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In the introduction, possible ways of reusing energy from recuperation are presented. Next, the paper investigates the possibility of 
using regenerative braking in the range allowed by the detailed timetable by adopting the method of transferring the recovered 
electric energy directly to the catenary and immediate use of this energy by another train at the same power section. 
In the main part of the work, it is shown, that the use of energy recovered from regenerative braking can be optimized by controlling 
the arrival time of the train to the station within the range allowed by the detailed timetable. The possibilities of using the adopted 
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1. Introduction 

The electricity recovered in the recuperative braking process can be used in many ways. Among them we can list 
[1–3, 5–8, 10, 13, 16, 20]: 

• Use directly on non-traction vehicle needs, such as lighting, air conditioning, etc., 
• Storage in stationary or onboard energy storage devices, and then use at the time of increased demand, 
• Transmission of recovered energy back to the national power grid, 
• Transfer of recovered energy back to the catenary, given the possibility of its immediate absorption by another 

vehicle in the acceleration phase. 

Each of the above methods has some advantages and disadvantages [6]. Therefore, it is not possible to clearly 
indicate the best method of using energy recovered in the recuperative braking process. Nevertheless, it should be 
noted that only the transmission of recovered energy directly to the catenary and the immediate use of its surplus by 
other vehicles is a method that can be considered cost-free in the context of infrastructure. This is conditioned by the 
existence of a modernized railway infrastructure and the operation of modern trains on it. In order to increase the 
efficiency of using the recovered energy directly by other vehicles, it is also necessary to adjust the timetables by 
introducing a criterion corresponding to the effectiveness of recuperation. This has been emphasized in many 
publications, among others in [9, 11, 19, 21]. 

Optimal use of energy from recuperative braking on metro lines or suburban trains may lead to reduction in the 
demand for traction electricity by 3 to even 30% [4, 13, 21]. In the case of not using any methods that allow for using 
recuperated energy, all excess energy recovered in the electrodynamic braking can be irretrievably lost in the form of 
heat on resistors. 

2. Energetic cooperation of trains 

2.1. Method assumptions 

In order to use energy from recuperation by another vehicle, it is necessary to transfer energy recovered during 
braking back to the catenary. Another necessary condition is the existence of such state of railway traffic, in which at 
least one vehicle recuperating energy – braking (B1) – and other one which consuming energy – accelerating (A1) – 
are located on the same section of the traction power network (Fig. 1) [12]. 
 

 

Fig. 1. Assumptions of transfer of recovered energy back to the catenary, 
given the possibility of its immediate absorption by another vehicle in the acceleration phase. 
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Synchronizing the accelerating times and braking of several different rail vehicles by optimizing the timetable can 
be a cheap and effective solution that allows maximum use of energy from recuperation braking. This solution not 
only has a direct impact on the traction energy consumption, but also reduces the occurrence of energy peaks by 
reducing simultaneous start-ups of several trains. The greatest effects of the above method can be achieved in a dense 
network of urban rail transport where the synchronization of acceleration and braking times does not require significant 
shifts in the timetable of suburban trains, metro or tram trains [37]. 

2.2. Literature review 

The idea of optimizing existing timetables in order to increase the possibility of using recovered energy in the 
interchange between vehicles was quoted by many authors. 

In 2004, Pazdro et al. [4] showed that proper traffic control in Warsaw's metro or "Tricity's" suburban rail with 
using electrodynamic braking at the energy return to catenary may reduce the demand for electricity by up to 30% 
compared to the situation without regenerative braking and no optimization traffic organization. 

In 2010, Nasri et al. [11] proposed a timetable optimization method based on the use of genetic algorithms using 
technical reserve time to maximize the use of recuperated energy. In their work, regarding the metro system, they 
showed that by using the proposed optimization it is possible to save up to 14% of traction energy. 

In 2011, Pena-Alcaraz et al. [13] proposed a new timetable for Madrid's third metro line based on solution the 
mixed-integration programming (MIP) of the optimization problem. A week after the implementation of the new 
timetable, the traction energy consumption balance improved by 3%, and according to the authors of this method, 
there is a potential for further improvement by a further 7%. 

