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Abstract. We apply the representation of Lefschetz numbers of iterates
in the form of periodic expansion to determine the minimal sets of Lef-
schetz periods of Morse–Smale diffeomorphisms. Applying this approach
we present an algorithmic method of finding the family of minimal sets
of Lefschetz periods for Ng, a non-orientable compact surfaces without
boundary of genus g. We also partially confirm the conjecture of Llibre
and Sirvent (J Diff Equ Appl 19(3):402–417, 2013) proving that there
are no algebraic obstacles in realizing any set of odd natural numbers
as the minimal set of Lefschetz periods on Ng for any g.
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1. Introduction

Let f : M → M be a Morse–Smale diffeomorphism, where M is a compact
manifold without boundary. Morse–Smale diffeomorphisms, structurally sta-
ble and having relatively simple dynamics, constitute an important subclass
of diffeomorphisms that were carefully studied during past decades (cf. [17]
and the references therein).

One of the problems studied for Morse–Smale diffeomorphisms is the
structure of the set of its minimal periods. The promising results in this di-
rection may be obtained by the comparison (via Lefschetz–Hopf theorem) of
the global behavior of f expressed by Lefschetz numbers of iterates (L(fn)n)
and local properties of f near periodic points represented by local fixed point
indices of iterates. Basing on this relation MPerL(f) called minimal set of
Lefschetz periods is considered (cf. Definition 3.3). MPerL(f) provides the in-
formation about the set of periodic points of f as it is the subset of minimal
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periods of f . The description of MPerL(f) was performed (in dependence on
the behavior of f∗, a map induced by f on homology groups) for the sphere Sn

[21], orientable compact surfaces [29], non-orientable compact surfaces [28],
disk with n holes [19], product of l-dimensional spheres [3], n-dimensional
torus Tn [23]. Let us mention here that using similar approach the set of
periods as well as so-called minimal set of periods of the Morse–Smale diffeo-
morphisms for T 2 was characterized in [22].

The method of determining MPerL(f) in the above papers is based on
the decomposition of Lefschetz zeta function into all possible factors and
taking the exponents which are present in all such decompositions. However,
this is sometimes not an easy task, especially in case when the dimensions
of homologies are large. The purpose of this paper was to present another
approach, which simplifies calculations a lot. Namely, we use the language of
so-called periodic expansions, which enables us to represent the sequences of
Lefschetz numbers and fixed point indices of iterates in the convenient form of
the combination of some basic k-periodic sequences (regk)n [1,25,30]. Using
this apparatus we are able to reformulate the definition of MPerL(f) and to
express it by decompositions of Lefschetz numbers into sums of (regk)n, each
of which represents, for odd k, a periodic orbit of minimal period k. As a
consequence, we prove that MPerL(f) is equal to the set of all non-zero odd
k that appear in such decomposition (Theorem 6.2).

Our method is equivalent to the approach based on Lefschetz zeta func-
tions but is computationally much simpler. We also provide the general form
of sequences of Lefschetz numbers of iterates for Morse–Smale diffeomor-
phisms (Sect. 4.1), which could be a useful device for other investigations. In
Sect. 7 we show the advantages of our approach considering self-maps of Ng, a
non-orientable compact surface without boundary of genus g, and confirming
the algebraic part of the problem of the realization of elements of MPerL(f)
for self-maps of Ng (Conjecture 7.1) from [28].

In the final part of the paper we also provide an algorithm for computing
the minimal sets of Lefschetz periods for self-maps of Ng. We verify by a
computer program MPerL(f) for g < 10 found in [28] correcting one omission
and compute MPerL(f) for higher values of g.

Finally, let us mention that all the obtained results remain valid not
only for Morse–Smale diffeomorphisms, but also for a larger class of maps,
namely for maps with finitely many periodic points all of them hyperbolic
(cf. Remark 6.3).

2. The class of Morse–Smale diffeomorphisms

In this section we recall some basic definitions related to the class of Morse–
Smale diffeomorphisms.

Let f : X → X, by P(f) we will denote the set of periodic points of f .
Let us remind that x is a periodic point with minimal period n if fn(x) = x
and fm(x) �= x for m < n (we will also call x an n-periodic point for short).
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The set of all n-periodic points will be denoted by Pn(f) and the set of all
minimal periods by MPer(f).

Definition 2.1. Let f : M → M be a C1 diffeomorphism of a manifold M .
A point x ∈ M will be called non-wandering if for any neighbourhood U
of x there exists an integer n > 1 such that fn(U) ∩ U �= ∅. The set of all
non-wandering points of f will be denoted by Ω(f).

Definition 2.2. Let f : M → M be a C1 diffeomorphism of a manifold M and
x be an n-periodic point. Then x is called hyperbolic if none of the eigenvalues
of the derivative Df(x) of f at x has modulus equal to 1.

Definition 2.3. For a hyperbolic n-periodic point x we define a stable manifold
W s(x) as

W s(x) = {y ∈ X : fnk(y) → x as k → ∞}
and an unstable manifold Wu(x) as

Wu(x) = {y ∈ X : fnk(y) → x as k → −∞}.

Definition 2.4. Let M be a compact manifold. A diffeomorphism f : M → M
is Morse–Smale if

(i) Ω(f) is finite,
(ii) all periodic points are hyperbolic,
(iii) for each x, y ∈ P, W s(x) and Wu(y) have transversal intersections.

