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Abstract—This paper addresses a singular problem, not yet dis-
cussed in the literature, which occurs when parametric reduced-
order models are created using a subspace projection approach
with multiple concatenated projection bases. We show that this
technique may lead to the appearance of localized artifacts in the
frequency characteristics of a system, even when the reduced-
order projection basis is rich enough to describe the original
system. These artifacts are found to be related to nonphysical
poles of the transfer function that emerge whenever more than
one projection basis is used, each spanning a similar space,
and these bases are directly put together to build multivariate
reduced-order models. These unwanted poles are identified using
the Bauer–Fike theorem and then the parametrized reduced-
order model is regularized with a simple deflation procedure
that completely removes the artifacts due to nonphysical reso-
nances from the circuit characteristics. Finally, real-life numerical
examples illustrate the accuracy and abilities of the proposed
approach.

Index Terms—Computer-aided engineering, design automa-
tion, finite-element method (FEM), parametric model order
reduction, parametric macromodels.

I. INTRODUCTION

THE finite-element and finite-difference methods are
among the most accurate and versatile numerical ap-

proaches for solving Maxwell’s equations. These methods
underpin the software tools used to design passive microwave
components and antennas. The accuracy of this numerical
analysis comes at the price of its relatively high computational
cost: these techniques, when used for time-harmonic fields,
involve solving a large sparse system of equations. This cost
may be significantly reduced when we are interested in the
circuit behavior within a certain frequency band. To this end,
various fast-frequency sweep techniques can be applied. In
this context, subspace-projection-type model order reduction
(MORe) algorithms should be mentioned. In these algorithms,
the original large sparse system of equations is converted to a
small dense linear algebra problem by applying the Galerkin
method with an orthogonal set of vectors, giving rise to basis
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and testing spaces. The vectors spanning the subspace in which
the solution is sought can be found by means of, for example,
the reduced-basis method [1] or by moment-matching MORe
algorithms [2]. The projection basis can be established for the
entire computational domain—we will refer to this variant as
global MORe [1], [3]–[9], or the domain can be divided into
subregions and a separate basis can then be determined for
each subregion—we will refer to this other variant as local
MORe [7], [8], [10]–[15]. The reduction can be performed
hierarchically [16], [17] to even further reduce the size of the
final problem. The small system resulting from the Galerkin
projection can be solved with very little effort for a large
number of frequency points. The actual solution can then
be found as a linear combination of the basis vectors with
frequency-dependent weights provided by solving the reduced-
order system. MORe provides an approximate solution in the
frequency band of interest, but the accuracy can be increased
and the bandwidth extender by adding new vectors to the basis.
To control this process, error estimators [1], [4], [18]–[22] can
be employed.

Fast-frequency sweep MORe algorithms can be regarded as
a way to accelerate the parametric analysis of a system of
partial differential equations with frequency as a parameter. It
should be noted that, in practice, frequency is not the only
parameter that can change. In microwave circuit design and
optimization problems, in yield analysis, and in parametric
studies, it is necessary to repeat full-wave simulations for a
variety of different geometries. Since this process is very time-
consuming, it is tempting to develop MORe techniques that
take into account other variables beside frequency. This leads
to the problem known as parametric model order reduction
(PMORe). It should be noted that PMORe is more demanding,
since the original system parameter dependency is nonlinear
and not affine, in general, as it is the case in fast-frequency
sweep MORe.

Several approaches have been proposed for the PMORe
problem. Publication [23] gives an excellent overview of state-
of-the-art projection-based methods in parametric dynamical
systems with a discussion of advantages and disadvantages
for each methodology. Based on [23], it can be stated that
there are three main categories of projection-based techniques.
One category constructs a single projection basis for the entire
parameter space, while a second category involves multiple
bases constructed for many points in the design space and
requires some sort of interpolation technique—either at the
projection basis level, the reduced-order transfer function level,
or the reduced-order model matrices. It should be noted that
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in the first category, a single basis is formed by concatenating
the individual bases obtained for several parameter samples
and no interpolation is needed. Finally, the third category is a
straightforward extension of the reduced-basis method to the
multidimensional parameter case, but this approach is com-
putationally valid only if an affine parameter decomposition
can be applied and the number of parameters is small. All
three approaches have been used in the context of computer
simulations of microwave components and antennas [24]–[30].

Taking into account geometry as a parameter, which is of
paramount importance in computer-aided design problems, the
mesh deformation technique [31] makes PMORe straightfor-
ward, since the same mesh topology is preserved along the
mesh morphing as the geometry parameter changes. Indeed,
in this scenario, the approach based on concatenated bases is
particularly simple to implement in FEM and makes it straight-
forward to handle nonaffine geometry parameter dependence
[32], [33]. Each time a new device geometry is analyzed, the
field solution is guaranteed to be represented within the same
FEM basis. This overcomes the difficulty in managing differ-
ent representation basis for each new geometry in the circuit to
be designed. However, our studies have shown that, as new sets
of vectors from new parameter samples are appended and the
basis is augmented, the reduced-order system shows additional
nonphysical poles which may affect the response of the circuit
in the frequency band of interest. These additional poles occur
in both global and local PMORe schemes. To the best of our
knowledge, neither this phenomenon nor methods of dealing
with these nonphysical poles have been discussed to date.

In this paper, we address the problem of these additional
false poles in the context of local parametrized reduced-order
models (PROMs) in the finite-element method obtained using
concatenated projection bases and geared towards multivariate
models with nonaffine parameter dependence. We show that
these poles are related to nonphysical localized resonances of
the subregions subjected to MORe and emerge whenever more
than one projection basis is used to build multivariate reduced-
order models. When the local PROMs are substituted back into
the original system, the original circuit response is modified
accordingly. Because of the presence of additional poles in
these local PROMs, the circuit response for the entire structure
may be affected. This results in the presence of artifacts in the
circuit response in the form of spikes. As a consequence, the
PROM is completely useless since the actual circuit behavior
can not be identified in this setting. To avoid this problem,
we investigate ways of identifying these nonphysical local
resonances very early on when a local PROM is generated, in
order to distinguish them from true resonances and ultimately
to eliminate nonphysical poles with little computational effort
from the final system of FEM equations for the entire structure.
As a result, high-quality regularized local PROMs are obtained
and the response of the whole circuit is completely free of
spikes. This gives rise to a reliable parametric MORe process.