In 2014, Yang et al. [21] formulated a two-objective integer programming model with headway time and dwell 
time control. They designed a genetic algorithm with binary encoding to find the optimal solution. and conducted 
numerical examples based on the operation data from the Beijing Yizhuang subway line of China. Their results show 
that the proposed model can save energy by 8.86% in comparison with the current timetable. 

The efficiency of regenerative braking in the variant of energy use directly between vehicles can be also increased 
by [18]: 

•  elongation length of power sections, which will increase the probability of existing the braking cycles and energy 
consumption of several trains in the same time, 

• reducing losses and voltage drops in the energy transmission path by reducing the resistance of catenary, 
• additional use of energy storage for excess electric energy, 
• increasing the voltage difference between the braking vehicle pantograph and the nearest power substation. 

3. The train energetic cooperation efficiency optimization 

3.1. Model assumptions 

In contrast to models [11, 13], in the presented model, it was proposed to control the time of arrival of a rail vehicle 
to the station (by changing the train speeds v={vA, vB}) within the arrival time tEB(v)ϵ<TP1,TP2> allowed by the 
timetable. Thus, it is possible to distinguish three variants in which the time of departure of the train A from the station 
does not change, and there takes place the controlled shift of time of arrival of the train B to the same station (Fig. 2). 
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Fig. 2. dependence of using recuperation energy on changing arrival time of the train to the stop. 
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Taking the above consideration into consideration, the energy recovered during recuperation can be used taking 
into account the energetic cooperation of a trains pair in a situation where: 

( ) ( ), ,B A A B A A
SB SA EA EB SA EAt t t or t t t      (4) 

The breaking point of the train B is closely related to the train speed in travel between the stations and can be 
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braking will occur at higher speeds. 

Therefore the main component of the objective function is proposed: 

minP RSE EE = − →     (5) 

where: 
• EP = the real value of the energy consumed during the passage of the train B and the passage fragment of the 

train A, 
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where φ is the coefficient from the range <0,1> depends on the losses incurred in the process of energy transmission 
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The purpose of the algorithm will be to find such an actual time of arrival t*EB of the train B the stop for which: 
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where D denotes the time interval to which the actual time of arrival of the train B may belong, i.e. tEB(v)ϵ<TP1,TP2>. 

Assuming that the time of the actual arrival of the train B to the stop and the amount of recoverable energy are 
strictly related to the speeds of both trains on the analyzed section then it can also be noted that: 
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where vA and vB specify fixed train velocities outside of the accelerating and braking phases with which train A and B 
passage between two stations take place, and DA and DB represent the allowable speed range guaranteeing adherence 
to scheduled arrivals times. 

To solve the above optimization task (11 and 12) the so-called Firefly Algorithm (FA). It is dedicated to the problem 
of continuous optimization with constraints, i.e. the problem of minimizing the cost function in the form of F(x) with 
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Taking the above consideration into consideration, the energy recovered during recuperation can be used taking 
into account the energetic cooperation of a trains pair in a situation where: 
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where φ is the coefficient from the range <0,1> depends on the losses incurred in the process of energy transmission 
over a distance s resulting among others from the resistance of catenary contact lines. The coefficient value was 
assumed φ(s)=0.9 for energy transmission over short distances (in the station area). 

Another criterion that should be included in the multi-criteria optimization process in the context of the recovery 
braking analysis was also considered, therefore has been introduced sub-function as: 
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where ER is the whole energy recovered during the recuperative braking of vehicle B. This energy can be used for 
traction and non-traction purposes. 

Considering the above, a global cost function of the character's purpose has been proposed as: 
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where vA and vB specify fixed train velocities outside of the accelerating and braking phases with which train A and B 
passage between two stations take place, and DA and DB represent the allowable speed range guaranteeing adherence 
to scheduled arrivals times. 