Remark 2.5. It follows from (i) that the set Ω(f) consists only of periodic
points, i.e. Ω(f) = P(f).

3. Lefschetz numbers of iterates and Lefschetz zeta function

First we remind the definition of Lefschetz numbers of iterates; for simplicity
we will consider homology with rational coefficients.

Let K be a CW-complex of dimension m with the homology groups
Hi(K; Q), where i = 0, 1, . . . ,m. In case the homology coefficients are equal
to Q the groups Hi(K; Q) are finite dimensional linear spaces over Q. For a
self-map f of K we denote by f∗i the linear map induced by f on Hi(K; Q)
and by f∗ the self-map

⊕m
i=0 f∗i of

⊕m
i=0 Hi(K; Q). The Lefschetz number

L(fn) of fn is then equal to

L(fn) =
m∑

i=0

(−1)i tr(fn)∗i, (3.1)

where tr(fn)∗i is the trace of the integer matrix representing (fn)∗i:Hi(K; Q)
→ Hi(K; Q). Notice that if A is a matrix of f∗i, then An is a matrix of (fn)∗i,
representing the homomorphism induced on Hi(K; Q) by fn (cf. [25]).

Lefschetz zeta function, Zf , which is a useful tool in periodic points
theory, codes information on the whole sequence of Lefschetz numbers of
iterates:

Zf (t) = exp

( ∞∑

n=1

L(fn)
n

tn

)

. (3.2)
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We will also consider zeta function associated with a given integer se-
quence (an)n, which will be defined in an analogous way:

Zan
(t) = exp

( ∞∑

n=1

an

n
tn

)

. (3.3)

Remark 3.1. An alternative formula for the Lefschetz zeta function may be
given by a use of eigenvalues of f∗, namely if λi is an eigenvalue of f∗, taken
with algebraic multiplicities ki, then

Zf (t) =
∏

i

(1 − λiz)(−1)mi+1ki , (3.4)

where mi denotes the index of the homology group associated with λi [25].

It turns out that the Lefschetz zeta function for Morse–Smale diffeo-
morphisms has very special form, first described by Franks in [9].

Let M be a smooth manifold and x be a hyperbolic p-periodic point of a
map f : M → M . Denote by Eun

x the subspace of the tangent TMx spanned
by eigenvectors of Dfp(x) which correspond to eigenvalues which are greater
than one in absolute value. Let γ be an orbit of x, we define u = dim Eun

x

and Δ, the orientation type of γ, as +1 if Dfp(x) preserves the orientation
and −1 if it reverses the orientation.

By Σ we denote periodic data, i.e. a collection of all the triples (p, u,Δ)
which corresponds to periodic orbits of f .

Theorem 3.2. [9] Let M be a closed manifold, and f : M → M be a C1 map
with finitely many periodic points, all of them hyperbolic; then

Zf (t) =
∏

(p,u,Δ)∈Σ

(1 − Δtp)(−1)u+1
, (3.5)

where (p, u,Δ) belongs to periodic data of f .

Definition 3.3. Let Zf (t) �= 1, the minimal set of Lefschetz periods of f is
defined as

MPerL(f) :=
⋂

{r1, . . . , rN(f)},

where the intersection is considered over all the possible expressions of Zf (t)
in the following form:

Zf (t) =
N(f)∏

i=1

(1 + Δit
ri)mi , (3.6)

where Δi ∈ {−1, 1}, ri are positive integer values, mi are nonzero integers
and N(f) is a positive integer that depends on the function f . For Zf (t) = 1
we define MPerL(f) := ∅.

The importance of the minimal sets of Lefschetz periods for Morse–
Smale diffeomorphisms results from the following fact, which is a straightfor-
ward consequence of Theorem 3.2

MPerL(f) ⊂ MPer(f). (3.7)

Now, we introduce the notion of quasi-unipotent maps.
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Definition 3.4. A rational linear transformation is called quasi-unipotent if
their eigenvalues are roots of unity. We will call a continuous map f : M → M
quasi-unipotent if the maps f∗k

are quasi-unipotent for 0 ≤ k ≤ m, where m
is the dimension of the manifold M .

The following fact makes it possible to determine Lefschetz zeta function
for a Morse–Smale diffeomorphism in a relatively easy way.

Proposition 3.5 [32]. Let f be a Morse–Smale diffeomorphism of a compact
manifold, then f is quasi-unipotent.

Due to Proposition 3.5 and the formula (3.4) Lefschetz zeta function
for a Morse–Smale diffeomorphism may be expressed as a rational function
with the nominator and denominator being a product of cyclotomic polyno-
mials, whose degrees are bounded by the dimensions of homology spaces. As
for a given n there is a finite number of cyclotomic polynomials of degree
≤ n, for a given manifold M there is a finite number of different forms of
zeta functions on M . This observation was a base for a strategy of finding
minimal set of Lefschetz periods for all Morse–Smale diffeomorphisms on a
given manifold M , which may be described in the following steps. For a given
Morse–Smale diffeomorphism f find zeta functions Zf (t) (expressed in terms
of cyclotomic polynomials), next determine all their decompositions into the
products of elements of the form (3.6), and finally take the common part
of coefficients ri (which are related to minimal periods of f) over all such
products. We proposed below the alternative strategy which is based on rep-
resenting (L(fn))n as the sum of basic periodic sequences and decomposing
it into sum of sequences related to periodic orbits of the considered map.

