505 1.523 1.432
11 2.841 2.818 3.312 2.444 2.559 1.561 1.569 1.463
12 3.141 3.022 3.448 2.665 2.777 1.619 1.593 1.490
13 3.435 3.230 3.600 2.881 2.995 1.666 1.617 1.505
14 3.754 3.455 3.771 3.108 3.229 1.713 1.648 1.522
15 4.034 3.653 3.927 3.304 3.431 1.755 1.688 1.538
16 4.335 3.861 4.085 3.515 3.643 1.796 1.725 1.555
17 4.642 4.072 4.239 3.726 3.854 1.834 1.750 1.567
18 4.970 4.296 4.402 3.947 4.085 1.874 1.782 1.581
19 5.269 4.510 4.572 4.146 4.293 1.908 1.812 1.591
20 5.577 4.731 4.748 4.353 4.508 1.939 1.847 1.605

Medium-speed parameter variations

S2 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 21.446 21.410 21.368 21.434 21.430 21.434 21.430 21.434
2 16.663 16.724 16.827 16.670 16.678 16.675 16.678 16.670
3 10.546 10.656 10.878 10.502 10.527 10.482 10.512 10.487
4 5.530 5.583 5.742 5.472 5.505 5.500 5.473 5.442
5 2.253 2.296 2.519 2.154 2.195 2.126 2.097 2.066
6 0.949 1.028 1.361 0.804 0.850 0.741 0.675 0.644
7 1.171 1.145 1.396 0.945 0.996 0.805 0.687 0.655
8 1.415 1.292 1.466 1.100 1.155 0.861 0.708 0.673
9 1.688 1.478 1.590 1.276 1.333 0.920 0.724 0.687

10 1.943 1.643 1.696 1.437 1.489 0.973 0.742 0.703
11 2.225 1.834 1.825 1.613 1.663 1.024 0.755 0.711
12 2.505 2.020 1.947 1.780 1.824 1.071 0.765 0.717
13 2.772 2.197 2.066 1.943 1.980 1.117 0.773 0.720
14 3.039 2.376 2.191 2.104 2.140 1.157 0.782 0.725
15 3.316 2.561 2.315 2.265 2.304 1.194 0.789 0.728
16 3.610 2.758 2.451 2.434 2.471 1.232 0.797 0.731
17 3.904 2.948 2.575 2.599 2.635 1.269 0.802 0.732
18 4.199 3.145 2.712 2.761 2.801 1.299 0.808 0.732
19 4.493 3.335 2.842 2.919 2.964 1.330 0.814 0.734
20 4.790 3.529 2.977 3.079 3.131 1.358 0.823 0.737

Slow parameter variations

S3 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 21.465 21.441 21.416 21.454 21.451 21.454 21.451 21.454
2 16.618 16.645 16.686 16.622 16.620 16.625 16.620 16.622
3 10.458 10.490 10.574 10.420 10.413 10.414 10.398 10.405
4 5.465 5.448 5.486 5.405 5.408 5.447 5.377 5.375
5 2.119 2.061 2.090 2.000 2.009 1.992 1.909 1.909
6 0.716 0.637 0.690 0.534 0.547 0.550 0.369 0.370
7 0.956 0.781 0.761 0.676 0.692 0.608 0.384 0.387
8 1.208 0.936 0.847 0.819 0.834 0.663 0.392 0.399
9 1.468 1.111 0.964 0.970 0.985 0.716 0.401 0.409

10 1.731 1.286 1.080 1.118 1.129 0.766 0.406 0.414
11 1.999 1.464 1.199 1.269 1.277 0.814 0.410 0.419
12 2.261 1.637 1.314 1.408 1.413 0.858 0.411 0.421
13 2.534 1.821 1.438 1.556 1.558 0.902 0.412 0.422
14 2.810 1.998 1.552 1.692 1.693 0.941 0.413 0.423
15 3.084 2.179 1.671 1.830 1.828 0.978 0.414 0.424
16 3.374 2.368 1.795 1.971 1.970 1.013 0.415 0.425
17 3.655 2.553 1.918 2.110 2.109 1.048 0.415 0.425
18 3.939 2.740 2.043 2.247 2.244 1.080 0.416 0.426
19 4.232 2.931 2.168 2.385 2.383 1.112 0.416 0.426
20 4.526 3.123 2.296 2.526 2.528 1.141 0.417 0.427
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TABLE II: Bias component of parameter estimation MSE

