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Abstract—We consider the problem of estimating the elevation
angle in the presence of multipath. The proposed method belongs
to the class of maximum likelihood-like estimators and employs
a modified specular reflection model that accounts for the uncer-
tainty of the steering vector by assuming that they are subject to
unknown deterministic perturbations with bounded norms. The
analysis, performed using convex optimization methods, allows
us to obtain computationally efficient implementations of the
approach. Real-world results and computer simulations confirm
the improved behavior of the proposed robustified estimators.

Index Terms—radar, multipath, low-angle estimation, robust
estimation

I. INTRODUCTION

MODERN radars usually belong to the class of three

dimensional (3D) systems, which means they are ca-

pable of determining the range, azimuth angle, and elevation

angle coordinates of detected targets. The ability to estimate

the elevation angle differentiates 3D radars from the older

generation of two dimensional systems, which were able to

measure the range and azimuth only [1]. In 3D systems,

the estimates of target elevation angle are typically obtained

using the conventional monopulse processing. This technique,

despite its age, is still very much widespread because it is

computationally cheap and provides a good accuracy over a

broad envelope of conditions.

The principle of the monopulse method can be succinctly

summarized as follows [2]–[4]. The antenna subsystem of the

monopulse radar synthesizes two patterns, called the sum and

the difference pattern, respectively. The sum pattern is used

to detect targets and to provide a coarse estimate of their

direction, whose accuracy is comparable to the width of the

sum beam. In order to precisely localize the target inside the

beam, the difference pattern, which has a null at the peak of

the sum pattern, is employed. The monopulse estimator relies

on the fact that, assuming that the target indeed resides inside

the mainlobe of the sum beam, the so-called monopulse ratio

– the ratio of the difference and the sum signals – is a function

of the target’s deviation from the center of the beam [2], [4].

A considerable weakness of the monopulse method is its

poor performance at estimating the elevation angle of low-

altitude targets [5]. The poor accuracy of the monopulse

stems from the fact that the method is not designed to cope

with the situations when there are multiple closely spaced

waveforms arriving at the array. Unfortunately, due to the
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phenomenon called multipath, precisely this situation arises

when the radar is observing the low flying targets. The term

multipath refers to the situation when the target’s backscatter

reflects from the earth surface and reaches the radar array from

multiple directions. For the low flying targets, the direct and

the reflected waveforms are indeed very close to each other,

which causes the monopulse estimator to fail.

Multiple methods have been proposed to solve this prob-

lem. Early approaches included the off-boresight tracking,

frequency diversity/hopping [6], [7] or the complex indicated

angle method [8]. Unlike the standard monopulse, which

employs only the real part of the monopulse ratio, the complex

indicated angle method utilizes the full complex value of the

monopulse ratio. In theory, such processing enables one to

compensate the influence of the multipath. Unfortunately, the

method is based on a restrictive set of assumptions about the

nature of the multipath and fails when these conditions do not

take place [6]. Despite its flaws, the complex angle method has

left its footprint in the practice of using both components of the

monopulse ratio to detect the presence of multiple waveforms

within a single beamwidth [4].

Modern solutions typically employ one of many so-called

“superresolution” methods. The adjective “superresolution”

comes from the fact that, in principle, these methods can re-

solve multiple sources, separated by less than one beamwidth.

Superresolution methods generally belong to one of two

groups, called nonparametric methods and parametric meth-

ods, respectively.

Nonparametric methods, which include, among others, the

classical Capon method [9], the MUSIC algorithm [10], and

the minimum norm method [11], [12], attempt to work out

nonparametric estimates of the spatial spectrum. In principle,

by scanning the spectral estimate for peaks, one may identify

the directions of the waveforms arriving at the array. Unfortu-

nately, many nonparametric methods are poorly suited to radar

because of their two characteristics. First, they usually require

multiple snapshots of data to form a full-rank covariance

matrix. However, in radar, it is not uncommon (in fact it

is typical) to work with only one snapshot. Second, these

methods often assume that the sources are independent, which

is not true in radar, where, excluding jammers, all sources

reflect the same waveform and therefore are correlated. To

mitigate both problems, one may employ the spatial smoothing

technique [13]–[15]. Unfortunately, the application of this

method reduces the array resolution, which is very undesirable

and may be impractical for small arrays.

The second group of methods, i.e., parametric methods,

consists of the model-based techniques. In this approach, one

attempts to fit a parametric model, that typically includes the
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unknown source angles, to available data. Parametric methods

usually employ the maximum likelihood principle and Gaus-

sian models [16]. Gaussian models may come in two flavors,

which gives rise to two types of Gaussian maximum likelihood

estimators. If the amplitudes of the waveforms are treated as

unknown deterministic variables and included into the set of

the model parameters, the resultant estimator is referred to

as the deterministic, or conditional, maximum likelihood esti-

mator. Alternatively, one may treat the waveform amplitudes

as independent realizations of zero-mean Gaussian-distributed

random variables and parametrize only their variances. In such

a case, the resultant estimator is called the stochastic, or the

unconditional, maximum likelihood estimator [16]–[18].

A considerable advantage of the maximum likelihood ap-

proach lies in the fact that it does not require the assumption

that the sources are uncorrelated and can work with one

snapshot. However, the direct application of the approach

results in the estimators that are computationally complex

because of the need to solve a multidimensional, nonconvex

optimization problem. To overcome this obstacle, multiple

iterative and approximate approaches have been proposed,

such as the alternating projection algorithm [19], the EM

algorithm [20] or the IQML algorithm [21]. Another low

computational cost solution, which employed three specially

arranged beams, was proposed in [22]. More recently, ap-

proximate versions of the conditional and the unconditional

maximum likelihood estimators were studied in [23] and [24].

Successful applications of the maximum likelihood approach

to the problem of estimating the elevation angle at low angles

can be found in [5], [18], [25], among others.

In [18] Nickel pointed out that, despite their differences,

none of the superresolution methods stands out concerning

the estimation accuracy when applied to real-world datasets.

He attributed this behavior to the sensitivity of these methods

to the inaccuracies of the underlying model. On these grounds,

one could conclude that one of the primary factors determining

the choice of the estimation method should be the compu-

tational complexity, which makes the conditional maximum

likelihood estimator particularly attractive for application in

radar. However, we observed that, under model uncertainty,

the conditional maximum likelihood estimator occasionally

fails, in the sense that it delivers grossly erroneous estimates.