4. Periodic expansion of Lefschetz numbers of iterates

Definition 4.1. A sequence of integer numbers (an)∞
n=1 will be called a Dold

sequence if the following congruences (called Dold congruences or Dold rela-
tions) are fulfilled:

∑

k|n
μ(k)an

k
≡ 0 (mod n) for each n ≥ 1, (4.1)

where μ : N → Z is the classical Möbius function, given by the following
formula:

μ(n) =

⎧
⎪⎨

⎪⎩

1 if n = 1;
(−1)k if n = p1p2 · · · pk for different primes pi;
0 otherwise.

Dold sequences play important role not only in dynamics but also in
number theory (cf. [2,16]). There is a convenient way of writing down a Dold
sequence by using so-called periodic expansion, i.e. representing the sequence
as a combination of some basic periodic sequences.
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Definition 4.2. Let k be a fixed natural number. We define

regk(n) =

{
k if k | n,

0 if k � n.

Thus, regk is the periodic sequence:

(0, . . . , 0, k, 0, . . . , 0, k, . . .),

where the non-zero entries appear for indices divisible by k.

Proposition 4.3 (Proposition 2.7 in [30]). Any arithmetic function (an)∞
n=1

can be written uniquely in the following form of a periodic expansion:

an =
∞∑

k=1

bk regk(n), where bn =
1
n

∑

k|n
μ
(n

k

)
ak ∈ Q. (4.2)

Moreover, (an)n is integral valued and satisfies Dold congruences iff
bk ∈ Z for every k ∈ N.

Remark 4.4. By Proposition 4.3 every Dold sequence is an integral combina-
tion (possibly infinite) of basic sequences regk (with coefficients bk which are
called Dold coefficients).

There is a deep relation between sequences (an)n and (bn)n that appear
in Proposition 4.3, which may be expressed in the language of formal power
series and formal products.

Theorem 4.5 (Theorem 2 in [6]). Let (an)n, (bn)n be some complex valued
sequences. Then (an)n is a Dold sequence with Dold coefficients (bn)n if and
only if

exp

(

−
∞∑

n=1

an
xn

n

)

=
∞∏

n=1

(1 − xn)bn . (4.3)

A sequence of fixed point indices of iterates turned out to be a Dold
sequence.

Theorem 4.6 [5]. The sequence of fixed point indices of iterates (ind(fn))n

is a Dold sequence (provided it is well-defined). As a consequence it has a
periodic expansion of the form (4.2) with integral coefficients.

The language of periodic expansion is a convenient tool that has been
recently used in different contexts such as: study of the fixed point indices of
an iterated map [4,24,34] and minimization of the number of periodic points
in homotopy class [13,14,30].

In particular the sequence (L(fn))n is also Dold sequence (cf. [33] for
different proofs of this fact). As a consequence, by Remark 4.4, we get

L(fn) =
∞∑

k=1

bk regk(n), (4.4)

where bk are integers.
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Remark 4.7. The coefficients bk in the periodic expansion of Lefschetz num-
bers in the formula (4.4) are called Lefschetz numbers for periodic points
(denoted also as l(fk)) and play important role in the periodic points theory
(cf. [26]). In particular, the determination of the set L = {k ∈ N : bk �= 0}
provides valuable knowledge about the structure of periodic points obtained
by confronting the information carried by L with the local information about
periodic points (expressed by fixed point indices at orbits). This comparison
could be done either straighforwardly (Lefschetz–Hopf theorem) or by zeta
function or equivalently by periodic expansion. During the past 30 years the
program of determination of the set L for different types of manifolds (in
terms of action of induced maps on homology groups) and its application to
various classes of maps has been realized. Among other cases this program
was accomplished for:

• transversal maps of a compact manifold M such that its rational ho-
mology is Hj(M ; Q) = Q if j ∈ J ∪{0}, and Hj(M ; Q) = {0} otherwise,
where J is a subset of N with cardinality 1, 2 or 3 [27],

• transversal maps of a compact manifold M such that its rational ho-
mology is H0(M ; Q) = Q, H1(M ; Q) = Q ⊕ Q and Hk(M ; Q) = {0} for
k �= 0, 1 [18],

• C1 maps of rational exterior spaces and simple rational Hopf spaces
[10,12] (see also [11]), and transversal maps of some simple rational
Hopf spaces [20],

• holomorphic maps of some complex compact manifolds [8].

4.1. Periodic expansion of Lefschetz numbers of Morse–Smale diffeomor-
phisms

For the considered class of maps, i.e. Morse–Smale diffeomorphisms periodic
expansion of Lefschetz numbers may be expressed by a use of roots of cyclo-
tomic polynomials.

Definition 4.8. The dth cyclotomic polynomial ωd(z) is defined by the fol-
lowing formula:

ωd(z) =
∏

ε∈Ud

(z − ε), (4.5)

where Ud denotes the set of all primitive dth roots of unity.