Fast parameter variations

S1 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 21.382 21.331 21.256 21.368 21.365 21.368 21.365 21.368
2 16.783 16.948 17.219 16.797 16.832 16.805 16.832 16.797
3 10.766 11.127 11.727 10.703 10.855 10.560 10.854 10.702
4 5.566 5.822 6.224 5.528 5.641 5.419 5.640 5.527
5 2.280 2.701 3.392 2.270 2.408 2.070 2.401 2.262
6 0.945 1.567 2.569 0.959 1.105 0.570 1.098 0.951
7 0.877 1.454 2.371 0.890 1.027 0.570 1.012 0.875
8 0.837 1.371 2.201 0.851 0.969 0.568 0.975 0.858
9 0.833 1.355 2.170 0.851 0.967 0.567 0.963 0.850

10 0.821 1.335 2.141 0.840 0.958 0.567 0.957 0.844
11 0.821 1.330 2.128 0.840 0.959 0.568 0.955 0.841
12 0.814 1.313 2.095 0.837 0.947 0.568 0.944 0.839
13 0.812 1.306 2.079 0.837 0.944 0.569 0.938 0.837
14 0.813 1.303 2.073 0.842 0.947 0.569 0.936 0.836
15 0.813 1.302 2.069 0.846 0.949 0.570 0.935 0.834
16 0.812 1.298 2.062 0.850 0.950 0.570 0.935 0.834
17 0.810 1.291 2.050 0.854 0.948 0.571 0.932 0.833
18 0.814 1.291 2.047 0.862 0.951 0.571 0.931 0.832
19 0.813 1.290 2.043 0.868 0.954 0.572 0.931 0.832
20 0.815 1.290 2.043 0.877 0.958 0.572 0.932 0.832

Medium-speed parameter variations

S2 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 21.426 21.398 21.360 21.417 21.412 21.417 21.412 21.417
2 16.623 16.691 16.797 16.630 16.642 16.634 16.642 16.630
3 10.424 10.551 10.779 10.390 10.419 10.346 10.419 10.389
4 5.347 5.456 5.649 5.328 5.368 5.296 5.367 5.327
5 1.911 2.060 2.350 1.898 1.942 1.831 1.938 1.895
6 0.404 0.653 1.095 0.408 0.457 0.244 0.451 0.401
7 0.362 0.587 0.999 0.365 0.417 0.242 0.407 0.355
8 0.339 0.550 0.936 0.344 0.394 0.237 0.391 0.342
9 0.338 0.548 0.929 0.345 0.393 0.236 0.388 0.340

10 0.336 0.541 0.914 0.343 0.390 0.237 0.386 0.339
11 0.336 0.539 0.910 0.346 0.391 0.238 0.385 0.338
12 0.338 0.538 0.905 0.349 0.392 0.238 0.384 0.337
13 0.339 0.537 0.900 0.352 0.392 0.239 0.382 0.337
14 0.341 0.537 0.897 0.355 0.394 0.240 0.382 0.337
15 0.342 0.536 0.895 0.359 0.396 0.240 0.381 0.337
16 0.344 0.536 0.892 0.362 0.397 0.241 0.381 0.337
17 0.346 0.536 0.890 0.365 0.398 0.241 0.380 0.337
18 0.350 0.538 0.891 0.371 0.402 0.242 0.380 0.337
19 0.354 0.540 0.891 0.377 0.405 0.242 0.380 0.337
20 0.357 0.540 0.889 0.381 0.408 0.242 0.380 0.337

Slow parameter variations

S3 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 21.445 21.428 21.408 21.437 21.434 21.437 21.434 21.437
2 16.586 16.621 16.667 16.594 16.594 16.595 16.594 16.594
3 10.361 10.417 10.514 10.340 10.336 10.324 10.335 10.339
4 5.294 5.332 5.405 5.282 5.285 5.287 5.285 5.281
5 1.789 1.838 1.938 1.776 1.781 1.759 1.779 1.774
6 0.181 0.278 0.448 0.183 0.189 0.120 0.186 0.180
7 0.162 0.246 0.397 0.164 0.170 0.118 0.166 0.159
8 0.151 0.227 0.366 0.153 0.159 0.115 0.158 0.152
9 0.154 0.227 0.365 0.155 0.160 0.114 0.156 0.151