This paper is organized as follows. In Section II we review
the methodology of constructing local multivariate reduced-
order models from FEM equations based on concatenated local
projection bases. Section III discusses the problem of localized
artifacts. i.e. spikes, that appear in the circuit characteristics

and identifies their source. In Section IV we propose two
techniques for regularizing the local PROMs. i.e. removing the
spikes. Section V shows numerical examples and illustrates the
capabilities of the proposed approach as well as its accuracy.
We show that a complete elimination of the artifacts can easily
be achieved by applying the Bauer-Fike theorem to the poles
of the transfer function of a PROM. Finally, in Section VI, we
comment on the conclusions.

II. LOCAL PARAMETRIZED REDUCED-ORDER MODELS

An efficient technique based on MORe for fast parametric
FEM analysis of microwave components involving several
parameters by means of local PROMs has been addressed
in [34]. In this methodology, the analysis domain is divided
into subregions. For each subregion, different local projection
subbases, namely, Qj , j = 1, . . . ,M—each one standing
for the characteristics of the subregion in the M parameter
samples, are computed and concatenated to create a single
local projection basis. The subbases for all subdomains are
found at sample points within the parameter space P , where
all different parametric variables are taken into account. When-
ever geometry variables are considered, the mesh deformation
technique [31] is applied locally, in each subregion, in order
to be able to describe the field solutions within the same
representation FEM basis for each sample in the parameter
space P . As a result, not only is the number of degrees of
freedom and the topology of the mesh kept constant in the
parameter-dependent problem, but also the concatenation of
subbases is enabled in a straightforward way, allowing for
PMORe where geometry dependency is taken into account.
In the same token, the process of uplifting local bases is con-
trolled by local and global goal-oriented error estimators [19],
[35]. These estimators also serve as indicators to determine
the quality of the PROMs. Once a suitable basis is found, a
local PROM is formed and substituted back into the original
system of FEM equations in order to solve for the whole
computational domain.

Let us provide some details of the finite-element formulation
that are essential to understand the proposed MORe procedure.
Further information can be found in [13], [17], [34], [36].
Finite-element discretization of the time-harmonic Maxwell’s
equations leads to an n-dimensional linear system of the form:(

Γ + s2C
)
E = sBI

U = BTE,
(1)

with Γ,C ∈ Cn×n being the stiffness and mass FEM sparse
matrices, respectively, s = jk0 is a normalized complex fre-
quency, where k0 is the wavenumber. B ∈ Cn×m is a matrix
operator mapping the coupling of the excitation currents at the
ports to the electric fields on the analysis domain. E ∈ Cn×m
is the matrix of unknown coefficients associated with the FEM
basis functions representing the electric field, where m is the
number of excitation vectors. I and U contain m amplitudes
of the current and voltage waves of the modes at the ports,
respectively. We assume for simplicity that the structure is
excited by m modes with one mode at each port.
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The entries of the stiffness and mass FEM matrices change
as we explore the design parameter space P . Let us use p to
represent the vector of variables—either geometric or material
parameters, that are allowed to change in the parameter space
P . Equation (1) can then be represented as a parameter-
dependent system, thus:(

Γ(p) + s2C(p)
)
E(s,p) = sBI

U = BTE(s,p).
(2)

Solving for the electric field in the above problem, we can
obtain the impedance matrix Z describing the circuit, viz.,

U = ZI

Z(s,p) = BT
(
Γ(p) + s2C(p)

)−1
B.

(3)

Let us point out that the admittance matrix Y of the circuit
is the inverse mapping between current and voltage waves,
namely, I = YU.

In order to be able to rapidly solve the system of FEM
equations, the analysis domain Ω is partitioned into differ-
ent nonoverlapping interior subdomains which are of special
interest for parametric study, namely, Ωj , j = 1, . . . , J , and
the complement in Ω, namely, subdomain Ω0. These interior
nonoverlapping subdomains define artificial boundaries within
the analysis domain Ω, viz., ∂Ωj , j = 1, . . . , J . In this setting,
we would like to highlight the partition structure in the system
of FEM equations (1). The degrees of freedom in the electric
field E are decomposed into port unknowns EP , artificial
boundary unknowns E∂Ω, and subdomain unknowns EΩ,
where ET

Ω =
[
ET

Ω0
ET

Ω1
. . . ET

ΩJ

]
. As a result, the electric

field E in (1) can be written as ET =
[
ET
P ET

∂Ω ET
Ω

]
, giving

rise to the following partition structure in the FEM system
matrices in (1):

Γ =

 ΓP 0 GT
ΩP

0 Γ∂Ω GT
Ωδ

GΩP GΩδ ΓΩ


C =

 CP 0 TT
ΩP

0 C∂Ω TT
Ωδ

TΩP TΩδ CΩ


BT =

[
BT
P 0 0

]
,

(4)

where GΩP , TΩP and GΩδ , TΩδ denote the blocks in the
FEM matrices that couple the ports P to subregions Ωj , and
the artificial boundaries ∂Ωi to subregions Ωj , respectively. It
should be noted that the excitation coupling BP is only applied
at the ports P . Matrices ΓΩ and CΩ are block-diagonal, i.e.,
ΓΩ = diag[ΓΩj

],CΩ = diag[CΩj
], j = 0, 1, . . . , J , whereas

the FEM matrices coupling different blocks have the following
structure:

GT
ΩP =

[
GT

Ω0P
GT

Ω1P
. . . GT

ΩJP

]
GT

Ωδ =
[

GT
Ω0δ

GT
Ω1δ

. . . GT
ΩJδ

] (5)

and
TT

ΩP =
[

TT
Ω0P

TT
Ω1P

. . . TT
ΩJP

]
TT

Ωδ =
[

TT
Ω0δ

TT
Ω1δ

. . . TT
ΩJδ

]
.

