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Abstract—Human-system interactions frequently require a
retrieval of the key context information about the user and
the environment. Image processing techniques have been widely
applied in this area, providing details about recognized objects,
people and actions. Considering remote diagnostics solutions, e.g.
non-contact vital signs estimation and smart home monitoring
systems that utilize person’s identity, security is a very important
factor. Thus, thermal imaging has become more and more
popular, as it does not reveal features that are often used for
person recognition, i.e. sharp edges, clear changes of pixel values
between areas, etc. On the other hand, there are much more
visible light data available for deep model training. Taking it
into account, person recognition from thermography is much
more challenging due to specific characteristics (blurring and
smooth representation of features) and small amount of training
data. Moreover, when low resolution data is used, features
become even less visible, so this problem may become more
difficult. This study focuses on verifying whether model trained
to extract important facial embedding from RGB images can
perform equally well if applied to thermal domain, without
additional re-training. We also perform a set of experiments
aim at evaluating the influence of resolution degradation by
down-scaling images on the recognition accuracy. In addition,
we present deep super-resolution (SR) model that by enhancing
donw-scaled images can improve results for data acquired in
scenarios that simulate real-life environment, i.e. mimicking facial
expressions and performing head motions. Preliminary results
proved that in such cases SR helps to increase accuracy by
6.5% for data 8 times smaller than original images. It has
also been shown that it is possible to accurately recognize even
40 volunteers using only 4 images per person as a reference
embedding. Thus, the initial profiles can be easily created in a
real time, what is an additional advantage considering a solution
setup in a new environment.

Index Terms—face recognition, thermal imagery, deep neural
networks, image enhancement

I. INTRODUCTION

Human-system interactions frequently require a retrieval
of the key context information about the user and the en-
vironment. Apart from information acquired using various
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sensors, the context can be also provided by applying computer
vision algorithms, e.g. person, objects, or actions detection
and recognition [1]–[5]. The most challenging problems in
solutions that use the vision context are often associated
with poor lighting conditions [6] and security concerns [7].
Huang and Bian [8] addressed the illumination variations
by adopting Gamma correction, Difference of Gauss filtering
(DoG) and contrast equalization. Different approach proposed
in [6] applied illuminance-invariant features, such as edge
maps, Local Binary Patterns (LBP), Gabor wavelets, and local
autocorrelation filters. It has been also shown that face recog-
nition using the skin model represented in the HSV V color
space works robustly regardless of the lighting conditions [9].
The face overlap can be further improved by using brightness
control or by rejecting pixels with low channel values [10].

Yet, the preprocessing step used to address various illumi-
nations lead to the increase of the computational overhead
and in many cases do not work for all lighting conditions
[11]. Moreover, in visible light images, the privacy and ethical
concerns are still valid, especially for medical applications
and person monitoring solutions in smart environments. Thus,
thermal imagery is often utilized in these systems [12], as
it helps to secure privacy by representing objects as the
temperature distribution instead of high level features.

The important research question, though, is whether per-
son’s identity can be revealed from thermal images by using
Deep Neural Networks (DNN). Although feature representa-
tion in thermography is different than in visible light data,
DNNs have recently gained a lot of popularity due to their
human-like capabilities, so it is important to verify their
robustness in the thermal domain. Also, it is important to
determine whether various values of the image resolution have
influence on the accuracy of the face recognition task. Thus,
the aim of this study is to 1) verify the accuracy of deep
learning based person recognition using facial features embed-
ding extracted from thermal data and 2) evaluate the influence
of resolution enhancement and degradation on the utilized
biometrics. For embedding extraction, a model designed and
trained on data acquired in visible light spectrum was used.

© 2019 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.

Post-print of: M. Szankin, A. Kwasniewska and J. Ruminski, "Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition," 
2019 12th International Conference on Human System Interaction (HSI), Richmond, VA, USA, 2019, pp. 1-6, doi: 10.1109/HSI47298.2019.8942636.

https://doi.org/10.1109/HSI47298.2019.8942636


In this way, we determine whether it is possible to generate
a useful facial features representation from thermal data by
utilizing high frequency features learnt from RGB images.

The remaining of the work is organized into the following
parts: Section II overviews the work related to the face
recognition tasks using deep learning techniques. In Section
III we present methods used in the study, including utilized
datasets and face recognition models. The preliminary results
are presented in Section IV and further discussed in Section
V. Finally, the paper is concluded in Section VI.

