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Abstract— Non-contact estimation of Respiratory Rate (RR)
has revolutionized the process of establishing the measurement
by surpassing some issues related to attaching sensors to a body,
e.g. epidermal stripping, skin disruption and pain. In this study,
we perform further experiments with image processing-based
RR estimation by using various image enhancement algorithms.
Specifically, we employ Super Resolution (SR) Deep Learning
(DL) network to generate hallucinated thermal image sequences
that are then analyzed to extract breathing signals. DL-based
SR networks have been proved to increase image quality in
terms of Peak Signal-to-Noise ratio. However, it hasn’t been
evaluated yet whether it leads to better RR estimation accuracy,
what we address in this study. Our research confirms that
for estimator based on the dominated peak in the frequency
spectrum Root Mean Squared Error improves by 0.15bpm for
8-bit and by 0.84bpm for 16-bit data comparing to original
sequences if hallucinated frames are used. Mean Absolute
Error is reduced by 0.63bpm for average aggregator and by
2.06bpm for skewness. This finding can enable various remote
monitoring solutions that may suffer from poorer accuracy due
to low spatial resolution of utilized thermal cameras.

I. INTRODUCTION

Respiratory rate (RR) is one of the most critical vital sign
indicating changes of the physiological status of the subject
[1]. Conventionally, RR is obtained through various wires
and electrodes attached to a body, yet non-contact estimation
of RR from thermal image sequences has revolutionized the
process of establishing the measurement. With the means of
image processing techniques, estimation of RR in various
challenging conditions (e.g. in preterm infants, traumatized
or burned patients, as well as in telemedicine applications)
became more feasible. This is because adhesive electrodes
or thoracic belts used to hold a sensor can cause epidermal
stripping, skin disruption and pain in infants [2] and they
do not stick to burns or bloody surfaces [3]. Also, a proper
placement of electrodes on home-monitored patients may be
difficult without the assistance of a specialist, and more im-
portantly, may influence the physiological parameters being
measured. The use of a thermal camera eases the setup of
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RR monitoring system and helps surpassing issues related to
attaching sensors to a body.

In home-based solutions the cost is an important factor
influencing the choice of data acquisition hardware. Even
though recent advances in heat-based imaging have made
thermal cameras more compact and affordable for commer-
cial applications, the resolution of images is still much lower
than in visible light spectrum, e.g. recent attempts to RR
extraction utilized 1024x768 [2], 640x480 [4] 320x240 [5],
or even 80x60 [6] images. Although low resolution data have
been proved to provide sufficient RR estimation accuracy, we
believe that by applying computer vision algorithms aimed
at image enhancement, results can be further improved.

In particular, the aim of this study is to evaluate whether
accuracy of non-contact RR estimation can be increased by
generating super resolved (SR) thermal image sequences
using deep neural networks (DNN). To the best of our
knowledge, this is probably the first attempt to extract respi-
ratory signal from hallucinated thermal faces, generated with
DNN. We also perform additional experiments to determine
if performance degrades with simulated increase of a distance
from the camera. Additionally, the proposed super-resolution
DNN-based solution for RR estimation is compared with
Eulerian Video Magnification (EVM), the algorithm already
successfully used for enhancing breathing signal [7], [8].

The rest of the paper is structured as follows: Section II
overviews SR deep networks aimed at image enhancement.
In Section III we describe methods used to collect and gen-
erate sequences, from which RR was extracted. Preliminary
results of breathing rate estimation accuracy are presented in
Section IV and discussed in Section v. Finally, Section VI
concludes the paper and provides ideas for further studies.

II. STATE OF THE ART

Application of Convolutional Neural Networks (CNN) to
Super Resolution (SR) task is a relatively new idea. The
pioneer work in this area dates only a few years back with
the invention of the model called SRCNN [9], which allows
for achieving the state-of-the-art restoration quality, while
representing all components using a single CNN to preserve
a lightweight structure and jointly optimize all layers. Since
then, DNN-based solutions have been continuously refined
to further improve accuracy. Kim et al. introduced Deeply-
Recursive Convolutional Network (DRCN) which utilizes
skip connection that correlates low resolution (LR) input
with high resolution (HR) ground-truth data, what helps
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Fig. 1: The flow of applied methods. The RR was estimated from all
sequences using the same ROI, selected from the original sequence.