(6)

A. Local Transfer Function, its Poles, and Local Parametrized
Reduced-Order Model

In order to apply MORe locally in a specific subregion, we
first define a transfer function associated with this subregion.
For the sake of simplicity, let us consider an analysis domain
Ω where a single subregion Ω1 is taken into account for para-
metric MORe. As a result, the artificial boundary ∂Ω1 divides
the original analysis domain Ω into two subdomains, namely,
Ω0 and Ω1. This is the simplest case but it can easily be gener-
alized for multiple subdomains. In this framework, the electric
field E in (1) can be written as ET =

[
ET
P ET

∂Ω1
ET

Ω0
ET

Ω1

]
,

giving rise to the following structure in the FEM system
matrices in (1):

Γ =


ΓP 0 GT

Ω0P
GT

Ω1P

0 Γ∂Ω1
GT

Ω0δ
GT

Ω1δ

GΩ0P GΩ0δ ΓΩ0 0
GΩ1P GΩ1δ 0 ΓΩ1



C =


CP 0 TT

Ω0P
TT

Ω1P

0 C∂Ω1
TT

Ω0δ
TT

Ω1δ

TΩ0P TΩ0δ CΩ0 0
TΩ1P TΩ1δ 0 CΩ1


BT =

[
BT
P 0 0 0

]
.

(7)

As a result of this structure in (1), we can explicitly write
down the following local system of equations, thus:

0 ·EP + A∂Ω1
(s)E∂Ω1

+ FTΩ0δ(s)EΩ0
+ FTΩ1δ(s)EΩ1

= s · 0 · I
FΩ1P (s)EP + FΩ1δ(s)E∂Ω1

+ 0 ·EΩ0
+ AΩ1

(s)EΩ1

= s · 0 · I,

(8)

where Aω(s) = Γω + s2Cω and Fω(s) = Gω + s2Tω , and
subscript ω is used to represent suitable indices related to
subregions, ports or boundaries in the above equation.

It should be noted that subregion Ω1 is not directly coupled
to the ports P and, as a result, FΩ1P (s) = 0. In the end, (8)
simplifies to the following relation:

A∂Ω1(s)E∂Ω1 + FTΩ0δ(s)EΩ0 + FTΩ1δ(s)EΩ1 = 0 (9a)
FΩ1δ(s)E∂Ω1 + AΩ1(s)EΩ1 = 0. (9b)

Recall that AΩ1
(s) = ΓΩ1

+ s2CΩ1
. Equation (9b) shows

that the eigenvalues of the matrix pencil (ΓΩ1 ,CΩ1) represent
the eigenresonances in the perfect electric conductor (PEC)
cavity Ω1, whose PEC wall is formed by the artificial boundary
∂Ω1. In the same token, these eigenresonances are the poles
of the admittance matrix describing the electromagnetics in
subdomain Ω1.

Solving for the electric field EΩ1 in (9b) and substituting it
back into (9a), we obtain:

A∂Ω1(s)E∂Ω1 + FTΩ0δ(s)EΩ0

− FTΩ1δ(s)A
−1
Ω1

(s)FΩ1δ(s)E∂Ω1
= 0.

(10)
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Here, we can define a transfer function that describes the input-
output behavior in subdomain Ω1, viz.

HΩ1
(s) = −FTΩ1δ(s)A

−1
Ω1

(s)FΩ1δ(s)

= −
(
GT

Ω1δ + s2TT
Ω1δ

)
·

·
(
ΓΩ1 + s2CΩ1

)−1 (
GΩ1δ + s2TΩ1δ

)
.

(11)

Note that the poles of this transfer function are the same as the
eigenvalues of the matrix pencil (ΓΩ1 ,CΩ1) and, as observed
above, they are also the poles of the admittance matrix for this
subdomain as well as the resonances of a PEC cavity formed
by this subdomain.

Next, local order reduction is performed for region Ω1. The
projection space Q is found using the technique described in
[34]. As explained there, in order to account for nonaffine
parameter dependence, the basis is formed by concatenating
and then processing the orthogonal bases obtained for M
different parameter samples, which may include geometry
changes:

Q = [Q1 Q2 . . .QM ] . (12)

Each basis is calculated as described in [13]. The subsequent
processing, which involves a two stage compression process
using singular value decomposition (SVD) and proper orthog-
onal decomposition (POD), makes the basis more compact.

Applying the Galerkin projection to the specific system of
equations gives rise to the reduced matrices that replace the
large sparse FEM matrices in the original system of equations:

Γ̃Ω1 = QTΓΩ1Q, C̃Ω1 = QTCΩ1Q,

G̃Ω1δ = QTGΩ1δ, T̃Ω1δ = QTTΩ1δ.
(13)

The size of the resultant matrices is much smaller than the
originals. The reduced matrices are substituted back to the
original FEM problem, replacing the appropriate rows and
columns of the full-order system and thus reducing its size.
The reduced form of the transfer function H̃Ω1

(s), which ap-
proximates the original transfer function over a wide frequency
band, is defined as follows:

H̃Ω1
(s) = −

(
G̃T

Ω1δ + s2T̃T
Ω1δ

)(
Γ̃Ω1

+ s2C̃Ω1

)−1

·

·
(
G̃Ω1δ + s2T̃Ω1δ

)
. (14)

It should be noted that the matrix that is inverted becomes
singular at the frequencies that are the eigenvalues of the
matrix pencil (Γ̃Ω1

, C̃Ω1
), which are also approximate eigen-

resonances of the PEC cavity formed by subdomain Ω1.