Let us remark that ωd(z) is an irreducible polynomial with integer coef-
ficients of degree ϕ(d), where ϕ is the Euler function (i.e. ϕ(d) is the number
of positive integers less than or equal to d that are co-prime to d). For example
ω3(z) = 1−z3

1−z = 1 + z + z2, Deg(ω3(z)) = 2 = ϕ(3).
Now, our aim is to establish the coefficients bk for the periodic expansion

of Lefschetz numbers of iterated quasi-unipotent maps.
Let ε1, . . . , εϕ(d) be the all dth primitive roots of unity. For a given d we

define

Ld(n) = εn
1 + · · · + εn

ϕ(d). (4.6)

The cyclotomic polynomial
∏ϕ(d)

i=1 (z − εi) has integer coefficients; thus
Ld(n) is equal to tr An, for some integer matrix A, having the cyclotomic
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polynomial as the characteristic polynomial. On the other hand, the sequence
tr An for an integer matrix A always satisfies Dold relations (see Theorem
3.1.4 in [25]). As a consequence, by Theorem 1.2 Ld(n) could be uniquely
represented as an integral combination of basic sequences regk.

Let us consider a Morse–Smale diffeomorphism f of a closed manifold M
of dimension m. Let ei(λ) be the algebraic multiplicity of λ as an eigenvalue
of f∗i. Define

e(λ) :=
m∑

i=0

(−1)iei(λ).

We will call an eigenvalue λ �= 0 essential provided e(λ) �= 0. It is
obvious that only essential eigenvalues give the contribution to {L(fn)}∞

n=1.
Denote by σes(f) the set of essential eigenvalues of f . We define

e(d) =
∑

λ∈Ud∩σes(f)

e(λ).

Notice that the essential dth primitive roots of unity appear in groups
of ϕ(d) elements, contributing e(d)

ϕ(d)Ld(n) to L(fn). As a result we get:

L(fn) =
∑

d

e(d)
ϕ(d)

Ld(n). (4.7)

As a consequence, to find the periodic expansion of {L(fn)}∞
n=1 it is

enough to determine the expansions of each {Ld(n)}∞
n=1.

We represent {Ld(n)}∞
n=1 as an integral combination of basic sequences

regk:

Ld(n) =
∞∑

k=1

bd
k regk(n), (4.8)

where bd
k are integers, d is fixed.

The following theorem gives the value of bd
k, and thus allows us to de-

termine the periodic expansion of {Ld(n)}∞
n=1. It was proved in [15] in an

elementary but rather long way. Below we will give much simpler proof that
is based on Theorem 4.5.

Theorem 4.9. The coefficient bd
k of the periodic expansion of {Ld(n)}∞

n=1 is
equal to:

bd
k =

{
μ( d

k ) if k | d,
0 if k � d.

(4.9)

Proof. If an =
∑r

i=1 miλ
n
i , where mi are integers and λi are some complex

numbers, then (cf. [25] (3.1.26)):

Zan
(z) =

r∏

i=1

(1 − λiz)−mi .

On the other hand, in our case each λi ∈ U(d), where U(d) denotes the
set of all primitive roots of unity of degree d and r = ϕ(d). As ϕ(d) is always
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even for d > 1, U(d) is closed for taking the inverses and in our case each
mi = 1, we get:

ZLd(n)(z) =
ϕ(d)∏

i=1

(λiz − 1)−1 =
ϕ(d)∏

i=1

(

z − 1
λi

)−1

=
ϕ(d)∏

i=1

(z − λi)−1 = ωd(z)−1.

On the other hand, the following well-known fact holds (cf. for example
[7]):

ωd(z)−1 =
∏

k|d
(1 − zk)−μ( d

k ). (4.10)

Applying the formula (4.3) for an = Ld(n) we get that

ZLd(n)(z) =
∞∏

k=1

(1 − zk)−bdk . (4.11)

Comparing the formulas (4.10) and (4.11) we get the equality (4.9). �

5. Periodic expansion of indices of iterates at periodic points
for Morse–Smale diffeomorphisms

Let us denote for short the derivative of f at x0 ∈ Fix(f) by D = Df(x0)
and by σ(D) its spectrum. By σ+ we denote the number of real eigenvalues
of D greater than 1 and by σ− the number of real eigenvalues of D less than
−1, in both cases counting with multiplicity. We consider hyperbolic maps
(i.e. maps having only hyperbolic periodic points). For a fixed point x0 we
get [4]:

ind(fn, x0) = sgn det(Id − Dn) =
{

(−1)σ+ if n is odd,
(−1)σ++σ− if n is even.

(5.1)

In dependence of parity of the values σ+, σ− and n, we obtain four
possibilities:

ind(fn, x0) =

⎧
⎪⎪⎨

⎪⎪⎩

reg1(n),
− reg1(n),
reg1(n) − reg2(n),
− reg1(n) + reg2(n).

(5.2)

Let us consider a point x0 with minimal period k and its orbit Ox0 =
{x0, f(x0), . . . , fk−1(x0)}. Then by (5.2) we obtain that there are only four
possible forms of indices for the orbit:

ind(fn, Ox0) =

⎧
⎪⎪⎨

⎪⎪⎩

regk(n),
− regk(n),
regk(n) − reg2k(n),
− regk(n) + reg2k(n).