10 0.155 0.226 0.361 0.157 0.161 0.114 0.156 0.150
11 0.157 0.226 0.359 0.158 0.161 0.114 0.155 0.150
12 0.161 0.228 0.359 0.161 0.164 0.114 0.155 0.150
13 0.164 0.229 0.358 0.163 0.166 0.114 0.155 0.150
14 0.168 0.232 0.358 0.167 0.169 0.114 0.155 0.150
15 0.171 0.233 0.358 0.169 0.171 0.115 0.155 0.150
16 0.176 0.235 0.359 0.173 0.174 0.115 0.155 0.150
17 0.177 0.236 0.359 0.175 0.175 0.116 0.155 0.150
18 0.180 0.238 0.360 0.178 0.178 0.116 0.155 0.150
19 0.183 0.239 0.360 0.180 0.180 0.116 0.155 0.150
20 0.186 0.241 0.360 0.183 0.182 0.116 0.155 0.150

TABLE III: Averaged relative entropy rate (RER)

Fast parameter variations

S1 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 2.874 2.834 2.858 2.840 2.882 2.840 2.882 2.840
2 0.879 0.995 1.183 0.887 0.892 0.888 0.892 0.887
3 0.477 0.568 0.719 0.479 0.499 0.490 0.498 0.478
4 0.289 0.360 0.481 0.286 0.315 0.302 0.313 0.284
5 0.214 0.285 0.404 0.208 0.240 0.224 0.236 0.204
6 0.191 0.258 0.375 0.184 0.216 0.199 0.210 0.177
7 0.198 0.261 0.374 0.188 0.222 0.199 0.213 0.178
8 0.205 0.265 0.376 0.194 0.229 0.200 0.216 0.179
9 0.213 0.270 0.378 0.200 0.236 0.201 0.219 0.180

10 0.221 0.275 0.381 0.206 0.242 0.203 0.221 0.182
11 0.230 0.280 0.384 0.212 0.248 0.204 0.223 0.182
12 0.239 0.285 0.387 0.218 0.255 0.205 0.224 0.183
13 0.247 0.290 0.390 0.225 0.260 0.206 0.226 0.184
14 0.256 0.295 0.393 0.231 0.266 0.207 0.228 0.185
15 0.266 0.301 0.396 0.238 0.273 0.208 0.230 0.185
16 0.276 0.307 0.400 0.245 0.279 0.209 0.232 0.186
17 0.286 0.313 0.403 0.252 0.286 0.210 0.234 0.187
18 0.297 0.319 0.407 0.259 0.293 0.211 0.236 0.188
19 0.307 0.325 0.412 0.267 0.300 0.212 0.238 0.188
20 0.318 0.332 0.416 0.274 0.307 0.213 0.240 0.189

Medium-speed parameter variations

S2 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 2.848 2.775 2.756 2.800 2.841 2.800 2.841 2.800
2 0.750 0.791 0.878 0.749 0.745 0.749 0.745 0.749
3 0.373 0.404 0.473 0.367 0.371 0.374 0.371 0.367
4 0.203 0.224 0.279 0.193 0.201 0.203 0.199 0.191
5 0.129 0.148 0.202 0.117 0.125 0.126 0.121 0.113
6 0.108 0.124 0.176 0.093 0.101 0.101 0.095 0.086
7 0.115 0.127 0.177 0.097 0.105 0.102 0.095 0.086
8 0.123 0.131 0.179 0.101 0.109 0.104 0.096 0.087
9 0.131 0.136 0.182 0.105 0.114 0.105 0.096 0.087

10 0.139 0.141 0.184 0.110 0.118 0.106 0.097 0.087
11 0.148 0.146 0.187 0.115 0.122 0.107 0.097 0.088
12 0.157 0.151 0.190 0.120 0.127 0.109 0.098 0.088
13 0.166 0.156 0.193 0.125 0.131 0.110 0.098 0.088
14 0.175 0.161 0.196 0.130 0.135 0.111 0.099 0.088
15 0.184 0.167 0.200 0.135 0.140 0.112 0.099 0.088
16 0.194 0.172 0.203 0.140 0.144 0.113 0.100 0.089
17 0.205 0.178 0.206 0.145 0.149 0.114 0.100 0.089
18 0.215 0.184 0.209 0.150 0.154 0.115 0.100 0.089
19 0.226 0.190 0.213 0.155 0.159 0.116 0.101 0.089
20 0.236 0.196 0.216 0.160 0.163 0.117 0.101 0.089