III. NONPHYSICAL POLES

As an illustration of the problem discussed in this paper,
we consider a parametrized model of a fifth-order waveguide
filter [37]. The structure is divided into seven subdomains.
Its geometry and segmentation analysis are shown in Fig. 1.
For this structure, a total of eleven geometry parameters
are considered, some of them in different regions of the
analysis domain. As such, there are 2, 2, 3, 2, and 2 design

S1 S2 S3 S4 S5 S6

1 2 3 4 5 6 7

W
1 d2L2

R1 R2

L

d

3

22.86

10.16

2.5 2.5

3.5 3.5

20.86

10.435 10.37

20 40.119 38.344 20

21.114 22.759

1

6

ΩΩ Ω Ω Ω ΩΩ

w1 w 2

h 2h1

Fig. 1. Geometry of a fifth-order waveguide filter divided into seven
subdomains.
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Fig. 2. Reference scattering parameters in the fifth-order waveguide filter
computed using the full-order FEM model.

variables in corresponding regions Ω2, Ω3, Ω4, Ω5 and Ω6,
respectively. For reference, we first ran the simulations for a
full-order FEM model for all eleven design parameters set to
the values given in the third column of Table I. The reference
scattering characteristics of the filter for the frequency band
8.5-11.5 GHz are shown in Fig. 2.

For this structure, we will take into account PROMs for
each of the five subdomains where the design variables change,
each one using multiple concatenated local bases, created for
several parameter samples taken within the allowable range
of geometry variation defined by the fourth and fifth columns
in Table I. The geometry instances used to generate the local
PROMs are different from the ones that we use as reference
points. Our goal is to use the local PROMs to reproduce the
reference characteristics computed from the full-order FEM
model, i.e. the original FEM equations, for the entire structure.

We initially consider only one local PROM associated with
region Ω5. In constructing this PROM for region Ω5, we used
four local bases generated for the geometry instances detailed
in Table II. We deliberately selected rather large offsets from
the reference point to ensure a low-quality local PROM,
making the problem we want to address more conspicuous.

The scattering characteristics of this filter computed with
the basis we have described earlier for region Ω5 are shown
in Fig. 3. Some artifacts, in the form of spikes, are clearly
visible. These artifacts evidently have a resonant character.
To confirm this, we computed a few eigenvalues of the full-
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TABLE I
REFERENCE VALUES OF GEOMETRY PARAMETERS AND VARIATION
RANGE FOR GEOMETRY SAMPLES USED TO CREATE LOCAL BASES

domain parameter reference (mm) min (mm) max (mm)
Ω2 d1 2.000 1.000 3.000

R1 12.188 10.188 14.188
Ω3 h1 5.456 2.450 8.450

w1 2.430 1.430 5.430
Ω4 W 27.805 26.805 28.805

L1 12.194 8.194 16.194
L2 16.743 12.743 20.743

Ω5 h2 5.949 2.949 8.949
w2 2.430 1.430 5.430

Ω6 d2 2.000 1.000 3.000
R2 12.264 10.264 14.264

TABLE II
CHANGE IN GEOMETRY PARAMETERS FROM REFERENCE VALUES IN Ω5

FOR GEOMETRY INSTANCES G1 , G2 , G3 , G4 USED TO GENERATE A
COMBINED LOCAL PROJECTION BASIS

parameter offset G1 G2 G3 G4

h2 [mm] -2.3 -2.39 -1.64 -2.23
w2 [mm] -1.39 1.28 2.45 -1.1

order FEM model and the model using a local PROM. These
eigenvalues correspond to the poles of the admittance matrix
of the complete structure and define the resonances of the
cavity formed by short-circuiting the ports, i.e., replacing the
ports with PEC. The results are presented in Table III. The
full-order FEM model, detailed in the left column, shows five
resonances, as can be expected from a fifth-order bandpass
filter. A model involving a local PROM, detailed in the right
column, exhibits twelve nonphysical resonances in addition
the true resonances, which are shown in bold.

Evidently, the artifacts render this particular local PROM
inadmissible for practical use. This does not mean that the
technique of local PROMS employing concatenated bases is of
little value. As indicated above, we have selected a particularly
bad local PROM for illustration purposes. In fact, the poor
quality of this model would have been detected using a local
error estimator [35]. If the level of the local error estimator
were too high, the local basis would have been augmented as

8.5 9 9.5 10 10.5 11 11.5

frequency (GHz)

-150

-100

-50

0

|s
1

1
|,
 |
s

2
1
| 
(d

B
)

Fig. 3. Scattering parameters of the fifth-order waveguide filter with several
artifacts due to local PROM in region Ω5 generated by concatenation of four
projection bases evaluated at the points given in Table II.

TABLE III
RESONANCES OF THE FULL-ORDER MODEL AND A FORMULATION WITH

ONE LOCAL PROM

Frequency (GHz) Frequency (GHz)
9.7658 8.5408 9.7659 10.1643
9.8120 8.6231 9.8120 10.3515
9.9450 8.8139 9.9449 10.4829

10.0758 9.3407 10.0690 10.6994
10.1578 9.6113 10.1102 11.1501

9.7185 11.1917
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Fig. 4. Local error estimator for good and bad nonregularized PROMs for
region Ω5 in the fifth-order waveguide filter.

recommended in [34]. Fig. 4 shows the plots of the local error
estimators for this bad local PROM, detailed in blue, and for
a good local PROM, plotted in orange. It can be seen that
the average value for the error estimator for the good model
is almost -40 dB, while for the model created with the bases
evaluated for geometries given in Table II, this value is much
higher.