Such instability of the estimator is highly undesirable, not

only because of the resultant increase in the mean squared

estimation error. The “observed” behavior of the target may be

interpreted as a rapid maneuver, which may lead to erroneous

predictions of its position, and, possibly, to a loss of track.

Additionally, the radar scheduler may react to the apparent

maneuver by increasing the track update rate, which will waste

the ever-scarce resources of the radar.

The contributions of the paper are the following. First,

we show that one can improve the behavior of the con-

ditional maximum likelihood estimator using the minimax

approach. Second, studying the proposed minimax estimator

using convex optimization methods allows us to reach a

computationally attractive solution, whose complexity remains

comparable to the conventional approach. The low cost of the

proposed estimator facilitates its implementation and makes it

Figure 1. The flat earth model of the specular multipath.

an attractive alternative to the standard conditional maximum

likelihood method. Third, we demonstrate the behavior of the

conventional and the proposed approach using two real-world

datasets and realistic simulations.

The paper is organized as follows: Section II explains the

motivating factors for this paper. We review the specular

multipath model and two estimators based on the maxi-

mum likelihood principle. Using two real-world datasets, we

demonstrate that these estimators can exhibit gross estimation

errors. Sections III and IV form the main part of the paper.

In Section III, the proposed robustified maximum likelihood

estimator is derived. Its behavior is verified using the real-

world datasets and simulations in Section IV. The conclusions

are summarized in Section V.

II. CONVENTIONAL MAXIMUM LIKELIHOOD ESTIMATION

OF ELEVATION ANGLE

Like many authors before us, we begin by reviewing a

basic model of the specular multipath. Next, we consider the

deterministic maximum likelihood direction-of-arrival (DoA)

estimator. Using the geometric properties of the specular

multipath model, we propose a quick, i.e., a computationally

cheap, estimator of elevation. Note that, this solution will only

serve a preliminary role and will be improved in Section III.

A. Flat earth model of specular multipath

Qualitative and, to a large extent, quantitative effects of

the multipath can be explained using a simple model of the

specular reflection. In this model, depicted in Fig. 1, the

ground is treated as a flat, reflective surface, and the laws

of optics are used to study the wave propagation [2], [26].

Suppose that the radar antenna is elevated to a height h and

that the target altitude above ground is H , H ≫ h. Denote

by R, R≫ H , the target range, i.e., the distance traveled by

the direct echo. The target’s elevation angle, as seen from the

array, is

αd =
H − h

R
. (1)

Following the laws of optics, one may regard the reflected

waveform may as originating from the mirror source, located

at the depth H below the ground surface, i.e., at the elevation

angle

αm = −
H + h

R′
, (2)

where [26]

R′ ≃ R+
2hH

R
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Figure 2. The definition of the quantity R′′(α).

denotes the total distance traveled by the reflected waveform.

For low elevation angles, the amplitude of the reflected

signal may be close to that of the direct one. Additionally,

under this basic model, the phase of the reflected signal

exhibits a delay equal to [2], [26]

∆ϕ ∼=
2π

λ

2hH

R
+ π , (3)

where the first term corresponds to the difference in the lengths

of the two propagation paths, and π is an additional shift,

caused by the reflection from the ground.

The output of the radar array is a noise-corrupted combina-

tion of its responses to the direct and the mirror waveforms

y = Ada(αd) +Ama(αm) + v , (4)

where Ad, Am denote the direct and the mirror signal complex

“amplitudes”, respectively, a(α) is the array response vector

in the direction α, and v is a zero mean, complex circular

Gaussian white noise with a known covariance matrix R =
σ2
vI , v ∼ CN (0, σ2

vI).
Remark 1: The specular reflection model is valid pro-

vided that the ground surface is sufficiently smooth. According

to [6], the following condition

δ ≤
1

8

λ

sinα
, (5)

where δ denotes the difference in the ground height, must hold

in the first Fresnel zone around the specular-reflected ray, i.e.,

in the zone where

R′′(α)−R′ ≤ λ/2

and R′′(α) denotes the distance traveled by the hypothetical

diffuse reflection ray arriving from the direction α – see Fig.

2 for the graphical explanation.

Remark 2: The noise covariance matrix does not, in

general, adopt the diagonal structure assumed above. Con-

sider, for example, the beamspace processing, which we will

employ in our examples. The beamspace approach facilitates

computations by reducing the dimensionality of the data [15].

In such case, the vector y might correspond to a fan of

beams, covering a sector of elevation of interest. Assuming

that the beams were digitally formed using weight vectors

w1, w2, . . . , wK , the noise covariance matrix takes the form

R = σ2
vW

HW ,

where σ2
v is the receiver noise variance, and

W = [w1 w2 . . . wK ] ,

denotes the matrix of beamformer weights, assumed to have

a full column rank.

It is well known that one may handle a case like this

using the whitening transformation [16]. Let X1/2 denote

the square root of a conjugate symmetric positive definite

matrix X , i.e., any matrix satisfying X1/2(X1/2)H = X .

Set R−1/2 = (R−1)1/2. Preprocessing the data using the

following linear transformation

y ← R−1/2y (6)

will make it concordant with (4).

B. Maximum likelihood estimator of elevation

Suppose that N independent L-variate observations of the

target echo, yn, n = 1, 2, . . . , N , are available, e.g., from

several consecutive coherent processing intervals (CPIs). To

enable greater flexibility, such as allowing the antenna rotation,

varying the CPI length or employing the frequency agility, we

shall treat the amplitudes of the direct and the mirror signal in

each observation as different deterministic variables, i.e., we

adopt the following model

yn = Ad,nan(αd) +Am,nan(αm) + vn , (7)

where the noise vn is assumed to form an i.i.d. sequence of

mutually independent random vectors.

Generally, the vector yn is the preprocessed array response

at the range of the target in the n-th CPI. The preprocessing

may include, among others, beamforming, Doppler filtering,

and a CFAR detector to separate the target from the clutter.