with restoring detailed features [10]. In addition, recursive-
supervision helps to minimize the exploding/vanishing gra-
dients problem. Further modifications to SR included ap-
plication of e.g. residual mappings and gradient clipping
(Deeply Recursive Resiudal Network (DRRN) [11]). Some
attempts to generate super-resolved thermal images using
deep learning (DL) have also been done. Zhang et al. [12]
proposed to feed high frequency information restored using
Comprehensive Sensing (CS) Theory to SRCNN-like model
structure to alleviate some fixed pattern noise present in the
output from CS. Almasari F. and Debeir O. [13] introduced
multimodal RGB-thermal fusion model that integrates com-
ponents from SRCNN with residuals. In later studies, Spatial
Transformer architecture was chosen because of its robust-
ness with handling high-level variances of thermal image
patterns and good performance on low spatial resolution data
[14]. Other state-of-the-art CNN architectures also served as
the inspiration for DL SR thermal enhancement solutions,
e.g. SqueezeNet based Thermalnet [15], denoising CNN
[16] which employs residual blocks, similarly to DRCN
[10], or VSRnet-inspired CNN that simultaneously extracts
features from visible and near infrared image [17]. Although
described models improve image quality in terms of Peak
Signal-to-Noise ratio (PSNR) and Structural Similarity index
(SSIM), it hasn’t been evaluated yet whether higher values
of these metrics lead to better RR estimation accuracy.
Thus, our research differs from already published studies
in the following ways: i) we use SR DNNs for thermal
face hallucination task, what is probably the first attempt
to this problem. Pixel values changes caused by vital signs
may be very subtle, so it’s important to evaluate whether
SR models are able to restore these detailed components. ii)
RR is extracted from super-resolved sequences to determine
whether higher PSNR lead to better RR estimation accuracy.

III. METHODOLOGY

The flow of the methods applied in the study is presented
in Fig. 1 and described in details in the following subsections.

A. Data Collection

Experimental trials were performed on data collected from
40 volunteers (19 male, 21 female, age: 34.1±12 ) to verify
the proposed SR method in the real practice. Subjects were
asked to breath through a nose, while looking towards the
camera, placed approximately 120cm from the volunteer. In

Fig. 2: Subject pointing finger upward (inhalation) and down
(exhalation); visible change of color in nostrils: darker for inhalation
(colder air), lighter for exhalation (air warmed up by a body).

addition, volunteers were instructed to point finger upward
during inhalation and down during exhalation in order to
obtain the reference value of breaths per minute (bpm) by
calculating the number of finger flexion (see Fig. 2). 2-minute
sequence was recorded for each volunteer using thermal
camera Flir SC3000 (320x240 spatial resolution, 30 FPS,
temperature range from -20°C to +80°C, Camera Field of
View 20°, set measuring range 24.9-36.9°C, measurements
in the High Noise mode (noise reduction). The collected
data, represented as arrays with digital values of 14-bit
resolution, were used to form output images by assigning
shades of gray to the intensities values. Since conversion
from intensities with higher than 8-bit resolution to 8-bit
color models is lossy, the contrast between regions may
be reduced, eliminating some important details. Thus, in
this study, we generated 8 and 16-bit output images from
all acquired data to preserve detailed facial components.
Conversion was done by mapping minimum and maximum
values in the frame to the output ranges (0-2bits).

B. Image Quality Enhancement and Degradation

Image enhancement was performed in a twofold manner:
using Eulerian Video Magnification (EVM) [18] and Deep
Neural Networks: DRCN [10], DRRN [11] and a custom
model optimized for thermal imagery. EVM algorithm allows
for reveling subtle color changes, invisible to a naked eye.
For this reason, a sequence is at first filtered, and then
amplified. In our study, the filtering frequency range was set
individually for each volunteer. Given the reference value of
breaths per minute bpmref , we set the filtering frequency
range as bpmref/60 rounded down and up to first decimal
position for the left and right range margins(i.e. for bpm=14,
the filtering range was 0.2-0.3Hz). The amplification was set
to 20, as verified in [6].