While this model is evidently poor, it should be noted
that, except for the few spikes visible in Fig. 3, the overall
characteristics do not look especially bad. The true poles of
the system are also quite well reproduced, as it is clear from
Table III. For this reason, it is worth looking for simple and
cost efficient ways of predicting and preventing these artifacts
from appearing without resorting to the addition of new vectors
to the local basis, as this would eventually make local PROMs
too large.

IV. IDENTIFYING AND ELIMINATING NONPHYSICAL
POLES

A better insight into the nature of the artifacts observed
when local PROMs are used in simulations can be gained
by examining the poles of the transfer function (14) for a
local PROM as new local projection bases are added and
concatenated to form a single projection basis. The poles
of the local transfer function for the reduced model are the
eigenvalues of the system matrices obtained after projection.
Fig. 5 shows the eigenvalue spectrum for the matrix pencil
(Γ̃Ω5

, C̃Ω5
) in region Ω5 in the fifth-order waveguide filter

for different projection bases. Only the eigenvalues located in
the filter bandwidth are shown.

The eigenvalues are denoted by crosses or circles and are
presented on five lines, corresponding to five bases. The first
line in the bottom shows the reference eigenvalues, i.e., the
eigenvalues found for the correct basis QP = Q0. This
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Fig. 5. Eigenvalues of the local PROM in region Ω5 in the fifth-order
waveguide filter obtained using different local projection bases.

basis is evaluated for the references values of parameters,
h2 = 5.949 mm, w2 = 2.430 mm. The second bottom line
is for the basis obtained for the geometry instance G1 in
Table II. In other words, here we use QP = Q1. The next
line in Fig. 5 uses the basis obtained by concatenation of
Q1 and Q2, that is, the bases evaluated for the instances
G1 and G2 in Table II. Finally, the line on the top is for
QP = SVD([Q1, Q2, Q3, Q4]).

From this example shown in Fig. 5, it is clear that as
soon as the number of geometry instances, in other words,
concatenated bases, exceeds one, new eigenvalues begin to
appear in addition to the correct ones, which are denoted by
circles in Fig. 5. These additional eigenvalues are nongenuine
poles of a local transfer function—nonphysical resonances
of a PEC cavity corresponding to a given subdomain. This
phenomenon is understandable if we consider the fact that each
basis spans a similar space, in the sense that the maximum
eigenvalue for each local PROM obtained with each of the
local projection basis is expected to be similar. No local basis
can approximate the eigenvectors that are outside this range. If
the size of each basis is, say, K, each local PROM will have
exactly K poles distributed between 0 and a certain fmax.
Consequently, when we concatenate i bases, a local PROM
will have i · K poles, and these poles will be distributed
across a comparable frequency band. In this scenario, we can
expect that there will be exactly (i − 1) ·K bogus, or ghost,
poles. In practice, when the procedure proposed in [34] is
used, the number of nonphysical resonances will be smaller,
as once several bases are concatenated, the resulting basis is
compressed twice. Nevertheless, if many geometry instances
are used, the number of nonphysical poles may be substantial,
although not all of them will produce conspicuous artifacts in
the frequency characteristics, i.e., the quality of the combined
basis confirmed by the local error estimate may be satisfactory,
or the ghost pole may be outside the band of interest.

Obviously, the simplest way to get rid of the artifacts would
be to eliminate all poles that fall in a given band. This strategy
would however fail if the size of the subdomain were large
enough to allow for physical resonances. Rather than reducing
the size of the subdomain, we need a technique to identify
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Fig. 6. Local estimated error [35] in subdomain Ω4 after removing two
nonphysical poles from the PROM in the waveguide filter, compared to the
estimated local error before deflation.

ghost poles in the band of interest and to distinguish them
from true resonances. In the next section, we present two such
techniques for regularizing local PROMs.

A. Regularization Based on Ritz Pairs

One way to check if the eigenvalue in a local PROM is
a nongenuine pole or a correct resonance is to verify how
well this eigenvalue and the associated eigenvector, or strictly
speaking, the Ritz value and Ritz vector, satisfy the eigenvalue
equation when they are substituted into the local full-order
FEM model. To this end, the residues for a full-order model
are computed for all Ritz values and Ritz vectors that are to
be examined. A Ritz pair that corresponds to large values of
the norm of the residual relates to a false pole, while a small
value of the norm is obtained for legitimate resonances.

When the set of Ritz values and vectors corresponding to
nonphysical poles is identified, the Gram–Schmidt orthogo-
nalization procedure can be used to find the new basis Q̃P ,
which is CΩj

-orthogonal to these vectors. To this end, each
vector of QP is C-orthogonalized to every Ritz vector and,
in effect, the deflated subspace spanned by the basis Q̃P is
obtained.

To illustrate this process, we consider a local PROM for
subdomain Ω4 in the fifth-order waveguide filter detailed in
Fig. 1. We used three geometry instances to generate a local
projection basis. This resulted in a PROM with three poles
in the band of interest: at 9.3271, 9.9716, and 10.4640 GHz.
The Ritz vectors were computed for these poles, yielding the
following values for the residual errors: 0.0918, 2.49 · 10−5,
and 0.1089, respectively. One pole, located at 9.9716 GHz,
brings about a much smaller residual error than the other two.
We can infer that this is a true resonance, while the other
two are nonphysical and should be removed. The deflation
is performed by making the projection basis CΩ4

-orthogonal
to two Ritz vectors identified as the nongenuine ones. Fig. 6
shows a local estimated error in subdomain Ω4 before and after
the removal of two nonphysical poles from the PROM. The
two false poles no longer exist in the reduced-order model.