Let α = [αd αm]
T

. The application of standard results from

the Gaussian maximum likelihood estimation theory [16] leads

to the following conditional maximum likelihood estimator,

which one can recognize as a nonlinear least squares fitting

problem

α̂ = argmin
α

N
∑

n=1

∥

∥

∥
yn −Ψn(α)θ̂n(α)

∥

∥

∥

2

, (8)

where

Ψn(α) = [an(αd) an(αm)]

θ̂n(α) =
[

Ψ
H
n (α)Ψn(α)

]−1
Ψ

H
n (α)yn

denote the regression matrix and the maximum likelihood

estimate of the n-th vector of complex amplitudes, θn =
[Ad,n Am,n]

T
, respectively.

C. Quick estimator of elevation

Implementation of the estimator (8) requires one to per-

form a minimization over two variables, αd and αm, which

is computationally expensive and may limit the method’s

attractiveness, especially under tight constraints of real-time

systems.

To reduce the computational complexity, one can exploit the

fact that, when h≪ H , it holds that [c.f. (1), (2)]

αm
∼= −αd . (9)
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Provided that the 3 dB beamwidth of the array is sufficiently

large, one can replace an(αm) in (7) with an(−αd). The

resulting model

yn
∼= Ad,nan(αd) +Am,nan(−αd) + vn , (10)

leads to the following “quick” estimator (see, e.g., [5], [27],

[28] for other solutions employing this approximation)

α̂d = argmin
αd

N
∑

n=1

∥

∥

∥
yn −Ψn(αd,−αd)θ̂n(αd,−αd)

∥

∥

∥

2

θ̂n(α) =
[

Ψ
H
n (α)Ψn(α)

]−1
Ψ

H
n (α)yn , (11)

which is considerably less costly than (8) because it requires

one to perform the search over only one variable.

Estimator (11) is particularly attractive when it is imple-

mented with the aid of the beamspace processing. As we

shall demonstrate in the next subsection, under such setup,

the quick approach – although not entirely free of problems

– can be very competitive in terms of estimation accuracy.

Note however that, in the context of this work, estimator (11),

serves a preliminary role and will undergo an enhancement to

improve its properties.

D. Real-world behavior of maximum likelihood estimators –

a case study

To motivate the remaining part of the paper, we will show

two examples of the real-world behavior of the maximum

likelihood estimator (8) and its quick counterpart (11).

A cooperative air-breathing target was observed using a C-

band radar (λ ≈ 5 cm) deployed at an airport in northern

Poland. The terrain at the airport is level and, in the direction

of the observed target, covered by a grass until at least 1.5km

away from the radar. Overall, it is reasonable to regard the

condition (5) as generally satisfied at this location.

The target, which was flying at a constant height, was

observed in the track-while-scan mode. At the start of the

session, the range of the target was, approximately, 7500 m.

Excluding a short loop imposed by the air traffic control, the

target moved away from the radar. The collection of data ended

when the range of the target reached 13500 m. During this

time, more than 200 scans (dwells) of the radar beam over the

target occurred.

The preprocessing chain in the radar consists of a beam-

former, a bank of MTD filters, a CFAR detector, and the

whitening transformation (6). The beamformer forms two pairs

of the low-sidelobe sum-difference patterns (Fig. 3), i.e., the

size of the observation vector yn, n = 1, 2, . . . , N is L = 4.

Moreover, the radar’s scan program was adjusted such that, for

each scan, the target was illuminated for N = 3 consecutive

CPIs.

Fig. 4 compares the true values of normalized target eleva-

tion angle, defined as the ratio of the elevation angle to the

3 dB beamwidth of the system (whose value is in the lower

end of a few degrees), with their estimates, obtained using

the monopulse method (the monopulse ratio was computed

from the lower sum-difference pair from the snapshot with

the highest power of the sum signal), the maximum likelihood

Figure 3. A schematic representation of the arrangement of the beams
employed by the radar system discussed in the case study. Solid lines – sum
beams. Dashed lines – difference beams. Note that the Y axis is expanded
greatly.

estimator (8) and the quick maximum likelihood estimator

(11).

The results yielded by the monopulse estimator confirm that

there is a good deal of multipath, especially in the first half of

the dataset, when the errors are quite large. The observed be-

havior of estimator (8) is very erratic, which can be explained

by the unfavorable relation of the number of unknowns to the

number of observations. In the system considered, estimator

(8) must work out the values of following parameters: two

angles, αd and αm, 2N complex amplitudes Ad,n, Am,n,

n = 1, 2, . . . , N and, implicitly, the noise variance σ2
v . The

total count of real-valued quantities to estimate is 3 + 4N , or

15 for N = 3. On the other hand, only N 4-element complex

valued (recall that L = 4 because the preprocessing includes

a beamformer), snapshots are available, which accumulates to

8N = 24 real-valued observables for N = 3. Such a ratio

of the number of unknowns to the available data, coupled

with the nonlinearity of the parametric model, results in the

phenomenon known as overfitting [16]. The overfitting occurs

when there is insufficient data to support the complexity

of the model. In such a case the model’s goodness of fit

is seemingly very high because the residual error in (8) is

minimal. However, the reduction of the residual error does

not translate to the improvement of the actual accuracy of the

estimator – the estimation errors increase [16].

The overfitting can be avoided by increasing the amount

of the available data or by using simpler models. One can

increase the amount of available data in two ways: by in-

creasing the number of snapshots N , or by increasing the

dimension of the vector yn. However, both solutions were

found unacceptable for this system either due to the increase

in the system’s update period beyond the limit or because of

the increase in the computational complexity.

For the system in question, the application of the simplified

estimator (11) is a better solution than increasing N or the

number of processed beams. The reduced dimensionality of

the simplified model, achieved with the substitution (9), pays

twofold. First, it reduces computational costs because the

simplified estimator requires a one-dimensional search [c.f.

(11)]. Second, it eliminates the negative effects of overfitting.

Unfortunately, the simplified estimator is not entirely free

of problems. The estimate of the target’s elevation at scan 217
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Figure 4. The comparison of the true values of the target’s normalized ele-
vation angle (dashed line) with their estimates obtained using the monopulse
method (top plot), the maximum likelihood method (middle plot) and the
quick maximum likelihood method (bottom plot).

is erroneous. We have witnessed such gross errors occurring

not only at this site, but in other places as well. Moreover, we

established that they unlikely to be related to the overfitting –

Fig. 5 shows another instance of this problem, which occurred

despite the fact that the size of the observation vector was

increased to 6 elements by including an additional sum-

difference pair. We also note that the outliers are not always as

severe as shown in Figs. 4 and 5, i.e., the estimated elevation

angle is not necessarily that close to zero, which precludes the

application of simple rules to filter the errors out.