For SR DNN models training we extracted every 300th

frame from all sequences to ensure data variability and then
divided them randomly into training, test and validation
subsets (70:15:15 split, total of 480 images). Before feeding
frames to the models, we followed a standard procedure
applied in Super-Resolution algorithms for simulating degra-
dation of image resolution [9]. At first we down-scaled
and then up-scaled all images by a factor of 2 using
bicubic interpolation. As a result, we generated sequences
(LR inputs) that simulate loss of resolution due to the
increased distance from the camera. Original high resolution
(HR) images were used as ground-truth data, against which
the output from SR DNN models was compared during
training. The objective was to teach the model to generate

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


the super-resolved outputs from LR inputs as similar to HR
data as possible. In addition, we also adjusted SR CNN
architecture. Our modification was based on the fact that
thermal images are characterized by blurring effect and lower
contrast between adjacent regions due to the heat flow, hence
relatively shallow feature extraction step (DRRN uses only
1 convolution, DRCN uses only 2 convolutions at this step)
may not be sufficient. Intuitively, widening of the receptive
field should lead to better results on thermal imagery. Taking
it into account, the changes proposed by us include residual
blocks added not only to non-linear mapping, as in DRRN,
but also to the feature extraction part (see Fig. 3). Besides
residuals, we also applied recursions to ease the training
process. Moreover, in our model weights are shared across
all recursions, so the number of parameters did not increase,
while the receptive field was covering more distant features.

DRCN[10] and DRRN[11] were trained using their default
hyperparameters, with the except of the number of filters
that for both models was set to 96 filters of a size 3x3
to ensure fair comparison. The selection of the number of
recursions D, number of residuals in feature extraction part
E, and number of residuals within each recursion U for the
modified architecture proposed by us was performed using
random search (from D : {1, 3, 5, 7, 9}, E : {1, 3, 5, 7, 9},
U : {1, 3, 5, 7, 9} sets). Remaining parameters were set as:
41x41 training data crop with a stride of 21, Adam optimizer,
momentum 0.9, weight decay 0.0001. Initial learning rate
was set to 10−2 and reduced by an order of magnitude after
5 subsequent epochs, for which the validation error does
not decrease. In total, more than 60 configurations of the
proposed network were trained by us. Once training of all
networks was done, PSNR and SSIM metrics calculated for
test sets were used to determine which architecture is the
most suitable for thermal data. Preliminary results showed
that proposed SR CNN with configuration D=9, E=3, U=0
outperformed DRCN by 16dB on 8-bit data and by 14.1dB
on 16-bit data, achieving PSNR of 47.49dB and 48.05dB on
8 and 16-bit sequences receptively; the performance gain of
the proposed network comparing to DRRN was 4.4dB and
3.8dB on 8 and 16-bit data. Thus, for further analysis we
use super-resolved sequences generated with the proposed
model. After data generation step, 8 sequences for each of
40 volunteers were prepared (original 8 and 16-bit (O8 and
O16), bicubic 8 and 16-bit (B8 and B16), super-resolved 8
and 16-bit (S8 and S16), EVM 8 and 16-bit (E8 and E16)).

C. Breathing Rate Estimation

For further analysis, short data segments from the begin-
ning of each sequence were selected ( 400 samples) to reduce
possible motion artifacts. At first, two regions of interest
(ROI) were manually selected on the original 8-bit sequence:
small area on the nostrils and bigger region that was covering
mouth, nose and cheeks of a volunteer. As verified in [4],
the average operator used to aggregate pixel values is more
sensitive to the selected area. The averaging operation, if
applied to many pixels, smooths the changes generated by
the respiration and becomes practically useless. On the other

Fig. 3: Proposed modification to widen the receptive field. Blue
blocks - additional residuals introduced to the core DRCN architec-
ture (conv-convolution, BN-batch norm, relu-activation function).

hand, the skewness operator is not sensitive to the area size,
as long as it covers the nostrils. Therefore, the selected
smaller area was used together with the averaging operation,
while the skewness operator was applied to the bigger areas.
Raw signals obtained from V channel with both aggregation
operators were then filtered with a moving average and the
4th-order high pass Butterworth filters. For the Butterworth
filter, the cutoff frequency was set to 0.125Hz for baseline
removal. In this study, estimator based on a dominated peak
in a frequency spectrum (eRRsp) was applied. The applied
respiratory estimation method was previously tested in [5],
[4]. After that, the same procedure was applied to all other
sequences of each volunteer, without changing previously
marked ROIs. In this way, we compare how breathing signal
patterns change after enhancing images and whether higher
bit resolution has influence on RR estimation accuracy.