(5.3)

There is a one-to-one correspondence between the sequences in (5.3)
and the forms of the Lefschetz zeta functions, namely the following relations
hold:
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Theorem 5.1.

(A) for an = l regk(n), Zan
(t) =

1
(1 − tk)l

.

(B) for an = l(regk(n) − reg2k(n)), Zan
(t) = (1 + tk)l.

Proof. We will consider each case separately:
(A) Let an = l regk(n); by Theorem 4.5 we have the following relation be-

tween sequences an and bn:

Zan
(t) = exp

( ∞∑

n=1

an

n
tn

)

= exp

( ∞∑

n=1

l regk(n)
n

tn

)

=
∞∏

n=1

(1 − tn)−l·bn ,

where bn = 1
n

∑
s|n μ(s)an

s
and we get by the definition of (regk)n that

bn is equal to 1 for n = k, and zero otherwise, which gives us the desired
form of Zan

(t).
(B) Let an = l(regk(n) − reg2k(n)); using the result from the previous case

we have

Zan
(t) = exp

(

l

∞∑

n=1

regk(n)
n

tn

)

exp

(

− l

∞∑

n=1

reg2k(n)
n

tn

)

=
(1 − t2k)l

(1 − tk)l

= (1 + tk)l.

�

6. The minimal set of Lefschetz periods expressed by periodic
expansions

By Lefschetz–Hopf formula we may represent the sequence of Lefschetz num-
bers in the following form:

L(fn) =
∑

x∈P(f)

ind(fn, x) =
∑

k

∑

O∈Orbk(f)

ind(fn, O), (6.1)

where Orbk(f) denotes the set of k-orbits of f and each O has the form
(5.3).

For j ∈ {1, 2, 3, 4} let us denote by cj
ri

an integer sequence that has one
of the forms of fixed point indices of an ri-orbit in (5.3), i.e.

cj
ri

(n) =

⎧
⎪⎪⎨

⎪⎪⎩

regri
(n), j = 1,

− regri
(n), j = 2,

regri
(n) − reg2ri

(n), j = 3,
− regri

(n) + reg2ri
(n), j = 4.

(6.2)

Proposition 6.1. The following formula holds:

MPerL(f) =
⋂

{r1, r2, . . . , rN(f)}, (6.3)

where the intersection is taken over all possible decompositions of
(L(fn))n given by the formula (6.1) into the sum of sequences of the form
(6.2).
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Proof. Each representation of Zf (t) in the form (3.6) (with the factors (1 +
Δit

ri)mi) is equivalent by Theorem 5.1 to the unique representation of
(L(fn))n as the sum of the sequences of the form (6.2) (with k = ri rep-
resenting the minimal period of an orbit). �

Theorem 6.2. The following formula holds:

MPerL(f) = {k : bk �= 0 in the periodic expansion (4.4) of L(fn))n} ∩ Odd,

(6.4)

where Odd denotes the set of odd natural numbers.

Proof. It is obvious that for odd k for which bk �= 0 in (4.4) we get that
k ∈ MPer(f). We show that there are no even numbers in MPer(f). Assume,
contrary to our claim, that there is an even ri = 2u in MPerL(f). Then for
every decomposition of L(fn) into (6.2) there must be the term cj

2u(n) for
some j. However, for j = 1 we have

c1
2u(n) = reg2u(n) = (reg2u(n) − regu(n)) + regu(n) = c4

u(n) + c2
u(n).

For j = 3 there is:

c3
2u(n) = reg2u(n) − reg4u(n) = (reg2u(n) − regu(n)) + regu(n) − reg4u(n) =

= c3
u(n) + c1

u(n) + c1
4u(n).

Analogously, for j = 2, 4 we obtain another decompositions of cj
2u(n), which

contradicts our assumption. �

Remark 6.3. Theorem 6.2 holds in fact for a larger class of maps, namely for
maps having finitely many periodic points, all of them hyperbolic. For a map
f in this class the sequence (L(fn))n is bounded (cf. [4]) and thus the only
non-zero eigenvalues of f∗ which give the contribution to (L(fn))n (i.e. have
different multiplicity in odd and even homology) are roots of unity [1]. As a
consequence, the analysis of such maps reduces to quasi-unipotent case.

7. Applications: the minimal sets of Lefschetz periods on Ng ,
a non-orientable compact surface without boundary of
genus g

Let us remind that Ng is homeomorphic with the connected sum of g real
projective planes and its homology groups are the following: H0(M, Q) = Q,
H2(M, Q) = 0 and

H1(M, Q) = Q ⊕ · · · ⊕ Q
︸ ︷︷ ︸

g−1

.

7.1. Realization of the minimal set of Lefschetz periods on Ng

Conjecture 7.1. Llibre and Sirvent [28] formulated the following conjecture:
can any finite set of odd positive integers be the minimal set of Lefschetz peri-
ods for a C1 Morse–Smale diffeomorphism on some non-orientable compact
surface without boundary with a convenient genus?
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We will show that there are no algebraic obstacles on the homology
which would prevent the validity of Conjecture 7.1.

Let d be a degree of some primitive root of unity; we take maximal m
such that 2m − 1 ≤ d and denote by cd the vector [bd

1, b
d
3, . . . , b

d
2m−1, 0, . . .],

where bd
k is given by the formula (4.9), i.e. bd

k =
{

μ( d
k ) if k | d,

0 if k � d.
.