Even if such erroneous estimates seem relatively isolated,

they can have rather undesirable consequences when the

presence of a tracker is taken into account. If the erroneous

estimate is assigned to an existing track, the accuracy of the

track will degrade significantly, which may cause the loss of

track.

Additional problems may arise if one considers a multifunc-

tion radar system. In the simplest case, a multifunction radar

divides its time budget between two tasks: search, where the

0 10 20 30 40 50
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0.6

0.8

1

Scan no.

α
/α

3
d
B

Figure 5. The comparison of the true values of the target’s normalized ele-
vation angle (dashed line) with their estimates obtained using the monopulse
method (dotted line) and the quick maximum likelihood method (solid line)
– the second dataset.

radar scans the surrounding space seeking new targets, and

track, where the radar updates the targets that were previously

detected and are included in the track file [3]. To improve

their resource management, multifunction radars may employ

various techniques, such as the variable update rate and the

sequential detection [2]. If a tracker in such a radar interprets

the change in the target’s elevation angle as resulting from

an abrupt vertical maneuver, the track update rate may be

increased, which will reduce the time budget available for the

search function and for maintaining other tracks. If, on the

other hand, the erroneous plot is treated as originating from

a possible new target, additional confirmation dwells may be

scheduled, which will also affect the resources available for

other tasks.

In the next section, we will elaborate on the possible reasons

for the observed estimator instability. We will also propose a

robustified version of the quick estimator, which eliminates

this undesired effect.

Remark: Originally, the theoretical methods presented

in this paper were developed to “cure” a specific problem

occurring in a specific radar system. Admittedly, we lack

experimental material to confirm that the instability of the

quick estimator can occur in different bands or with different

array configurations, but our computer simulations, reported

in Section IV, suggest that the occurrence of the outliers is a

generic behavior of estimator (11). At the very least, it does

not seem unrealistic to suspect that the observed effects are not

limited to the C-band and can also occur in the neighboring

S and X bands.

III. ROBUSTIFICATION OF QUICK MAXIMUM LIKELIHOOD

ESTIMATOR

To justify the adopted approach to eliminating the outliers,

let us briefly speculate about the cause of their occurrence.

It is well known that maximum likelihood estimators can

be quite sensitive to the accuracy of the underlying model

[18]. Algorithm (11) is no exception to this rule – when

αd ≈ 0, the matrix Ψ
H
n (α)Ψn(α) becomes ill-conditioned.

This observation may suggest that the observed gross errors are

related to the modeling uncertainty – an unknown discrepancy

between the simplified specular reflection model (10) and the
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actual (true) pattern of wave propagation. In case of the quick

estimator, the sources of model uncertainty include, among

others:

• Array calibration errors, caused by finite manufacturing

tolerances and differences between receive paths of the

array. Calibration errors, though unavoidable in all real

systems, are usually small, when compared with the next

three sources of uncertainty.

• Approximation (9), which allows one to considerably

reduce the model complexity, at the expense of making

the assumed steering vector of the mirror signal different

from the true one, even under ideal conditions.

• The implicit assumption about no curvature of the ground,

which makes the flat earth model prone to factors such as

imprecise leveling of the radar platform or a local slope

of the terrain.

• When the ground surface is rough, i.e., when the condi-

tion (5) does not hold, the diffuse multipath may appear

and introduce additional uncertainty [6]. Even though the

terrain at the airport area is generally flat, one cannot

fully exclude the possibility of the presence of diffuse

multipath.

Computer simulations, reported in Section IV.B confirm the

last hypothesis as particularly likely.

A. Problem formulation

We will now revisit estimator (11) to make it more robust

against the model uncertainty. Consider modifying (11) using

the minimax principle, i.e., consider the estimator of the form

α̂d = argmin
αd

N
∑

n=1

J2
n(αd,−αd) , (12)

where

Jn(αd, αm) = min
Ad, Am

max
ãd,n

ãm,n

∥

∥

∥
yn − Ψ̃nθn

∥

∥

∥

Ψ̃n = [ãd,n ãm,n]

θn = [Ad,n Am,n]
T

(13)

ãd,n, ãm,n are the perturbed steering vectors, and the “max”

part is carried out subject to the constraints

‖ãd,n − an(αd)‖
2 ≤ ε2d

‖ãm,n − an(αm)‖
2 ≤ ε2m . (14)

The internal minimax fitting, which is the backbone of the

proposed extension, is a variation of the robust least squares

problem, discussed in [29], [30]. Note that, although similar

in appearance, our formulation differs from the ones made

in [29], [30]. Both [29] and [30] employed the technique of

lumping the uncertainty into a single perturbation matrix,

∆Ψ̃n(αd, αm) = Ψ̃n −Ψn(αd, αm) ,

whose l2-induced norm, also known as the spectral norm, i.e.,

its largest singular value, was bounded
∥

∥

∥
∆Ψ̃n(αd, αm)

∥

∥

∥

2

2
≤ ε2 .

The disadvantage of the lumping approach lies in the fact

that such unstructered perturbations do not reflect the actual

properties of the problem. Indeed, the perturbations of the vec-

tor a(αd) are primarily related to quality of array calibration

and should be regarded as smaller than the perturbations of

the mirror steering vector, a(αm). Using our approach, one

can express this specification by setting

ε2d < ε2m .

Under such setup, one can expect that the proposed estimator

should pursue the direct signal more aggressively than the

standard robust least squares method and, at the same time,

exhibit more caution regarding the mirror signal.

B. Simplification of the minimax part

In the next two subsections we will focus exclusively on

the minimax problem. Let us then switch, temporarily, to a

simplified notation. We will drop the subscript n and employ

the following shorthands

J = J(αd, αm)

y = yn

ad = an(αd)

am = an(αm)

ãd = ãd,n

ãm = ãm,n

Ψ = Ψn(αd, αm) .