Slow parameter variations

S3 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 2.832 2.749 2.711 2.781 2.822 2.781 2.822 2.781
2 0.696 0.701 0.730 0.688 0.686 0.688 0.686 0.688
3 0.332 0.333 0.355 0.322 0.321 0.325 0.320 0.321
4 0.170 0.166 0.182 0.156 0.157 0.163 0.155 0.155
5 0.096 0.091 0.105 0.080 0.081 0.085 0.077 0.076
6 0.077 0.068 0.080 0.056 0.058 0.062 0.051 0.050
7 0.085 0.072 0.082 0.060 0.061 0.063 0.051 0.050
8 0.093 0.077 0.085 0.065 0.065 0.065 0.051 0.051
9 0.101 0.081 0.087 0.069 0.069 0.066 0.051 0.051

10 0.109 0.087 0.090 0.073 0.073 0.068 0.051 0.051
11 0.118 0.092 0.094 0.077 0.076 0.069 0.052 0.051
12 0.128 0.097 0.097 0.082 0.080 0.070 0.052 0.051
13 0.137 0.102 0.100 0.086 0.084 0.071 0.052 0.051
14 0.146 0.108 0.103 0.090 0.087 0.073 0.052 0.051
15 0.156 0.114 0.106 0.094 0.091 0.074 0.052 0.051
16 0.166 0.119 0.110 0.098 0.095 0.075 0.052 0.051
17 0.177 0.125 0.113 0.102 0.099 0.076 0.052 0.051
18 0.187 0.131 0.117 0.107 0.103 0.077 0.052 0.051
19 0.198 0.137 0.120 0.111 0.107 0.078 0.052 0.051
20 0.209 0.143 0.124 0.115 0.111 0.079 0.052 0.051
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TABLE IV: Averaged parameter estimation errors obtained in
the randomized model selection experiment

Fast parameter variations

S1 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 28.727 28.685 28.629 28.714 28.713 28.714 28.713 28.714
2 23.129 23.210 23.347 23.130 23.139 23.140 23.139 23.130
3 16.417 16.718 17.245 16.374 16.431 16.292 16.419 16.363
4 9.136 9.405 9.877 9.106 9.143 9.073 9.116 9.080
5 3.898 4.373 5.235 3.859 3.959 3.600 3.880 3.785
6 1.658 2.252 3.354 1.587 1.718 1.298 1.576 1.457
7 1.921 2.375 3.337 1.789 1.920 1.414 1.619 1.492
8 2.185 2.505 3.341 1.966 2.097 1.491 1.638 1.518
9 2.515 2.719 3.464 2.202 2.330 1.568 1.686 1.560

10 2.839 2.938 3.615 2.431 2.558 1.642 1.725 1.591
11 3.161 3.157 3.769 2.659 2.776 1.711 1.762 1.613
12 3.491 3.378 3.911 2.884 2.987 1.775 1.799 1.641
13 3.814 3.587 4.047 3.100 3.197 1.835 1.830 1.665
14 4.125 3.803 4.209 3.310 3.401 1.887 1.862 1.684
15 4.457 4.029 4.371 3.526 3.613 1.939 1.895 1.703
16 4.794 4.263 4.550 3.747 3.831 1.992 1.941 1.727
17 5.123 4.484 4.704 3.955 4.036 2.033 1.967 1.742
18 5.472 4.729 4.887 4.172 4.262 2.078 2.008 1.762
19 5.818 4.975 5.071 4.392 4.484 2.116 2.037 1.773
20 6.191 5.241 5.267 4.630 4.728 2.158 2.080 1.786