Observe that for odd k there is bd
k = −b2d

k and as a consequence,

cd = −c2d. (7.1)

Theorem 7.2. The set Am = {c1, c3, c5, . . . , c(2m−1)} of m vectors is a basis
of Zm.

Proof. We identify cd with [bd
1, b

d
3 . . . , bd

2m−1]. Consider the matrix A com-
posed of vectors ci in rows:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1 b3 b5 . . . b2m−1

c1 ↔ reg1 1 0 0 . . . 0
c3 ↔ − reg1 + reg3 −1 1 0 . . . 0
c5 ↔ − reg1 + reg5 −1 0 1 . . . 0
...

...
...

...
. . .

...
c2m−1 ↔ . . . . . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= A.

Note that bd
d = μ(d

d ) = 1 and for i > d we have bd
i = 0. As a consequence,

the matrix A is lower triangular and detA = 1, so the set Am is a basis of
Zm. �
Theorem 7.3. For any finite set Gm = {a1, a3, . . . , a2m−1} of m integers there
exists quasi-unipotent map f∗ : H∗(Ng) → H∗(Ng) such that

(a) L(fn
∗ ) = tr(fn

∗0
) − tr(fn

∗1
) = −∑2(2m−1)

i=1 ai regi(n),
(b) MPerL(f∗) = {i : ai �= 0 ∧ ai ∈ Gm},

Proof. (a) Remind that by the formula (4.9) Lefschetz numbers of self-map
of Ng have the form

L(fn) = tr(fn
∗0

) − tr(fn
∗1

) = reg1 −
∑

i

∞∑

k=1

bdi

k regk(n).

We are searching for a homomorphism f∗ satisfying for each odd i the
equality:

L(fn
∗ ) = −

2m−1∑

i=1

ai regi(n) = reg1(n)
︸ ︷︷ ︸
tr(fn∗0

)

−
(

(a1 + 1) reg1(n) +
2m−1∑

i=2

ai regi(n)

)

︸ ︷︷ ︸
tr(fn∗1

)

.

Consider the vector [a1 + 1, a3, . . . , a2m−1] of odd indices of coefficients
coming from tr(f∗1). By Theorem 7.2 there exists unique representation
of this vector in the basis {c1, c3, . . . c2m−1} such that:

[a1 + 1, a3, . . . , a2m−1] =
m∑

i=1

mic
2i−1 =

m∑

i=1

|mi|cs(i)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Vol. 21 (2019) Periodic expansion in determining minimal sets Page 13 of 21 47

for s(i) =
{

2i − 1 if mi > 0,
2(2i − 1) if mi < 0,

where in the last equality we used

the relation (7.1). Now we define the map f∗1 represented by a diagonal
matrix of dimension

D =
m∑

i=1

|mi|ϕ(2i − 1), (7.2)

which have on the diagonal: |mi| copy of all primitive (2i − 1)-roots of
unity for each mi � 0, and |mi| copies 2(2i − 1)-roots of unity for each
mi < 0, where i = 1, . . . , m.

(b) follows directly from (a) and Theorem 6.2.
�

Remark 7.4. Let us notice that Conjecture 7.1 coincides with the item (b) of
Theorem 7.3, while item (a) is more general. What is more, it provides the
bound for the dimension of the realization (7.2) as well as the bound for the
highest degree of roots of unity needed in the realization (2(2m − 1)).

Corollary 7.5. Lefschetz zeta function of the realization f∗ has the following
form:

Zf∗(t) =
1

t − 1

∏

i

⎛

⎝
∏

q|s(i)
(1 − zq)−μ( s(i)

q )

⎞

⎠

|mi|

. (7.3)

Indeed, observe that Zf∗(t) = Zln(t), where ln = 1 −∑i |mi|Ls(i)(n).
Thus

Zf∗(t) =
1

t − 1

∏

i

(
ZLs(i)(t)

)|mi|
,

and by Theorem 4.11 we get the formula (7.3).

Remark 7.6. There is a “topological” part of Conjecture 7.1 which is still
unsolved. Namely, it remains an open question whether the quasi-unipotent
map f∗ found in Theorem 7.3 could be realized as a map that is induced by
some Morse–Smale diffeomorphism on Ng.

7.2. Algorithmic approach to determine the minimal sets of Lefschetz periods
for self-maps of Ng

In this section we describe a simple algorithm that enables us to determine
the minimal sets of Lefschetz periods for self-maps of Ng. As an application
we use a computer program based on this algorithm to verify MPerL(f) for
g < 10 found in [28] and to compute MPerL(f) for g ≥ 10.

We will sketch below the main scheme of the algorithm, while the de-
tailed description is placed in Appendix. The program for computation of
MPerL(f) based on the algorithm (in Mathematica) is available on the web-
page of Myszkowski.1

We assume that g > 1; otherwise the matrix f∗1 has the dimension 0
and the only possibility is MPerL(f) = {1}. The dimension of the matrix f∗1

1 http://www.mif.pg.gda.pl/homepages/amyszkowski/.
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is g − 1 and all eigenvalues are primitive di-roots of unity grouped in ϕ(di)
elements. Consequently g − 1 =

∑
i ϕ(di).