II. RELATED WORK

Face recognition is a well studied problem. Since 2000s it
has been actively developed reducing the training error rates
by 3 orders of magnitude [13]. Various algorithms have al-
ready been proposed to solve face recognition problems, from
relatively simple geometric feature based SVM [14], Principal
Component Analysis (PCA) [15] and Histograms of Oriented
Gradients (HOG) [16] to deep neural networks like DeepID3
[17] and DeepFace [18]. In this research we focus on the
artificial intelligence field of this study, deep learning specif-
ically. Thanks to the recent technological developments, both
in software and hardware, the systems nowadays can achieve
human-like performance in various cognitive tasks, including
person recognition [19]. One of the main breakthroughs of
face recognition that became state-of-the-art architecture was
developed by F. Schroff et al. [20]. Contrary to the previous
solutions [21] [18] based on fully connected classification
layers FaceNet directly utilizes embedding optimizing the
model using triplet loss function. As the model is based on
learning the Euclidean embedding per image, the similarity
between various faces can be calculated as a L2 distance
between vectors representing faces - the lower the distance the
more similar the two faces are. Once the vectors are generated
they can be clustered together using standard machine learning
algorithms, like k-NN, or classified using k-means.

The face recognition methods verified for visible light
images were applied to recognize faces from thermal images
(acquired in Short/Medium/Long Wave Infra Red ranges -
SWIR/MWIR/LWIR). The traditional, two-step approach was
typically used. First, characteristic features were extracted
and next, the feature vectors were used used in classifica-
tion/recognition. In [22] authors extracted texture features
using local binary descriptors (LBP), local ternary descriptors
(LTP), or differential LTP (DLTP). They applied their method
for the Equinox multimodal facial image dataset [23] obtaining
96% accuracy for SWIR images. The LBP features were also
used in [24] producing best results using Linear discriminant
analysis (LDA) on LWIR images. Thermal images represent
unique facial features related to temperature distribution. Due
to the heat flow in objects, we can observe smooth changes
between facial areas, resulting in low contrast and lack of high
frequency components. Thus, deep neural networks trained on
visible light images may not be sufficient for thermal data. In
this study we would like to evaluate if it’s possible to re-apply
these networks to another image domain.

Some studies on the impact of image resolution on face
recognition in visible light have been already conducted. As
studies done in [25] [26] indicate, for existing face recog-
nition algorithm to work the input resolution should have
the resolution of at least 32 by 32 pixels. To the best of
our knowledge, no such study exists for thermal data. In our
experiments we evaluated different scales (100%, 50%, 25%
and 12.5%) of the same image. The scaling was done after the
image was cropped with SSD detection network to show only
the facial region. As a result, the average resolution for the
lowest scale (12.5%) was 13.14±1.47px by 15.57±1.96px.
This study further evaluates whether it’s possible to recognize
person from thermal image of low resolution and if it can
be improved be utilizing Super Resolution algorithm. Super
Resolution already has been proven to be beneficial for non-
contact estimation of respiratory rate from thermal data [27].
We propose to further improve this pipeline by providing
face recognition system working on very small input images
achieving high accuracy, even when volunteers perform small
head rotations or mimic various emotions.

III. METHODOLOGY

A. Datasets

Experiments were carried out on two thermal face datasets.
First dataset that we evaluated, was created by us. This
dataset (hereafter referred as SC3000-DB) contains of 766
images grouped into 40 categories, each category representing
a single volunteer from a group of 19 males, 21 females,
age: 34.11±12 (19-20 images per volunteer). The sequences
were captured with the use of FLIR SC3000 thermal camera
capable of recording 30 Frames Per Second (FPS) with spatial
resolution of 320x240 in a noise reduction mode. The range
of temperature measurement is from -20°C to +80°C. Data
received with this camera is in 14-bit radiometric format,
which in this experiment was linearly down-scaled to 8-bit
greyscale PNG image format. The camera was placed on a
stationary tripod at the height of 112cm from the ground and
in a distance of 1.2m from the volunteer’s face. The volunteers
were asked to look directly in the camera for the time period
of 2 minutes. From gathered sequences every 180th frame
was saved to the SC3000-DB database to limit the number of
images that are too similar to each other.