The maximization task in (13) can be replaced with its

closed form solution [29], [30]. Using the triangle inequality,

one obtains

‖y−ãdAd − ãmAm‖

≤ ν(Ad, Am) + ‖∆ãdAd‖+ ‖∆ãmAm‖

= ν(Ad, Am) + ‖∆ãd‖|Ad|+ ‖∆ãm‖|Am| , (15)

where

ν(Ad, Am) = ‖y − adAd − amAm‖ (16)

and

∆ãd = ãd − ad

∆ãm = ãm − am

denote the steering vectors’ perturbations.

The inequality in (15) becomes an equality when

∆ãd = −cdA
∗
d [y − adAd − amAm]

∆ãm = −cmA
∗
m [y − adAd − amAm] , (17)

where cd ≥ 0, cm ≥ 0 are arbitrary nonnegative factors and

z∗ denotes the complex conjugate of z. Choosing cd and cm
so as to make both constraints in (14) active (i.e., met with

equality) yields

‖y − ãdAd − ãmAm‖ = ν(Ad, Am) + εd|Ad|+ εm|Am|

which, when substituted into eq. (13), simplifies it to the

following unconstrained minimization problem

J = min
Ad, Am

ν(Ad, Am) + εd|Ad|+ εm|Am| . (18)
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C. Analysis using duality theory

Observe that (18) is a convex optimization problem of two

complex variables (i.e., four real variables). The objective

function is, however, not differentiable when any of the

following conditions takes place: ν(Ad, Am) = 0, Ad = 0,

Am = 0.

To gain more insight and, eventually, reach a simpler

solution, we will reformulate (18) as the second order cone

program [31]

min v + εdsd + εmsm

s.t.

‖y − adAd − amAm‖ ≤ v

|Ad| ≤ sd

|Am| ≤ sm (19)

and employ the duality theory [32]. Technical details of our

analysis are similar to the approach used in [29], although,

due to differences in the problem formulation, not identical.

The dual of (19) reads [31]

max yHu1

s.t.

‖u1‖ ≤ 1

|u2| ≤ εd

|u3| ≤ εm

aH
du1 = u2

aH
mu1 = u3 . (20)

The first result explains the relationship between solutions

of the primal and the dual problem.

Lemma 1: Denote by vo, sd,o, sm,o, Ad,o, Am,o the solution

of the primal problem. Similarly, let u1,o, u2,o, u3,o denote

the solution of the dual problem. The following hold true

vo = ‖y − adAd,o − amAm,o‖

sd,o = |Ad,o|

sm,o = |Am,o|

u1,o =
y − adAd,o − amAm,o

vo

u2,o = εd
Ad,o

|Ad,o|
= εd

Ad,o

sd,o

u3,o = εm
Am,o

|Am,o|
= εm

Am,o

sm,o
. (21)

Proof: See Appendix A.

Using Lemma 1, one can show that the solution of the

primal problem can be obtained by a nontrivial diagonal

loading.

Lemma 2: The optimal values of complex amplitudes, Ad,o,

Am,o satisfy the equation

[Ad,o Am,o]
T
=

[

Ψ
H
Ψ+Λ

]−1
Ψ

Hy , (22)

where

Λ =

[

εd
vo

|Ad,o|
0

0 εm
vo

|Am,o|

]

. (23)

Proof: See Appendix B. 2

In principle, one could use Lemma 2 to solve the primal

problem by finding the solution of eq. (22). This procedure

is, however, not recommended. The unknown complex-valued

quantities Ad,o, A,o appear in both sides of the equation,

including vo, which must satisfy the first equality in (21). It

follows that, while using a generic nonlinear solver is certainly

an option, it can hardly be expected to lead to a computa-

tionally attractive solution due to the substantial nonlinearity

of equation (22). Proposition 1 points to a different, more

efficient, approach

Proposition 1: The square of the primal objective can be

found by minimizing the following, convex, function of two

real variables

f(xd, xm) =
‖y‖2 − yH

Ψ
[

Ψ
H
Ψ+ Γ

]−1
Ψ

Hy

1− xd − xm

, (24)

where xd > 0, xm > 0, 1− xd − xm > 0 and

Γ =

[

ε2d
1−xd−xm

xd
0

0 ε2m
1−xd−xm

xm

]

. (25)

Proof: See Appendix C.

D. The robustified estimator

Let us now look back and review the three, introduced so

far, ways to solve the minimax problem (13).

The first option, summarized in eq. (18), involves uncon-

strained minimization of a convex function. While convexity

certainly plays to one’s advantage, the implementation using

(18) is discouraged, primarily due to the fact that (18) is

a function of four real variables (two complex variables).

Additionally, (18) is not differentiable in every point of its

domain, which may cause problems for the optimizers that

require the function gradient.

The approach based on the second order cone programming

(19) is even more computationally demanding. Its significance

stems from the fact that the analysis of (19) and its dual (20)

sheds a lot of light on the properties of minimax problem.

In Proposition 1, we showed that one may solve the min-

imax problem may in a computationally efficient manner by

minimizing a convex and differentiable function of two real

variables (24). Indeed, this is the recommended approach.

The resulting, robustified version of the quick estimator is

summarized below

α̂d = argmin
αd

N
∑

n=1

J2
n(αd,−αd)

J2
n(αd, αm) = min

xd,xm

f(xd, xm;yn, αd, αm) , (26)

where

f(xd, xm;yn, αd, αm) =
‖yn‖

2 − yH
nXn(αd, αm, xd, xm)yn

1− xd − xm

(27)
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and

Xn(αd, αm, xd, xm) =

Ψn(αd, αm)
[

Ψn(αd, αm)
H
Ψn(αd, αm) + Γ

]−1
Ψ

H
n (αd, αm)

Γ =

[

ε2d
1−xd−xm

xd
0

0 ε2m
1−xd−xm

xm

]

. (28)

Note that one can accelerate the minimization of

f(xd, xm;yn, αd, αm) by precomputing the terms independent

of the variables xd, xm, i.e., ‖yn‖
2, Ψ

H
n (αd, αm)yn and

Ψ
H
n (αd, αm)Ψn(αd, αm). Moreover, since the matrix under

inversion is very small (2×2), it is best to simply hard-code the

inverse, rather than employ elaborate matrix decompositions.

E. Lightweight alternatives

In this subsection we will discuss two, computationally

attractive, alternatives to (26)-(28).

The first opportunity arises when one regards uncertainty of

the steering vector ã(αd) as negligible. It is summarized with

the following proposition

Proposition 2: Consider the program (19) and set εd = 0.