Medium-speed parameter variations

S2 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 28.876 28.850 28.820 28.866 28.862 28.866 28.862 28.866
2 23.201 23.233 23.288 23.199 23.196 23.206 23.196 23.199
3 16.265 16.349 16.528 16.226 16.211 16.220 16.198 16.215
4 8.926 8.986 9.149 8.886 8.874 8.917 8.846 8.859
5 3.407 3.507 3.812 3.332 3.348 3.250 3.265 3.257
6 0.976 1.104 1.518 0.845 0.880 0.833 0.738 0.714
7 1.249 1.257 1.581 1.022 1.064 0.911 0.775 0.746
8 1.549 1.432 1.658 1.203 1.251 0.982 0.795 0.765
9 1.841 1.620 1.773 1.380 1.427 1.045 0.816 0.783

10 2.161 1.830 1.907 1.571 1.614 1.107 0.829 0.793
11 2.488 2.047 2.052 1.768 1.808 1.167 0.840 0.801
12 2.814 2.264 2.202 1.962 1.994 1.227 0.857 0.811
13 3.135 2.480 2.346 2.147 2.176 1.278 0.866 0.816
14 3.462 2.698 2.492 2.327 2.355 1.326 0.878 0.822
15 3.775 2.902 2.629 2.497 2.524 1.371 0.888 0.826
16 4.108 3.123 2.780 2.675 2.697 1.415 0.897 0.830
17 4.445 3.350 2.933 2.854 2.874 1.455 0.905 0.832
18 4.796 3.585 3.095 3.041 3.059 1.495 0.913 0.835
19 5.162 3.823 3.255 3.228 3.245 1.539 0.921 0.837
20 5.500 4.046 3.407 3.400 3.422 1.573 0.925 0.838

Slow parameter variations

S3 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 28.901 28.881 28.863 28.892 28.889 28.892 28.889 28.892
2 23.167 23.182 23.203 23.167 23.157 23.170 23.157 23.167
3 16.236 16.263 16.332 16.199 16.172 16.203 16.160 16.187
4 8.863 8.857 8.906 8.812 8.792 8.863 8.765 8.786
5 3.228 3.201 3.276 3.123 3.122 3.098 3.040 3.046
6 0.729 0.676 0.764 0.556 0.567 0.641 0.425 0.424
7 1.015 0.847 0.848 0.723 0.737 0.708 0.453 0.450
8 1.306 1.033 0.956 0.887 0.906 0.770 0.467 0.466
9 1.602 1.229 1.084 1.053 1.071 0.830 0.478 0.478

10 1.915 1.435 1.216 1.223 1.239 0.890 0.483 0.485
11 2.227 1.644 1.356 1.391 1.404 0.944 0.489 0.490
12 2.543 1.855 1.496 1.559 1.566 0.996 0.494 0.495
13 2.857 2.064 1.634 1.718 1.719 1.047 0.498 0.499
14 3.174 2.272 1.772 1.877 1.872 1.093 0.501 0.502
15 3.493 2.484 1.912 2.037 2.024 1.138 0.504 0.504
16 3.830 2.704 2.058 2.201 2.182 1.179 0.506 0.505
17 4.143 2.908 2.193 2.349 2.324 1.218 0.507 0.506
18 4.466 3.120 2.332 2.501 2.471 1.254 0.508 0.507
19 4.801 3.339 2.478 2.658 2.628 1.289 0.509 0.507
20 5.139 3.559 2.622 2.810 2.782 1.321 0.509 0.508

TABLE V: Averaged relative entropy rates obtained in the
randomized model selection experiment

Fast parameter variations

S1 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 2.755 2.712 2.718 2.721 2.758 2.721 2.758 2.721
2 0.906 1.002 1.166 0.912 0.915 0.912 0.915 0.912
3 0.536 0.611 0.739 0.535 0.553 0.549 0.552 0.534
4 0.343 0.403 0.510 0.338 0.363 0.356 0.361 0.337
5 0.217 0.278 0.386 0.211 0.237 0.228 0.233 0.208
6 0.179 0.238 0.343 0.171 0.198 0.189 0.192 0.165
7 0.185 0.239 0.341 0.175 0.203 0.189 0.194 0.165
8 0.192 0.242 0.341 0.179 0.209 0.190 0.196 0.166
9 0.199 0.246 0.342 0.184 0.214 0.191 0.198 0.166