To make the results of the experiment less biased towards
a single dataset, the IRIS [28] set was chosen as a second
database to reinforce the conclusions. The IRIS dataset con-
sists of images recorded with a help of 30 individuals (total of
4190 thermal images). What sets this dataset apart from our
own is that the volunteers were not focused on the camera,
instead they performed subtle head movements. On average
there are 11 images per head pose per volunteer. Additionally,
there might be differences in facial features representation, as
the dataset captures three different facial expressions: angry,
surprised, and laughing. The IRIS dataset was recorded with
the Raytheon Palm-IR-Pro camera with a spatial resolution of
320x240 and uncompressed bitmap as an output format.
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Fig. 1: Sample images from both datasets: SC3000-DB (top row) and
IRIS (bottom row).

Examples of thermal images from both datasets are pre-
sented in Fig. 1

Fig. 2: Architecture of the applied CNN-based model for enhancing
resolution of thermal images. Letter e denotes eth residual block (out
of 3) applied for extracting features that are then used to restore High
Resolution image from Low Resolution input. Letter d denotes dth

recursion (out of 9) used in the part of the network which aims at
performing non-linear mapping of extracted features to a vector used
for image reconstruction.

B. Face detection

As the images in the datasets used for evaluation of face
recognition often show more than just the face of the volunteer,
in the first step it was instrumental to crop the visible area of
the images to show only the region of face. To achieve this, the
SSD model with Inception V2 backbone [29] was re-trained
using transfer learning [30] on images from our database
(the images were split in 70:15:15 proportion into training,
validation and test sets). In order to tune hyperparameters,
we used the random search approach [31] to find the best
training configuration. It turned out that the best accuracy was
achieved for 40k training steps, batch size 32, initial learning
rate 0.004, learning rate decay steps 5000 and decay factor
0.95. The trained network achieved score of 84.1 ± 6% in
Intersection over Union (IoU) metric on SC3000-DB test set.
IoU is a popular metric used for evaluating object detection
system performance by comparing similarity between ground-
truth (GT) area and detected region (DR), defined as:

IoU =
GT

⋂
DR

GT
⋃
DR

(1)

For comparison we trained second model on IRIS dataset
using the same split proportions as for the SC3000-DB. On
testing set model achieved lower score of 79.4 ± 14%. For
further processing the first model was chosen as it promised
achieving better results. For next steps in the experiment we
extracted cropped faces from whole SC3000-DB and IRIS sets.

From all cropped faces 20% of images for each volunteer were
used to create personal profiles via facial feature extraction,
and the rest 80% was used to test face recognition accuracy.

C. Resolution degradation and enhancement

This study aims at evaluating the accuracy of person recog-
nition from thermal imagery of various resolutions. To achieve
this, we simulated resolution degradation by generating down-
scaled versions of original images from both databases. After
cropping images to facial areas, the images were scaled
down 2, 4 and 8 times. Resulting images were as small as
13.14±1.47px x 15.57±1.96px for the scale of 1/8. In this
way, we created similar images, as would be acquired by using
lower resolution thermal cameras.

Image enhancement was implemented by using Super Res-
olution (SR) Convolutional Neural Network (CNN). SR is a
task of generating a high resolution (HR) output from the given
low resolution (LR) image. The architecture of the model used
in this work to improve image resolution is presented in Fig.
2. Similarly to the Deeply-recursive Convolutional Network
(DRCN) [32], our model uses recursive blocks with shared
weights to create a deeper representation, known to achieve a
better performance [33] without introducing new parameters.
Yet, to address the problem of feature blurring in thermal
imagery, we decided to widen the receptive field by intro-
ducing residual blocks to the utilized CNN network. Weights
are also shared across residual blocks, so the number of model
parameters remains constant. By applying a set of residuals,
the receptive wield is widened, so theoretically the model is
able to solve the problem of contextual information spread
over larger image regions, what is present in thermography
due to the heat flow in objects. In addition, we also correlate
input to the network with the restored HR output by using the
skip connection. In practice, LR inputs are highly similar to
HR images, except some detailed features, so preserving this
relation by using the skip connection is helpful for enhancing
images [34]. To choose the number of residuals and recur-
sions, we randomly generated various network configurations
and trained it on both IRIS and SC3000-DB train subsets
(70% of images from each dataset used as a training set).
The training set was downscaled with a scale of 2 before
feeding images to the model. The hyperparameters were set as
proposed in the DRCN model [32], i.e. Adam [35] optimizer,
momentum 0.9, weight decay 0.0001, 96 filters of a size
3x3 each in all convolutional layers, all weights initialized
using the Xavier algorithm. Following [34], training data were
cropped to 41x41 patches with a stride of 21. From all trained
networks, we then selected architecture that was producing the
highest Peak-Signal-to-Noise Ratio (PSNR), i.e. 9 recursions
and 3 residuals. This model achieved PSNR of 47.49dB for
SC3000-DB and 34.93dB for IRIS. Corresponding LR sets
(after downscaling them with a factor of 2 using bicubic
interpolation) produced PSNR of 27.91dB and 29.4dB for
SC3000-DB and IRIS, respectively. For further experiments,
the trained model was utilized to generate enhanced versions
of low resolution thermal images.
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D. Facial feature extraction