We define a finite family P of partitions Pj of the number g − 1 into
possible values of ϕ, i.e.

P =

{

Pj =
⋃

i

{di} : g − 1 =
∑

i

ϕ(di), di ∈ N

}

.

The next lemma allows us to find the bound for the number of elements
in the family P .

Lemma 7.7 (cf. [31]). Let ϕ be the Euler function. For all n ∈ N, with the
exception of n = 2, 4, 6, 10, 12, 18, 30 we have

ϕ(n) � nlog3 2.

Corollary 7.8. Let ϕ be the Euler function. For all n ∈ N we have

ϕ(n) �
(n

2

)log3 2

. (7.4)

By application of the inequality (7.4) we get that:

P =

{
⋃

i

{di} : g − 1 =
∑

i

ϕ(di), di � 2(g − 1)log2 3, di ∈ N

}

.

We can associate with each partition Pj (i.e. each set of degrees) the
corresponding sequence of Lefschetz numbers in the form of a periodic ex-
pansion:

L(fn) = 1 −
∑

di∈Pj

Ldi
(n) = reg1(n) −

∑

di∈Pj

∑

k

bdi

k regk(n),

where bdi

k are defined by the formula (4.9) of Theorem 4.9. By Theo-
rem 6.2 the set of minimal periods MPj

for a map corresponding to a group
of degrees Pj is

MPj
=

⎧
⎨

⎩
k :

|Pj |∑

i=1

adi

k �= 0, 2 � k, di ∈ Pj

⎫
⎬

⎭
, where adi

1 = bdi
1 − 1,

adi

k = bdi

k for k > 1.

Finally, the family of the minimal sets of Lefschetz periods MPerL(f)
over all f being Morse–Smale diffeomorphisms of Ng is given as follows:

MPerL =
|P |⋃

j=1

{MPj
}.
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Table 1. The family of all minimal sets of Lefschetz periods
for Morse–Smale diffeomorphism of N4

Pj L(fn) MPj
= MPerL(f)

{1, 3} reg1(n) − reg3(n) {1, 3}
{1, 4} reg2(n) − reg4(n) ∅
{1, 6} − reg1(n) + reg2(n) + reg3(n) − reg6(n) {1, 3}
{2, 3} 3 reg1(n) − reg2(n) − reg3(n) {1}
{2, 4} 2 reg1(n) − reg4(n) {1}
{2, 6} reg1(n) + reg3(n) − reg6(n) {1, 3}
{1, 1, 1} −2 reg1(n) {1}
{1, 1, 2} − reg2(n) ∅
{1, 2, 2} 2 reg1(n) − 2 reg2(n) {1}
MPerL {∅, {1}, {3}, {1, 3}}

Table 2. Selected calculations of the family MPerL of the
minimal sets of Lefschetz periods for Morse–Smale diffeo-
morphism of Ng computed on CPU: Phenom II x4 965

Genus MPerL Time of execution (s)

9 {{1}, {3}, {5}, {7}, {9}, {1, 3}, {1, 5},
{1, 7}, {1, 9}, {3, 5}, {3, 9}, {1, 3, 5},
{1, 3, 7}, {1, 3, 9}, {3, 5, 15}, {1, 3, 5,
15}}

0.00572536

10 {{}, {1}, {3}, {5}, {1, 3}, {1, 5}, {1, 7},
{1, 9}, {3, 5}, {3, 7}, {3, 9}, {1, 3, 5},
{1, 3, 7}, {1, 3, 9}, {1, 3, 5, 15}}

0.00690033

30 Number of lists: 363 0.986523
40 Number of lists: 1230 10.7953
50 Number of lists: 3568 117.685

Example 7.9. Let g = 4; then dim f∗1 = 3. There are 9 possible families Pj

of degrees of primitive roots of unity (each corresponding to some induced
map f∗). In Table 1 the set MPj

= MPerL(f) is described for each Pj and
MPerL is determined.

Comparing the results of Theorem 8 in [28] for g = 9 with the compu-
tations based on our algorithm (see Table 2) one can observe that in [28] the
case {3, 5} is omitted. We will show straightforwardly the realization of this
set in two ways.
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Consider f∗ that corresponds to the set {5, 6, 6} of degrees of primitive
roots of unity (satisfying the equation g − 1 = 8 = ϕ(5) + ϕ(6) + ϕ(6)). We
have in the terms of periodic expansion

L(fn) = reg1(n) − (L5(n) + L6(n) + L6(n)) = −2 reg2(n) − 2 reg3(n)
+ reg5(n) − 2 reg6(n)

and thus by Theorem 6.2 MPerL(f) = {3, 5}.
Alternatively, using the language of Lefschetz zeta function, we obtain

c5(t) =
1 − t5

1 − t
c6(t) =

1 + t3

1 + t
.

Thus. the zeta Lefschetz function for f has the possible forms

Zf (t) =
(1 + t3)2(1 − t5)

(1 − t2)2
=

(1 + t3)2(1 − t5)
(1 − t)2(1 + t)2

=
(1 + t3)2(1 − t5)

(1 − t)(1 + t)(1 − t2)
.