10 0.207 0.251 0.344 0.190 0.220 0.192 0.199 0.167
11 0.216 0.255 0.346 0.195 0.225 0.194 0.200 0.168
12 0.224 0.260 0.348 0.201 0.230 0.195 0.202 0.169
13 0.233 0.265 0.351 0.207 0.236 0.196 0.204 0.169
14 0.242 0.270 0.354 0.213 0.242 0.197 0.205 0.170
15 0.251 0.275 0.357 0.220 0.248 0.198 0.207 0.170
16 0.262 0.281 0.361 0.226 0.254 0.199 0.209 0.171
17 0.271 0.287 0.364 0.233 0.260 0.200 0.211 0.172
18 0.282 0.293 0.368 0.240 0.266 0.201 0.213 0.173
19 0.293 0.299 0.372 0.247 0.273 0.202 0.215 0.173
20 0.304 0.306 0.376 0.254 0.280 0.203 0.217 0.174

Medium-speed parameter variations

S2 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 2.727 2.662 2.641 2.687 2.720 2.687 2.720 2.687
2 0.796 0.826 0.896 0.793 0.791 0.794 0.791 0.793
3 0.446 0.468 0.522 0.440 0.443 0.447 0.442 0.439
4 0.265 0.278 0.322 0.255 0.261 0.264 0.259 0.253
5 0.139 0.152 0.197 0.127 0.133 0.135 0.130 0.123
6 0.102 0.112 0.155 0.086 0.093 0.096 0.087 0.081
7 0.109 0.115 0.156 0.090 0.097 0.097 0.088 0.081
8 0.116 0.120 0.158 0.094 0.101 0.098 0.088 0.082
9 0.124 0.124 0.160 0.099 0.105 0.100 0.088 0.082

10 0.133 0.129 0.163 0.103 0.109 0.101 0.089 0.082
11 0.141 0.134 0.165 0.108 0.113 0.102 0.089 0.082
12 0.150 0.139 0.168 0.113 0.117 0.104 0.090 0.082
13 0.159 0.144 0.171 0.117 0.122 0.105 0.090 0.083
14 0.169 0.149 0.174 0.122 0.126 0.106 0.091 0.083
15 0.178 0.154 0.177 0.127 0.130 0.107 0.091 0.083
16 0.188 0.160 0.181 0.131 0.134 0.108 0.091 0.083
17 0.198 0.166 0.184 0.136 0.139 0.109 0.092 0.083
18 0.208 0.171 0.187 0.141 0.143 0.110 0.092 0.083
19 0.219 0.177 0.191 0.146 0.148 0.111 0.092 0.083
20 0.230 0.183 0.194 0.151 0.153 0.112 0.093 0.083

Slow parameter variations

S3 Nonadaptive Bandwidth Bandwidth and order
adaptive adaptive

n/N k1 k2 k3 PPE FPE PPE FPE Mix

1 2.735 2.660 2.623 2.689 2.725 2.689 2.725 2.689
2 0.747 0.749 0.772 0.739 0.737 0.739 0.737 0.739
3 0.413 0.411 0.427 0.402 0.402 0.406 0.401 0.402
4 0.239 0.231 0.243 0.225 0.226 0.231 0.224 0.223
5 0.113 0.105 0.116 0.096 0.097 0.101 0.093 0.092
6 0.076 0.065 0.074 0.055 0.057 0.062 0.051 0.050
7 0.083 0.069 0.076 0.059 0.060 0.063 0.051 0.050
8 0.091 0.074 0.079 0.063 0.064 0.065 0.051 0.051
9 0.100 0.079 0.081 0.067 0.068 0.066 0.051 0.051

10 0.108 0.084 0.084 0.071 0.071 0.068 0.051 0.051
11 0.117 0.089 0.087 0.075 0.075 0.069 0.052 0.051
12 0.126 0.094 0.090 0.079 0.078 0.070 0.052 0.051
13 0.135 0.100 0.093 0.083 0.082 0.072 0.052 0.051
14 0.145 0.105 0.097 0.087 0.086 0.073 0.052 0.051
15 0.155 0.111 0.100 0.091 0.089 0.074 0.052 0.051
16 0.165 0.116 0.103 0.095 0.093 0.075 0.052 0.051
17 0.175 0.122 0.107 0.099 0.097 0.076 0.052 0.051
18 0.186 0.128 0.110 0.104 0.100 0.077 0.052 0.051
19 0.197 0.134 0.114 0.108 0.104 0.078 0.052 0.051
20 0.208 0.140 0.117 0.112 0.108 0.079 0.052 0.051
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