Similarly to [19] we utilize facial features represented as
the vector of embeddings extracted from cropped images with
the use of FaceNet DNN architecture [20]. Yet, contrary to
this work we use larger embedding’s vector of size 512,
which improved by small margin the ability to capture more
subtle differences in the facial features as seen in the [20]’s
implementation in TensorFlow [36].

In this experiment we used model trained on VGGFace2
[37] facial images database. It is worth highlighting that
this database consists of images captured in the visible light
spectrum. In this research we wanted to validate whether
a model designed and trained on data with high frequency
features (e.g. edges, corners) clearly present in visible light
spectrum can be used to recognize face from thermal imaging.

E. Face recognition

In this step we tested two methods of comparing facial
features vectors. First approach used Support Vector Machines
(SVM) with linear kernel to find the class (person profile) for a
given input image. Profiles in the database are represented as a
list of all vectors calculated from the training images. Second
approach was based on the Euclidean Distance between vector
representations from the database profile and the input image.
This method required each of the user profiles to be stored as
a single vector. Thus, all vectors obtained when creating the
given user’s profile were averaged.

IV. RESULTS

TABLE I: Accuracy [%] of person recognition from test set images
(80% of all images); the reference embedding generated with 20%
of images

svm.LinearSVC (all)

test set
SC3000 (ours)
train set

IRIS
train set

orig. bicub.
50%

bicub.
25%

SR
(ours) orig. bicub.

50%
bicub.
25%

SR
(ours)

orig. 99.5 - - - 82.14 - - -
bicub. 50% - 99.17 - - - 81.33 - -
bicub. 25% - - 96.36 - - - 74.01 -
SR (ours) - - - 99.33 - - - 81.87
Euclidean (avg)

test set
SC3000 (ours)
train set

IRIS
train set

orig. bicub.
50%

bicub.
25%

SR
(ours) orig. bicub.

50%
bicub.
25%

SR
(ours)

orig. 99.66 - - - 63.48 - - -
bicub. 50% - 98.67 - - - 58.01 - -
bicub. 25% - - 90.42 - - - 57.68 -
SR (ours) - - - 98.84 - - - 60.85

The Fig. 3 shows a 2D representation of embedding vectors
acquired from images of original size and after down-scaling
them with a factor of 2, 4 and 8 for chosen ten volunteers.
Table I presents the accuracy of person recognition from
thermal images by comparing the input image from the test
set with with persons representations stored as a facial feature
embedding vector in the database. Various dataset transforma-
tion were evaluated in this study.

Fig. 3: 2D visualization of embedding vectors extracted from images
of a) original size, b) downscaled to 50%, c) 25% and d) 12.5% of
original size for first ten categories from SC3000-DB test set. High
dimensionality was reduced using t-Distributed Stochastic Neighbour-
ing Entities (t-SNE) [38] technique.

Fig. 4: Influence of resolution degradation and enhancement on
face recognition accuracy measured with Euclidean distance on IRIS
dataset.

The relation between the input image quality and the face
recognition accuracy is presented in Fig. 4 and Fig. 5. The
changes in image quality were introduced by first down-scaling
the images be a given factor, then up-scaling them back to the
original resolution. In this way we simulated low resolution
inputs that were fed to Super Resolution model for resolution
enhancement.

V. DISCUSSION

Preliminary results of the experiment presented in this
paper showed the feasibility of applying DNNs to the face
recognition task in the thermal domain. In this research we
have re-purposed the FaceNet model trained on RGB data to
a new imaging domain. Even though it was trained to extract
high frequency components, it was able to generalize well on
the thermal images. As a result of applying this model on
the chosen dataset, unique facial embeddings were extracted,
allowing to distinguish various volunteers with the accuracy
of 99.5% and 82.14% on SC3000-DB and IRIS datasets,
respectively, using SVM classifier.
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Fig. 5: Influence of resolution degradation and enhancement on face
recognition accuracy measured with Euclidean distance on SC3000-
DB dataset.