The square of the primal objective can be found by minimizing

the following, convex function of one real variable

g(x) =
‖y‖2 − yH

Ψ
[

Ψ
H
Ψ+ Γg

]−1
Ψ

Hy

1− x
(29)

where 0 < x < 1 and

Γg =

[

0 0
0 ε2m

1−x
x

]

. (30)

The resulting modifications to (26)-(28) are straightforward.

Reviewing Lemma 2 yields another option. Equations (22)-

(23) suggest that it might be possible to find the optimal

values of the complex amplitudes using the following iterative

procedure

For k = 0, 1, . . . ,K − 1

[Ad,k+1 Am,k+1]
T
=

[

Ψ
H
Ψ+Λk

]−1
Ψ

Hy

vk+1 = ‖y − adAd,k+1 − amAm,k+1‖

Λk+1 =

[

εd
vk+1

|Ad,k+1|
0

0 εm
vk+1

|Am,k+1|

]

. (31)

Note that (31) is, essentially, a variant of Miller’s algorithm

[33]. For simplicity, it can be started with v0 = 0, Λ0 = 0,

which will yield the (penalized) Least Squares solution for

k = 0. Although this procedure is not guaranteed to converge

to the optimal solution (for instance, observe that it will stall

at the Least Squares solution whenever y happens to belong

to the column span of Ψ), we observed that it is extremely

reliable in practice. Typically, iterating (31) three to five times

is sufficient for the convergence to take place (11).

To obtain the resultant value of the cost function, one should

substitute the amplitudes obtained in the final iteration into the

following formula [c.f. (18)]

J2 ≃ [vK + εd|Ad,K|+ εm|Am,K|]
2
.

The modifications of algorithm (26)-(28) needed to accommo-

date this approach are straightforward.

Despite the need to perform several iterations, the com-

putational complexity of the estimator (31) is not far from

the baseline quick estimator (11). One may asses the number

of operations needed by the conventional approach by break-

ing it into elementary steps: computing Ψ
H
Ψ (4L complex

multiplications, 4L − 4 complex additions), inverting Ψ
H
Ψ,

which is a 2 × 2 matrix (6 complex multiplications, one

complex division, one complex addition), computing Ψ
Hy

(2L complex multiplications, 2L−2 complex additions), com-

puting (ΨH
Ψ)−1

Ψ
Hy (4 complex multiplications, 2 complex

additions), and computing the squared norm of the residue

(3L complex multiplications, 3L− 1 complex additions). The

total number of operations adds up to 9L + 10 complex

multiplications, 1 complex division, and 9L − 4 complex

additions.

Computational complexity of the iterative estimator scales

nonlinearly with the number of iterations K. The cost of the

first iteration (k = 0) is almost the same as of the conventional

estimator, and adds up to 9L+ 10 complex multiplications, 1
complex division, 9L − 4 complex additions, and (addition-

ally) one real square root. The remaining iterations, however,

require only 3L+12 complex multiplications, 3L+2 complex

additions, 1 complex division, 2 real multiplications, two real

divisions, and three real square roots, because one does not

need to compute Ψ
H
Ψ and Ψ

Hy again. The computation

of J2 can be implemented using 2 complex and 3 real

multiplications, 2 real additions, and two real square roots.

Given that modern CPUs typically execute multiplications,

additions, divisions, and even square roots with comparable

speed, and taking into account additional benefits from the

cache hits at the second and later iterations, it is reasonable

to estimate the cost of the second and subsequent iterations

as one third of the first one. Overall, if we assume K = 5
iterations, we can expect that the robustified estimator will

require about (1 + (K − 1)/3) = 2.33 times more time to

execute that the conventional estimator.

F. Choice of design parameters

The parameters εd and εm specify the level of one’s “trust”

that the nominal steering vectors ad, am are accurate. Since

the diffuse reflection is likely the primary source of the

modeling errors, a general advice is to set εm > εd. Moreover,

if εd or εm are set too close to zero, their influence on the

behavior of the estimator will be marginal. On the other hand,

if the uncertainty is set too high, the robustified estimator

will become overly cautious. In particular, once εm > ‖am‖
(εd > ‖ad‖) the optimal value of the amplitude Ad,n (Am,n)

is zero, which means that the estimator looses the ability to

estimate the corresponding component of the model. Based

on our experience with the estimator, we recommended to set

εd to a small value (possibly zero) and εm in the range of

5%-20% of the norm of am.

IV. RESULTS

A. The case study revisited

The real-world datasets used in our case study (Figs. 4, 5)

were processed using the proposed algorithms, i.e., algorithms
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Figure 6. The comparison of the true values of the target elevation angle
(dashed line) with its estimates yielded by the proposed robustified estimator
(26)-(28) (solid line).

(26)-(28), (29), and (31). The adopted levels of uncertainty

were ǫd = 0.0125 and ǫm = 0.5, respectively. Since, for the

datasets in question, it holds that the norm ‖a(α)‖ stays close

to 4 for all angles of interest (recall that the radar employs

the beamspace processing, which means that the norm of the

steering vector is a function of angle), the adopted value of ǫm
corresponds to, approximately, 12.5% relative uncertainty of

the mirror steering vector. Finally, for the iterative algorithm

(31), we employed K = 5 iterations.

Fig. 6 shows the results obtained using algorithm (26)-

(28). The results obtained using the other two algorithms were

nearly identical, and therefore are not shown. Observe that the

outlier that appeared when the conventional algorithm (11)

was used, is now gone. The same effect can be observed for

the second dataset, which is shown in Fig. 7. Moreover, Fig.

7 shows that the influence of the proposed robustification is

practically limited to preventing the outliers from occurring

– when the conventional estimator (11) works correctly, the

robustified approach yields very similar estimates, which was

precisely our goal.

Table I shows the values of mean squared errors of normal-

ized elevation angle estimates, obtained using all algorithms

discussed so far, for the two real-world datasets. Moreover, to

make our case study more comprehensive, we also included

the stochastic maximum likelihood estimator [17], [18]. For

both datasets, the best results were obtained using algorithms

(26)-(28) and (31). Note that, the equal performance of both

algorithms is not a coincidence because the iterative procedure

employed by estimator (31) is intended to converge to the

solution of (26)-(28).