While the regularization strategy based on Ritz pairs works,
it may prove inefficient, particularly for large projection basis.
Note that it is necessary to compute the residues of the
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TABLE IV
POLES (IN GHZ) OF THE WAVEGUIDE FILTER MODEL INVOLVING FIVE

LOCAL PROMS

9.7660 9.7664 9.5076 9.3271 9.0405
9.8123 10.002 10.4640 9.1134
9.9453 10.6363 9.3488

10.0760 10.7804 9.6035
10.1579 10.0845

10.6862
10.8953

TABLE V
POLES (IN GHZ) OF THE WAVEGUIDE FILTER OF FIVE LOCAL PROMS:

Ω2 , Ω3 , Ω4 , Ω5 , Ω6

Ω2 Ω3 Ω4 Ω5 Ω6

9.7663 9.5076 9.3271 9.0405 -
10.0020 9.9716 9.1134
10.6363 10.4640 9.3488
10.7804 9.6037

10.0844
10.6862
10.8952

Ritz vectors for the full-order FEM model, then to perform
the Gram–Schmidt procedure, and finally to construct the
new reduced-order model by orthogonal projection onto the
deflated subspace. These operations involve nonreduced ma-
trices, so when there are many vectors in the basis, the total
time may be noticeable. The time needed for these operations
in the above example on a workstation detailed in Sec. V
is 6.4 s. Computation of the residues of three Ritz vectors
took 1.0 s, constructing the new basis with the Gram–Schmidt
procedure took 1.95 s, and orthogonal projection took 3.4 s.
When this strategy is applied to multiple PROMs, the overall
time may be significant.

B. Regularization Based on the Bauer–Fike Theorem

To this end, we evaluated the poles of the admittance matrix
located in the frequency band 9–11 GHz for the reduced-
order model of the whole waveguide filter involving five local
PROMs. The results are listed in Table IV. Bold text denotes
the poles that are also present in the full-order FEM model
given in the first column of Table III. Eigenvalue analysis was
then carried out for all five local PROMs when each of these
is considered separately from the others. Table V shows the
poles within the same band for each of the five examined
subdomains Ω2, Ω3, Ω4, Ω5 and Ω6. Note that all nonphysical
poles from Table IV can be identified in Table V as eigenvalues
related to individual local PROMs for certain subdomains. It
is clear that these eigenvalues are nonphysical resonances and
should be deflated so as not to pollute the solution obtained
for the complete structure. Note also that one eigenvalue for
subdomain Ω4, shown in bold in Table V, cannot be identified
in Table IV. However, as was shown in the previous section
by evaluating the residual associated with the Ritz pairs, this
eigenvalue corresponds to an actual resonance. Note also that
the other two eigenvalues for subdomain Ω4 have already been
shown to be nonphysical resonances.

We see that false poles in local PROMs can be identified
by verifying whether they have counterparts in the global

PROM. All eigenvalues that are present in both the local model
and the global system involving all PROMs are nongenuine
poles. However, we do not recommend this approach, a
simpler procedure for deflating false poles is needed. Instead
of comparing two sets of eigenvalues, we will thus use the fact
that the physical and nonphysical resonances in local PROMs
behave differently when they are incorporated into the system
of equations for the entire structure. From the tables above, we
can see that while nonphysical poles do not move when local
PROMs are assembled, i.e., they are at almost the same place
in the local and global models, the true local resonances in
subdomain Ω4 can no longer be identified in the global model.
This means that nonphysical local resonances are localized and
are not affected by neighboring subdomains, while the true
resonances interact with the surrounding regions.

This observation suggests that a technique for regularizing
local PROMs, i.e., identifying and deflating nonphysical poles,
can be developed by concentrating on the impact of the
surrounding regions. The eigenvalues not affected by incorpo-
rating a local PROM into the global system will be regarded
as false poles and deflated by removing the eigenvector that
is associated with this eigenvalue. To this end, we use the
Bauer–Fike theorem [38] for generalized eigenvalue problems
and compute the bounds of the shift the eigenvalues undergo
when matrices related to local PROMs are influenced by the
presence of other subregions. Let (λ0i ,x0i) be an eigenvalue
and the corresponding eigenvector of a Hermitian matrix
pencil (A0,B0) with positive definite B0, so that

(A0 − λ0iB0)x0i = 0. (15)

The Bauer–Fike theorem provides the error bound for the
eigenvalue when both matrices are perturbed. Assuming that
λi denotes an eigenvalue of the perturbed pencil (A0 +
∆A,B0 + ∆B), the error bound ∆λi(est) for i-th eigenvalue
is given by

|λ̃i − λi| ≤ ∆λi(est) =‖ (B0 + ∆B)−1 ‖ · ‖ r ‖, (16)

where ‖ r ‖ is a norm of the residual vector

‖ r ‖=‖ (∆A− λ0i∆B)x0i ‖ . (17)

In order to show how to use the Bauer–Fike theorem for
our purpose, we consider the situation where all local PROMs
have been substituted into FEM matrices. The resulting system
of equations consists of small and dense blocks, namely,
macromodels, and for the fifth-order waveguide filter in Fig. 1
this system has the sparsity pattern shown in Fig. 7. Consider
subdomain Ω4. The behavior of the electromagnetic field in
subdomain Ω4 is determined by the following local projected
system of equations:

(Γ̃Ω4 + s2C̃Ω4)ẼΩ4 = −(G̃Ω4δ + s2T̃Ω4δ)E∂Ω4 (18)

where G̃Ω4δ and T̃Ω4δ are the reduced blocks describing the
coupling between subregion Ω4 and interfaces S3, S4 in Fig. 1.
ẼΩ4

contains coefficients associated with the electric field in
the interior of subdomain Ω4 and Ẽ∂Ω4

contains coefficients
associated with the electric field on the boundary ∂Ω4.
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Fig. 7. Sparsity pattern of the reduced matrix Γ̃ in the fifth-order waveguide
filter in Fig. 1.