IV. RESULTS

Table I presents Root Mean Squared Error and Mean
Absolute Error calculated for RR estimated from each of
the prepared thermal sequences vs. the reference bpmref

obtained by calculating the number of finger flexion. Two
aggregation operators were used: average (avg.) and skew-
ness (skew.) for eRRsp estimator. Fig. 4 shows the same
frame extracted from 4 prepared 8-bit sequences.

TABLE I: Accuracy metrics for RR estimation [bpm] (bold - best
result for each aggregator (agg.), original sequences not considered).

Agg. O8 O16 B8 B16 E8 E16 S8 S16
RMSE
avg. 4.13 4.97 7.39 7.09 4.79 3.40 3.98 4.13
skew. 4.46 4.85 6.66 6.58 7.19 7.00 4.42 5.34
MAE

avg. 2.28 2.68 4.88 4.64 2.77 2.32 2.14 2.28
skew. 2.13 2.56 4.33 4.14 4.64 4.45 2.58 3.57

Fig. 4: The same frame extracted from sequences used in the study.
From left: original, bicubic, SR, EVM.

V. DISCUSSION

Preliminary results of analysis performed for image en-
hancement methods showed that accuracy of RR estimation
can be improved by applying Super Resolution DNN. The
best result on 8-bit data was achieved for estimator based
on the dominated peak in the frequency spectrum applied
to signals constructed with averaging aggregator from super-
resolved sequences (RMSE reduced by 0.15bpm comparing
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to original data and by 0.81bpm comparing to Eulerian Video
Magnification (EVM)). For 16-bit sequences, EVM turned
out to be better than SR in terms of RMSE (0.73bpm), yet
considering Mean Average Error, that is less prone to out-
liers, the best results were achieved for SR (MAE=2.28bpm
vs. 2.32bpm for EVM). For the skewness, SR outperformed
EVM by 2.37bpm on 8-bit and by 1.66 bpm on 16-bit. It may
turn out, though, that for other RR estimators and datasets the
results will be different. Taking it into account, it is important
to perform further experiments on various sequences. This
will be addressed by us in further research.

As expected, degradation of quality with bicubic interpo-
lating led to decrease of RR accuracy by 2bpm (RMSE)
comparing to original data and 3bpm (RMSE) comparing
to SR. Thus, we can assume that higher Peak Signal-to-Noise
metric improves non-contact calculation of vital signs (PSNR
for SR was 47.49dB and 48.05dB, for bicubic 27.89dB and
27.81dB, on 8 and 16-bit sequences, receptively). Surpris-
ingly, the use of 16-bit sequences helped only in bicubic and
EVM cases (RMSE improved by 1.4bpm for EVM and by
0.3bpm for bicubic). This can be caused by the fact that both
of these algorithms create smoothed versions of input data
(Gaussian kernel in EVM and quality degradation in bicubic)
and representing it with higher resolution may be crucial
for RR estimation. Otherwise, some important pixel changes
caused by vital signs can be lost. The selection of ROIs was
done on original 8-bit sequences and regions were adjusted
to get the best signals from these inputs. Then, the same areas
were used for RR extraction from all other sequences to have
a fair comparison of influence of various degradation and
enhancement algorithms on RR estimation accuracy. Thus,
it may turn out that results can be further improved if ROIs
are selected directly on super-resolved sequences.

VI. CONCLUSION

The evaluation of applying DNN for improving accuracy
of RR calculation from low-resolution thermal sequences was
performed in this study. The preliminary results proved that
with SR estimation error can be reduced comparing to other
image enhancement methods, i.e. EVM. Thus, the proposed
solution can be considered as the state-of-the-art method for
improving robustness of remote monitoring of vital signs. On
the other hand, although the achieved accuracy was better by
applying SR algorithms, the error is still quite big (2-4 bpm).
Probable cause is the low resolution of utilized sequences.
Therefore, in the future work will focus on improvement
of these results. We will examine other SR DL models,
e.g. Generative Adversarial Network [19] and use object
detection on enhanced inputs to avoid manual selection
of ROIs [20]. Another research focus will be automatic
selection of ROI and RR estimation from sequences where
volunteers perform some small motions, e.g. turn head.
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