Summarizing this part of the discussion, we recommend

using the iterative solution, because it has the smallest com-

putational complexity. For K = 5, which we regard as

sufficient, our MATLAB implementation of the algorithm is

only about 2.5 times slower than the quick estimator (11),

which agrees well with the estimate of the computational

complexity presented in Section III.E.

B. Results of computer simulations

To investigate the properties of the proposed method further,

one may employ computer simulations. To this end, we used

a realistic model that includes the specular and the diffuse

0 10 20 30 40 50
0.2

0.3

0.4

0.5

Scan no.

α
/α

3
d
B

Figure 7. The comparison of the estimates yielded by algorithms (11) (dashed
line) and (31) (solid line) for the second dataset. Note that, compared with
Fig. 5, the vertical scale was changed to improve the plot’s readability.

Algorithm Dataset 1 Dataset 2

Monopulse 6.10 · 10−3 (0%) 1.43 · 10−2 (0%)

ML (8) 1.59 · 10−2 (-161%) 4.07 · 10−2 (-184%)

Quick ML (11) 1.54 · 10−3 (75%) 4.12 · 10−3 (71%)

Algorithm (26)-(28) 7.35 · 10−4 (88%) 1.16 · 10−3 (92%)

Algorithm (29) 7.37 · 10−4 (88%) 1.17 · 10−3 (92%)

Algorithm (31) 7.35 · 10−4 (88%) 1.16 · 10−3 (92%)

Stochastic ML 9.08 · 10−4 (85%) 1.54 · 10−3 (90%)

Table I
THE COMPARISON OF THE MEAN SQUARED ERRORS OF THE NORMALIZED

ELEVATION ESTIMATES YIELDED BY SEVERAL ALGORITHMS FOR THE TWO

REAL-WORLD DATASETS. THE VALUES IN THE PARENTHESES SHOW THE

RELATIVE REDUCTION OF THE MSE OVER THE MONOPULSE METHOD.

reflection, adopted from [6]. In this model, the ground surface

is treated as a “glistering surface”, and the main factors influ-

encing the amounts of the specular and the diffuse scattering

are the grazing angle, the surface roughness parameter, defined

as the ratio of the RMS surface height variation σh to the

wavelength λ, σh/λ, and the maximum surface facet slope

β0.

Following [6], we assumed that β0 = 0.1 radians and a

simulated a system that employs the 16-element standard (half-

wavelength element spacing) uniform linear array, elevated to

the height of h = 5 meters, whose boresight was parallel to the

ground. The direct signal originated from a simulated target,

placed at range R = 10 km. The signal to noise ratio of the

direct signal, i.e., the ratio |Ad|
2/σ2

v , was set to 15 dB.

The specular reflection was inserted at the elevation given

by eq. (2), with its amplitude computed using [6, eq. (5)].

To simulate the diffuse multipath, we introduced additional

reflections every 0.25◦. The phases of these reflections were

random in the interval [0, 2π), and their magnitudes were

obtained from the power distribution of the diffuse scattering,

computed using [6, eq. (13)-(17)]. Finally, we modeled the

presence of a vegetation by introducing 6 dB attenuation of

all reflections.

We assumed that only one snapshot is available (N = 1),

and compared four algorithms: the monopulse estimator, the

quick conditional maximum likelihood estimator (11), the

proposed iterative estimator (31), and the Capon method.

In the case of the first three methods, the data was prepro-

cessed using a beamformer – the simulated system synthesized

two pairs of sum-difference beams (i.e., L = 4) using full 16-
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element aperture. The first sum-difference pair was positioned

at 4 degrees above the horizon, and the second pair – at 8

degrees. The sum beams employed the Chebyshev taper, and

the difference beams employed the Bayliss taper, both with

sidelobes at -30 dB. The resultant 3dB beamwidth of the sum

beams is about 8◦. Moreover, after some preliminary tuning

of the iterative estimator, we decided to use ǫd and ǫm that

correspond to 2.5% and 10% relative uncertainty, respectively,

and K = 5 iterations.

In the case of the Capon method, we used the forward-

backward smoothing technique [15] to decorrelate the direct

and the mirror signals, and to form a nonsingular correlation

matrix. The forward-backward smoothing method is based

on dividing the array into a number of smaller overlapping

subarrays, from which independent snapshots are obtained

[15]. To keep the computing time of all estimators at a

comparable level, and to satisfy the well-known rule of thumb

that says that the number of independent snapshots used to

form the covariance matrix should be at least twice the array

size, we used 6-element subarrays.

Since the benefits of the proposed estimators are more

of qualitative, rather than quantitative, nature, we compare

the histograms of the estimates of the target elevation angle

obtained using each method. Fig 8 shows such histograms,

computed from 10000 Monte Carlo trials, for the target

elevation equal to 2◦ (1/4 beamwidth), and for three choices

of the surface roughness factor, σh/λ ∈ {0, 1, 5}. The

first choice corresponds to the perfectly smooth ground, in

which case only the specular reflection is present. The second

choice represents a “realistically” smooth ground, where the

specular reflection dominates, but small amounts of the diffuse

multipath can be expected. Finally, the surface roughness

factor equal to 5 corresponds to a moderately rough ground,

when there is a substantial amount of the diffuse multipath,

and the specular reflection occurs only for targets at elevation

angles below 3◦.

In the case of the perfectly smooth ground, the monopulse

method and the Capon method both exhibit a significant

bias, while the quick estimator and the proposed method can

resolve the direct and the mirror signals properly. When the

surface roughness factor is increased to one, the spread of

all histograms increases due to the presence of the diffuse

multipath. More importantly, however, a peak emerges at zero

elevation angle for the quick maximum likelihood estimator,

which shows that about 3% of the estimates are outliers similar

to those observed in the real system. The robustified estimator

does not exhibit such behavior. When the surface roughness

factor is increased even further, the fraction of outliers grows

to about 7%, while the proposed approach continues to deliver

stable estimates. In the case of the monopulse and the Capon

methods, increasing the roughness factor results in the reduc-

tion in their bias, particularly for σh/λ = 5. However, the

histograms are still wider than in the case of the proposed

method, which means that the MSE of these estimators is

larger.