Finally, according to Definition 3.3 we get that MPerL(f) = {2, 3, 5} ∩
{1, 3, 5} ∩ {1, 2, 3, 5} = {3, 5}.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

8. Appendix: The algorithm for the determination of MPerL

For the sake of clarity we divided our algorithm into some steps (Algorithms
1-4 below). In Algorithm 1 we find the set ϕ(ϕ−1[1, g − 1]) by using the
function PhiV alues.

Algorithm 1: Algorithm for finding set ϕ(N) ∩ [1,m] = ϕ(ϕ−1[1,m]).

1 function PhiValues (m);
Input : Integer m � 1.
Output: List ϕ(ϕ−1[1,m]).

2 List phiV alues;

3 for i = 1 to �2m
log 3
log2 � do

4 if ϕ(i) � m then
5 add element ϕ(i) to list phiV alues;
6 end

7 end

8 return phiV alues;

Example 8.1. Input: m = 4; Output: PhiV alues(4) = {1, 2, 4}.

Algorithm 2 groups degrees of primitive roots of unity by their Euler
function value.
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Algorithm 2: Algorithm returns the list containing on nth position
the list of degrees of roots of unity for which the Euler function takes
value n.
1 function GroupedDegrees (m);

Input : Integer m � 1.
Output: List containing on the nth position the list of degrees of all

roots of unity for which the Euler function takes value
n ≤ m.

2 List groupedDegrees, listOfDegrees;
3 phiV alues = PhiV alues(m);
4 for n = 1 to Max(phiV alues) do

5 for i = 1 to �2m
log 3
log2 � do

6 if ϕ(i) == n AND i � 4 then
7 add element i to list listOfDegrees;
8 end

9 end

10 add list listOfDegrees to groupedDegrees;
11 clear listOfDegrees;
12 end

13 return groupedDegrees;

Example 8.2.

Input: m = 4; Output: {{ 1, 2
︸︷︷︸

ϕ(d)=1
d � 4

}, { 3, 6
︸︷︷︸

ϕ(d)=2
d � 4

}, {}
︸︷︷︸

ϕ(d)=3
d � 4

, { 5, 10
︸︷︷︸

ϕ(d)=4
d � 4

}.

Algorithm 3 determines a list of odd coefficients of bd
k for every integer

d from GroupedDegrees(m).
Note that ϕ(2k) = ϕ(2)ϕ(k) = ϕ(k) for odd number k. Hence we can

write them in the list of length max{PhiV alues(m)}/2

Algorithm 3: Algorithm returns the list of all possible odd indices
coefficients.
1 function GroupedCoef (m);

Input : Integer m.
Output: List containing on nth position the lists of lists of

coefficients with odd indices.
2 List groupedCoefficients;
3 groupedDegrees = GroupedDegrees(m);
4 for i = 1 to Max(PhiV alues(m))/2 do
5 add to groupedCoefficients a list of lists of coefficients

computed for every degree from i’th position of
groupedDegrees;

6 end

7 return groupedCoefficients
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Example 8.3. Input: m = 4; Output: {{{1, 0, 0}, {− 1, 0, 0}}, {{− 1, 1,
0}, {1, − 1, 0}}, {}, {{− 1, 0, 1}, {1, 0, − 1}}}.

Definition 8.4. Let A,B ⊂ Rn, the Minkowski sum of A and B is the set

{a + b : a ∈ A, b ∈ B}.

In the final Algorithm 4 we will use some well-known functions intro-
duced below:

• MinkowskiSum(A,B) which calculates Minkowski sum of the lists A,
B. (for example MinkowskiSum({{1, 2}, {3, 4}}, {{5, 6}}) = {{6, 8},
{8, 10}}),

• IntegerPartitions(m,A) which gives the list of all possible partitions
of an integer m into the sum of integers from the list A,
(for example IntegerPartitions(4, {1, 2, 4}) = {{4}, {2, 2}, {2, 1, 1},
{1, 1, 1, 1}}),

• ChangeToOdd which changes the number n to 2n − 1 (for example
ChangeToOdd(3) = 5).

Algorithm 4: Algorithm returns the family of the minimal sets of
Lefschetz periods for self-map f of Ng.

1 function MPer (g);
Input : Integer g > 1.
Output: List of all possible minimal sets of Lefschetz periods for

self-map f of Ng.
2 m = g − 1;
3 P = IntegerPartitions(m,PhiV alues(m));
4 groupedCoefficients = GroupedCoefficients(m);
5 List LefschetzCoef,mSum,MPerL,MPi

, nonZeroIndices;
6 for i = 1 to Length(P ) do
7 for j = 1 to Length(P [i]) do
8 mSum =

MinkowskiSum(mSum, groupedCoefficients
[
P [i][j]

]
);

9 end

10 LefschetzCoef = {{1, 0, . . . , 0}} − mSum;
11 nonZeroIndices is list of lists of non-zero indices from

LefschetzCoef ;
12 MPi

= ChangeToOdd(nonZeroIndices) ;
13 add to MPerL list MPi

;
14 end

15 return MPerL;

Example 8.5. Input: g = 5; Output: {{1}, {3}, {5}, {1, 3}, {1, 5}}.
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[2] Barge, H., Wójcik, K.: Mayer–Vietoris property of the fixed point index. Topol.
Methods Nonlinear Anal. 50(2), 643–667 (2017)
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