To solve the above optimization task (11 and 12) the so-called Firefly Algorithm (FA). It is dedicated to the problem 
of continuous optimization with constraints, i.e. the problem of minimizing the cost function in the form of F(x) with 
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additional conditions imposed on x [22, 23]. In the optimization problem under consideration, the variable x denotes 
a two-dimensional variable x=(vA,vB). 

4. Results 

The model presented above has been implemented in the Matlab computing environment. Then, the efficiency of 
energy recuperation for the selected part of "Tricity's" suburban rail on line No. 250 was optimized. Sample simulation 
results for selected stops are shown in table 1. 

Table 1. Results of optimization using the FA algorithm for "Tricity's" suburban rail on line No. 250. 

Train No. F(vA*,vB*) EP [kWh] ER [kWh] ERS [kWh] Arrival time tB
EB 

The name of the stop: Gdynia Orłowo 

59716 95719 9.3757 18.3182 9.1659 7.0043 7:13:27 

59606 95721 9.3671 18.3029 9.2190 7.1109 7:28:28 

The name of the stop: Gdynia Cisowa 

95601 59710 8.4376 15.6092 7.9193 6.1607 5:58:03 

95757 59760 7.4898 14.0660 7.8543 5.3625 14:28:25 

95759 59816 6.2017 8.8120 5.6043 0.0780 15:09:01 

95633 59612 7.2853 13.7099 7.9012 5.0299 15:20:24 

95761 59766 7.0807 13.3286 7.9514 4.5986 15:29:23 

Based on the simulation results from optimizing of the energy efficiency of energetic cooperation of trains  in the 
stops areas on exemplary two-track railway line using the FA algorithm, it was found that: 

• the average of global function was equal F(vA*,vB*)=7.8826, 
• the average energy required to perform the analysis of selected part of drive was equal to EP=15.3863 kWh, 
• the average value of energy recoverable in the recuperation process was equal ER=8.7745 kWh, 
• the average value of energy that can be used during energetic cooperation of a train pair was equal 

ERS=5.7555 kWh. 

The obtained results allow to approximate also economic benefits resulting from the application of precise arrival 
times and the use of energetic cooperation of trains pairs at all possible stops. Knowing that the cost of 1 MWh of 
traction electricity is about 65.8 EUR, and according to the analysis during the year, the energetic cooperation can 
occur between 144540 pairs of trains, with the average using recuperative energy of 
5.3 kWh / pair of cooperation train in the presented way can save the amount of 50,406 EUR. 
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additional conditions imposed on x [22, 23]. In the optimization problem under consideration, the variable x denotes 
a two-dimensional variable x=(vA,vB). 

4. Results 

The model presented above has been implemented in the Matlab computing environment. Then, the efficiency of 
energy recuperation for the selected part of "Tricity's" suburban rail on line No. 250 was optimized. Sample simulation 
results for selected stops are shown in table 1. 

Table 1. Results of optimization using the FA algorithm for "Tricity's" suburban rail on line No. 250. 

Train No. F(vA*,vB*) EP [kWh] ER [kWh] ERS [kWh] Arrival time tB
EB 

The name of the stop: Gdynia Orłowo 
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Based on the simulation results from optimizing of the energy efficiency of energetic cooperation of trains  in the 
stops areas on exemplary two-track railway line using the FA algorithm, it was found that: 

• the average of global function was equal F(vA*,vB*)=7.8826, 
• the average energy required to perform the analysis of selected part of drive was equal to EP=15.3863 kWh, 
• the average value of energy recoverable in the recuperation process was equal ER=8.7745 kWh, 
• the average value of energy that can be used during energetic cooperation of a train pair was equal 

ERS=5.7555 kWh. 

The obtained results allow to approximate also economic benefits resulting from the application of precise arrival 
times and the use of energetic cooperation of trains pairs at all possible stops. Knowing that the cost of 1 MWh of 
traction electricity is about 65.8 EUR, and according to the analysis during the year, the energetic cooperation can 
occur between 144540 pairs of trains, with the average using recuperative energy of 
5.3 kWh / pair of cooperation train in the presented way can save the amount of 50,406 EUR. 
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