This local system has the form:

(Γ̃Ω4 + s2C̃Ω4)ẼΩ4 = −F̃Ω4δ(s)E∂Ω4 (19)

with both matrices Γ̃Ω4 , C̃Ω4 being symmetric and C̃Ω4 pos-
itive definite. F̃Ω4δ represents the coupling matrices on the
right-hand side of equation (18)

F̃Ω4δ(s) = G̃Ω4δ + s2T̃Ω4δ. (20)

Using the technique described in the Appendix, we can now
diagonalize both matrices in the local system. Performing the
necessary steps, we first obtain

(A4 + s2Id)C̃
1
2

Ω4
ẼΩ4

= −C̃
1
2

Ω4
F̃Ω4δ(s)E∂Ω4

, (21)

where Id is the identity matrix and A4 is a symmetric matrix

A4 = C̃
− 1

2

Ω4
Γ̃Ω4

C̃
− 1

2

Ω4
. (22)

Next, we perform the eigendecomposition of the symmetric
matrix A4:

A4 = VA4ΛA4V
T
A4

(23)

and convert equation (21) into:

(ΛA4
+ s2Id) VT

A4
C̃

1
2

Ω4
ẼΩ4︸ ︷︷ ︸

ÊΩ4

= −VT
A4

C̃
1
2

Ω4
F̃Ω4δ(s)E∂Ω4

.

(24)
The left-hand side of this equation is a diagonal matrix and

the matrix ΛA4
contains the poles of the local PROM. Once

the required operations are completed, the entire system has
the structure shown in Fig. 8a.

Diagonalization of the left-hand side involves computing the
square root of matrix C and its inverse, and then eigendecom-
posing matrix A = C−1/2ΓC−1/2. See Appendix for all the
details. Since the projected matrices are small, computing the
square root of C as in (27), computing its inverse (29), and
performing the eigendecomposition of matrix A is fast. It is,
however, an effort that pays off, as now the poles of PROM
for subdomain Ω4 are on the diagonal and the couplings are
expressed only by the off-diagonal elements. Since the matrix
is symmetric, it is enough to consider the values of the off-
diagonal elements that are in the same row as the pole we are
interested in. The time needed for the diagonalization of this
local PROM was just 0.1444 s.

(a) (b)

Fig. 8. (a) Sparsity pattern of the reduced matrix stiffness Γ̃ with one
diagonalized macromodel Ω4. (b) Sparsity pattern of completely diagonalized
reduced stiffness matrix Γ̃ with five local PROMs).

The diagonalization can be repeated for all diagonal blocks,
and ultimately, the matrix receives the bordered diagonal form
shown in Fig. 8b.

1) Deflation: Once the complete diagonalization of all
diagonal blocks has been performed, we may split the reduced-
order system matrix for the entire structure into the diagonal
part and the part with all off-diagonal elements, and then apply
the Bauer–Fike theorem to the diagonal part, taking the off-
diagonal elements as the perturbation. Referring to equation
(15) A0 = ΛA, i.e., a diagonal matrix with all poles, and
B0 = Id, while ∆A and ∆B, are block matrices with zeroes
on the diagonal and nonzero elements located in the first group
of rows and columns. The set of eigenvalues of the pencil
(A0,B0) consists of all poles, and the eigenvector associated
with the i-th diagonal element is a vector with all zeros, except
for the i-th element, which is equal to one. The perturbation
for a given pole is related only to the value of the residual.
Its computation is trivial as it requires only the evaluation of
the norm of a rather short vector consisting of nonzero off-
diagonal elements in the i-th row of the perturbation, namely
coupling matrices. If this residual is small, the eigenvalue is
not sensitive to the coupling and so it must be a ghost pole.
Deleting this pole is now trivial: it suffices to zero out the row
and column corresponding to this pole.

V. VALIDATION OF THE REGULARIZATION PROCEDURE

To validate the proposed identification and deflation proce-
dure, we have performed a number of tests. All computations
were carried out on a workstation with an AMD Ryzen 7
(3.39 GHz) processor and 64 GB RAM.

A. Test 1: Fifth-order filter with eleven variables and five local
PROMs

In this test, we consider a fully parametrized model of
the filter shown in Fig. 1, where the segmentation scheme
is also depicted. In constructing the local PROMs, we used
the following number of geometry instances corresponding to
the number of local bases in the subdomains: 2 for subdomain
Ω2, 3 for Ω3, 3 for Ω4, 3 for Ω5, and 2 for Ω6. The frequency
response of the filter in the 9-11 GHz band, obtained from
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Fig. 9. Waveguide filter response prior to regularization (a) and after
regularization (b).

Fig. 10. Perturbation bounds for all local eigenvalues in the PROMs in the
band of analysis obtained by the Bauer–Fike theorem.

the reduced-order system prior to regularization, is shown in
Fig. 9a.

There were fifteen poles in the frequency band of interest.
Fig. 10 shows the value of the perturbation bounds for all
local eigenvalues in the PROMs obtained by the Bauer–
Fike theorem. It is evident that all but one of the poles are
nonphysical. All the local PROMs were regularized by zeroing
out appropriate rows and columns in the reduced-order system.
The frequency characteristics for the filter after deflation are
shown in Fig. 9b.