We repeated this simulation experiment for several addi-

tional values of the target elevation angle αd ∈ [1◦, 4◦],
σh/λ ∈ {1, 5, 20}, and estimated the probability of estimator

σh/λ = 0
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Figure 8. The comparison of the histograms of the estimates of the elevation
angle obtained using the monopulse method (top-left), the quick maximum
likelihood estimator (top-right), the proposed iterative algorithm (bottom left),
and the Capon method (bottom right) for a target at 2◦ and three values of
the surface roughness factor σh/λ.

failure by counting the number of estimates that fell below

0.1◦. The results, depicted in Fig. 9, show that, in case of

the nonrobustified estimator, the outliers can exceed 30% at

1◦ elevation angle (1/8 beamwidth), which is a very high

level indeed. Increasing the elevation angle causes a gradual

improvement in the estimator behavior, until it becomes prac-

tically error-free at 3◦. In case of the robustified estimator, we

observed that it completely avoids the outliers for elevation

angles above 1.25◦. For smaller angles, the contribution of

outliers was marginal (below 0.2% at 1◦), which confirms

that the proposed technique improves the stability of the
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Figure 9. The probability of the conventional estimator failing as a function
of the target elevation angle for roughness factor equal to 1 (solid line), 5
(dashed line), and 20 (dotted line).

estimation greatly. Finally, the monopulse and the Capon

method exhibited the outlier-free behavior, but their MSE was

consistently greater than for the proposed method.

V. CONCLUSIONS

We proposed a novel robustification of the conditional

maximum-likelihood estimator. In the proposed solution, the

sensitivity to the modeling errors is reduced by treating the

steering vectors as subject to unknown bounded perturbations.

Combined with the specular reflection model, the proposed

robustification technique yields a computationally attractive

estimator of the elevation angle. The results, obtained using

real-world dataset and simulations, confirm that the proposed

solution exhibits improved behavior under the presence of the

modeling uncertainty.

APPENDIX A

PROOF OF LEMMA 1

The first three relationships in (21) are trivial, given the

form of the primal problem. To prove the remaining three,

first note that the strong duality holds [32], i.e., the primal

and the dual objectives are equal

vo + εdsd,o + εmsm,o = yHu1,o .

Rearranging the right-hand side as

yHu1,o = [y − adAd,o − amAm,o]
H
u1,o

+A∗
d,oa

H
du1,o +A∗

m,oa
H
mu1,o ,

and substituting the last two constraints from (20) lead to

vo + εdsd,o + εmsm,o = [y − adAd,o − amAm,o]
H
u1,o

+A∗
d,ou2,o +A∗

m,ou3,o .

Recall that the dual objective, i.e., the right hand side, is

obtained by performing the maximization subject to the con-

straints in (20). Taking this into account yields

u1,o =
y − adAd,o − amAm,o

‖y − adAd,o − amAm,o‖

=
y − adAd,o − amAm,o

vo

u2,o = εd
Ad,o

|Ad,o|
= εd

Ad,o

|sd,o|

u3,o = εm
Am,o

|Am,o|
= εm

Am,o

|sm,o|
, (32)

which completes the proof.

APPENDIX B

PROOF OF LEMMA 2

Premultiplying both sides of u1,o from (21) with voa
H
d

yields [c.f. (20)]

u2,ovo = aH
d y − aH

d adAd,o − aH
d amAm,o .

Substituting u2,o from (21), after some minor rearranging,

leads to

aH
d adAd,o + εd

Ad,o

sd,o
vo + aH

d amAm,o = aH
d y . (33)

Repeating the reasoning, but starting with pre-multiplication

by voa
H
m, results in

aH
madAd,o + aH

mamAm,o + εm
Am,o

sm,o
vo = aH

my . (34)

To obtain (22)-(23), first rewrite equations (33) and (34) using

the matrix notation
[

aH
d ad + ǫd

sd,o
vo aH

d am

aH
mad aH

mam + ǫm
sm,o

vo

]

[

Ad,o

Am,o

]

=

[

aH
d y

aH
my

]

.

It is straightforward to verify that the matrix on the left equals

Ψ
H
Ψ+Λ, where Λ is defined in (23), and that the vector on

the right equals ΨHy. These observations lead to the following

formula
[

Ψ
H
Ψ+Λ

]

[Ad,o Am,o]
T
= Ψ

Hy ,

which is just one, trivial step from (22)-(23).

APPENDIX C

PROOF OF PROPOSITION 1

Combining the first equation from (20) with the fourth from

(21) yields

J = yHu1,o = yHy − adAd,o − amAm,o

vo
. (35)

Observe that vo can be expressed as [c.f. (19)]

vo = J − εdsd,o − εmsm,o (36)

and replace vo in (35) with (36) to obtain

J = yHy − adAd,o − amAm,o

J − εdsd,o − εmsm,o
.
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Now substitute (22), which leads to

J =
‖y‖2 − yH

Ψ(ΨH
Ψ+Λ)−1

Ψ
Hy

J − εdsd,o − εmsm,o
. (37)

Moreover, using (36) in (23) yields the following alternative

expression for Λ [c.f. (21)]

Λ =

[

εd
J−εdsd,o−εmsm,o

sd,o
0

0 εm
J−εdsd,o−εmsm,o

sm,o

]

.

Introducing two new variables

xd = ǫd
sd,o
J

xm = ǫm
sm,o

J

one may observe that Λ = Γ. Finally, multiplying both sides

of (37) by J leads to

J2 = f(xd, xm) =
‖y‖2 − yH

Ψ
[

Ψ
H
Ψ+ Γ

]−1
Ψ

Hy

1− xd − xm

,

(38)

i.e., the minimization (24) allows one to find the square of the

primal objective.

To show that (24) is a convex function, one can employ the

matrix inversion lemma

I −Ψ(ΨH
Ψ+Λ)−1

Ψ = (I +ΨΛ
−1

Ψ
H)−1 ,

where I denotes the eye matrix of the appropriate dimension.

After some minor manipulations, one arrives at

f(xd, xm) = yH
[

(1− xd − xm) I +Ψ∆Ψ
H
]−1

y , (39)

where

∆ =

[

xd

ε2
d

0

0 xm

ε2m

]

,

which shows that, for xd ≥ 0, xm ≥ 0, 1 − xd − xm ≥ 0,

f(xd, xm) is a composition of convex mappings, i.e., it is a

convex function [32].
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