Satisfactory accuracy was achieved for Euclidean distance
as well but only for SC300-DB set (accuracy > 90% for
images downscaled by a factor of 4). For IRIS dataset, results
were much worse, producing accuracy of 63.5% for original
data and only 57.7% for bicubic interpolation with a scale
of 1/4. Also, Euclidean distance turned out to be worse than
SVM, while evaluating IRIS dataset. For our dataset, results
were similar regardless of the applied classification method,
what can be explained by a fact that images in SC3000-
DB were collected in strictly defined conditions resulting
in a reduced influence of involuntary movements and back-
ground noise. Furthermore, our data have uniform projection
from original 14bits to 8 bits, on which the experiment was
performed, which partially explains the accuracy difference
between these two datasets. In the future work we will assess
the accuracy on data of higher precision format.

The SVM method offers a variety of kernels for pattern
analysis. The choice of a proper kernel heavily depends on the
structure of data and the factors like the number of features
and the number of samples in the dataset. Our training dataset
consists of relatively small number of samples (only 20% of
images in each of the datasets were selected for volunteer’s
profiles - avg. of 4 images in SC3000-DB and avg. of 42 in
IRIS set), while containing a large number of facial features
in the extracted embedding.

It is noteworthy that both datasets were divided into 2-8
proportion for training and testing sets, respectively. In this
work we were able to prove that even with a small number
of images used for creating user profiles the DNN is able
to recognize the same person from testing images with high
accuracy of 99.5% and 82.14% for SC3000-DB and IRIS,
respectively. Also, both datasets contain images that were
gathered within short time span. This might have had an
impact while measuring accuracy of facial recognition, as the
data that was used for creating user profiles may be uniform
with test data. As a part of the future work we would like
to include experiments that include data gathered over longer
time spans, which may also result in creation of a new thermal
database for facial recognition.

Furthermore, as can be seen on Fig. 3 different classes

can be linearly separable when considering multiclass clas-
sification with a one-against-one approach. Linear kernel also
have the performance advantage over the non-linear ones,
as it’s simpler in terms of computations. Thus, we used a
linear kernel that is often recommended when number of
features is larger than number of observations. The performed
experiments proved the robustness of the chosen kernel. The
achieved accuracy of person recognition was very high, es-
pecially for our dataset that even after reducing resolution 4
times still produced results > 96%.

From the Fig.3 we can also observe influence of resolution
degradation on classes separability. In can be seen on the
approximation that the original data can be easily divided into
separate clusters. With the resolution decrease some of the
features get smoothed resulting in a class boundary that often
overlaps with other clusters, making it sometimes harder to
achieve accurate classification. To help counter the issues with
inputs of low resolution we applied Super Resolution model to
all inputs smaller than the original one. As can be seen in Fig.
4 the accuracy of face recognition has improved when Super
Resolution was applied to the up-scaled input images from the
IRIS dataset that contain motion, facial expressions and some
irregularities. On the SC3000-DB dataset that included less
to no dynamic movements the improvements were minimal.
This observation has been proved by the results presented in
the Table I. However, considering real-life scenarios, it’s hard
to enforce on the potential users to remain motionless for a
longer period of time. The real life scenarios could include
remote monitoring of vital signs [39] and user’s authentication
[40] e.g. to smart home devices. In this cases application of SR
seems crucial to achieve high accuracy. Moreover, as shown
in [27] SR can help not only with improving accuracy of the
face recognition, but also of the breathing rate evaluation. By
combining both systems, we could potentially build a home-
based patient monitoring system that is able to track user-
specific vital signs changes during daily activities.

VI. CONCLUSION

This study aimed at verifying whether image resolution
has influence on person recognition task using facial features
embedding gathered from thermal imagery. In addition, it was
evaluated if model trained to extract high frequency compo-
nents (on RGB images) will be able to generate a meaningful
person embedding from thermal data that is characterized by
blurring and smoothness due to the heat flow in objects. The
preliminary results proved the need to enhance image resolu-
tion in order to achieve a high accuracy of person recognition.
The presented Super-Resolution solution allowed to improve
results of person recognition from images downscaled with
bicubic interpolation by 8 % for the resizing scale of 4 on
the IRIS dataset. Yet, for our database that assumed strictly
defined measurement conditions (no movements, volunteer
loking toward the camera) we did not observe any gain of
performance.

Thus, we would like to perform similar research on data
collected by us but during various measuring scenarios, e.g.
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volunteers turning their head horizontally and vertically. In
future study, we would also like to evaluate the proposed
approach of person recognition on images with original bit
resolution (14-bit represented as 16-bit image to avoid lossy
conversion to 8-bit data).
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