The error bound may also be easily computed for out-
of-band eigenvalues. Based on this, 25 eigenvalues of the
PROM of subdomain Ω2 were identified as false and deflated.
Similarly, 46, 16, 48, and 28 eigenvalues were removed from
the PROMs in subdomains Ω3, Ω4, Ω5, Ω6, respectively. This
reduced the size of the reduced-order model for the entire
structure from 1456 to 1293. The time needed to obtain the
diagonal form of the reduced FE matrices was 0.42 s, while
computing the perturbation bounds for all the local eigenvalues
of the five PROMs took only 0.16 s. The overall time needed
to regularize all five PROMs, involving the elimination of 163
nonphysical poles, was just 0.58 s. This is much faster than
regularization based on Ritz pairs, where the deflation of only
two nonphysical poles in just one PROM for subdomain Ω4

took 6.4 s.
We have also calculated the poles inside the band of interest

for the entire structure after deflating the nonphysical poles
in macromodels. This resulted in five values: 9.7660, 9.8123,
9.9453, 10.0761, 10.1579 GHz, that are consistent with the

Fig. 11. Dual-mode filter segmented into five subdomains. The dimension of
the structure can be found in [1].

poles determined for the full-order system given in the first
column in Table III.
B. Test 2: Dual-mode filter with six design variables and three
local PROMs

In the second test, we considered the dual-mode waveguide
filter shown in Fig. 11. The frequency band of interest was
11.4–13.4 GHz and was extended well beyond the passband
of the filter. The structure was segmented into five subdomains:
Ω1, Ω2, Ω3, Ω4, and Ω5, as detailed in Fig. 11. Local mul-
tivariate reduced-order models were created for subdomains
Ω2, Ω3 and Ω4, where the lengths of four tuning screws and
the lengths of the two arms of the cross-shaped iris were
regarded as parameters. In order to construct the PROMs,
three local bases associated with three different geometries
were used in both Ω2 and Ω4, while two bases were used in
Ω3. This resulted in nonphysical poles of the PROM, which
can be seen in the frequency response shown in Fig. 12a. As a
matter of fact, there are many spikes but, interestingly enough,
some of them are legitimate, and occur also when the filter is
analyzed frequency-by-frequency using standard FEM, while
other are bogus. True spikes are due to higher order modes
of filter cavities, while the rest is due to PROMs. Without
a good regularization procedure it would be impossible to
distinguish one category of spikes from the others and to
remove nongenuine poles.

Computing the resonant frequencies of the reduced-order
model involving three local PROMs resulted in 57 values in
the band 11.4–13.4 GHz, of which only 17 are true resonances.

Next, the local reduced matrices were diagonalized one
by one and the residues defined in (17) were computed.
Fig. 13 shows the residues computed for all eigenvalues in
the band of analysis. From Fig. 13, it is apparent that there
are multiple nonphysical resonances with residues below 10−2,
which should be deflated.

However, it is also worth observing the residues of all
the poles, including the out-of-band ones. Fig. 14 shows the
residues of all eigenvalues of the local PROM up to 40 GHz.
Based on the Bauer–Fike theorem, 42, 47 and 50 resonances
have been identified as nongenuine in subdomains Ω2, Ω3

and Ω4, respectively, i.e., the resonances with residues below
10−2 in Fig. 14. The scattering parameters computed for
the deflated reduced-order model are presented in Fig. 12b.
Good agreement with the reference filter response is obtained.
In order to further validate the quality of the regularized
PROM, the resonances of the global model after deflation were
computed, and this resulted in 17 resonant frequencies in the
band of analysis, corresponding to the poles of the admittance

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


11.4 11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4

frequency (GHz)

-120

-100

-80

-60

-40

-20

0
|s

1
1
|,
 |
s

2
1
| 
(d

B
)

|s
11

|

|s
21

|

(a)

11.4 11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4

frequency (GHz)

-80

-60

-40

-20

0

|s
1

1
|,
 |
s

2
1
| 
 (

d
B

)

|s
11

|

|s
21

|

(b)

Fig. 12. (a) Scattering parameters computed with the FEM-PMOR technique:
The effect of nonphysical resonances in the band. (b) Scattering parameters
obtained for deflated ROM—good agreement with the results obtained with
direct FEM analysis.
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Fig. 13. Perturbation bounds for eigenvalues of the PROMs in frequency
band of analysis.

matrix of the model with no local PROMs, and where there
were no nonphysical resonances.

VI. CONCLUSIONS

A problem relating to artifacts that occur in parametrized
model order reduction using subspace projection has been
discussed. It has been shown that these artifacts, which take
the form of spikes in the frequency characteristics, are a result
of nonphysical poles of the transfer function that emerge if
a parametrized model is created by projecting the original
system of equations onto a subspace spanned by a set of
vectors, when this subspace is formed by combining into a
single basis several bases created by sampling a parameter
space. A simple technique using the Bauer–Fike theorem was
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Fig. 14. Perturbation bounds for all eigenvalues of the PROMs up to 40 GHz
- 139 eigenvalues below 10−2 have been deflated from the local PROMs.

proposed to remove unwanted poles and its efficiency was
validated on problems involving bandpass filters.

APPENDIX
THE DIAGONALIZATION OF MATRICES

We consider a set of linear equations in the form

(Γ + s2C)x = b (25)

with both matrices Γ,C being symmetric and C positive
definite. We define x̃ = C1/2x. To find the square root of
the matrix C, we compute its eigendecomposition

C = WΣWT , (26)

where Σ is a diagonal matrix of eigenvalues of C and W is
an orthogonal matrix containing eigenvectors of C. Then

C1/2 = WΣ1/2WT , (27)

where Σ1/2 is a diagonal matrix with the square roots of the
eigenvalues of C on its diagonal.

We now rewrite (25) as(
ΓC−1/2C1/2 + s2C1/2C1/2

)
x = b, (28)

where
C−1/2 = WΣ−1/2WT . (29)

Since x̃ = C1/2x, the multiplication by C−1/2 gives rise to(
C−1/2ΓC−1/2 + s2Id

)
x̃ = C−1/2b. (30)

We now denote A = C−1/2ΓC−1/2 and perform a spectral
decomposition of the matrix A:

A = VAΛVT
A, (31)

where Λ is a diagonal matrix of eigenvalues of A and V is
an orthogonal matrix containing eigenvectors. With this result,
we obtain

VA

(
Λ + s2Id

)
VT
Ax̃ = C−1/2b. (32)

Finally, left multiplication by VT
A gives(

Λ + s2Id
)
VT
AC1/2x = VT

AC−1/2b. (33)
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