Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 159 (2019) 2249-2257

www.elsevier.com/locate/procedia

23rd International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Visual content representation and retrieval for Cognitive Cyber
Physical Systems

Caterine Silva de Oliveira®**, Cesar Sanin®, Edward Szczerbicki®

“ The University of Newcastle, University Drive, Callaghan, NSW 2208, Australia
b Gdansk University of Technology, Gdansk, Poland

Abstract

Cognitive Cyber Physical Systems (C-CPS) have gained significant attention from academia and industry during the past few years.
One of the main reasons behind this interest is the potential of such technologies to revolutionize human life since they intend to
work robustly under complex visual scenes, which environmental conditions may vary, adapting to a comprehensive range of
unforeseen changes, and exhibiting prospective behavior like predicting possible events based on cognitive capabilities that are
able to sense, analyze, and act based on their analysis results. However, perceiving the environment and translating it into
knowledge to be useful for the decision making process, still remains a challenge for real time applications due to the complexity
of such process. In this paper, we present a multi-domain knowledge structure based on experience, which can be used as a
comprehensive embedded knowledge representation for C-CPS, addressing the representation of visual content issue and
facilitating its reuse. The implementation of such representation has been tested in a Cognitive Vision Platform for Hazard Control
(CVP-HC) which aims to manage of workers’ exposure to risks in industrial environments, facilitating knowledge engineering
processes through a flexible and adaptable implementation.
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1. Introduction

With the advance of Internet of Things, big data analysis, wearable devices and cloud computing, Cyber-Physical
Systems (CPS) have been widely used. Applications such as smart grid, environment monitoring, surveillance,
vehicular networks, and industrial control and automation applications make use of cognitive methods to improve the
system performance and are known as Cognitive Cyber-Physical Systems (C-CPS). C-CPS contain nodes with
cognitive capabilities that are able to sense, analyze the environment, and act based on their analysis results. In addition
it contains the cyber physical element which enables interconnection of all elements of a given process [1].

In Cognitive Cyber-Physical Systems, knowledge and learning are central elements for the decision making process
[2]. To be readily articulated, codified, accessed and shared across interconnected elements and platforms, knowledge
must be represented in an explicit and structured way [3]. This is not a trivial task given the nature of knowledge
itself, and the different source of information needed to be synthesized to generate and represent this knowledge. In
addition, decision making can only be improved by human interference or if the system has autonomous learning
capabilities. In both ways, past experiences are taking in consideration. Therefore, to build an advanced C-CPS, past
experience must also be part of the represented knowledge.

However, C-CPS with those characteristics still remains a challenge [4]. To our acquaintance, numerous groups of
research have proposed smart cognitive system applications [5]; nonetheless, most of these methodologies oversight
the potential of using experience that grows continuously over real time operation and that might enrich the application
with smartness while, at the same time, creating decisional fingerprints. This single concept allows the system
knowledge growth through daily operation autonomously, just like human experience do in real life as well as
facilitates its sharing across different platforms.

Several researchers have identified that the starting point is to establish an image/video knowledge representation
for cognitive vision technologies. However, among all proposed approaches found, even though they present some
principles for intelligent cognitive vision, none of them provide a unique standard that could integrate image/video
modularization and virtualization, together with information from other sources (wearable sensors, machine signals,
context, etc.) and capture its knowledge [6]. Consequently, we propose to address these issues with an experience-
based technology that allows a standardization of image/video and the entities within, together with any other
information as a multi-source knowledge representation (required for the further development of cognitive systems)
without limiting their operations to a specific domain and/or following a vendor’s specification. Our representation
supports mechanisms for storing, reusing and sharing experience gained during decision-making processes through a
unique, dynamic, and single structure called Decisional DNA (DDNA). DDNA makes use of Set of Experience (SOE),
which has been used for several different domains and has now been extended for the use of formal decision events
related to image and video [7]. DDNA and SOE provide a knowledge structure that has been proven to be multi-
domain independent; and therefore, suitable for use in Cognitive Cyber-Physical Systems [8, 9].

This paper is organized as follows: In Section 2, some fundamental concepts are presented with special focus on
raw pixel, feature vector and annotations as well as SOEKS and DDNA. In Section 3 the Knowledge Representation
using SOEKS and DDNA to address the visual content representation is introduced. In Section 4 the implementation
of the proposed representation in a Cognitive Vision Platform for Hazard Control (CVP-HC) is explained. Finally, in
Section 5 conclusions and future work are given.

2. Fundamental Concepts

In order to offer a more complete view, we briefly introduce concepts that have driven the proposed research as
well as the technologies involved.

2.1. Raw Pixel Values
Recent years have seen a quick increase in the size of digital image collections. Daily, both military and civilian

equipment generates gigabytes of images data [10]. However, this data cannot be easily accessed or made use of,
unless it is organized so as to allow efficient browsing, searching, and retrieval [11].
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Organizing visual information digitally to facilitate search and potentially reuse is a challenging task. This process
may include a subset of procedures such as images collection, cleaning, standardization, structuring, indexing, and
grouping. The difficulty to organize visual content increases exponentially as the dataset grows, and how exactly such
data can be harnessed and structured for easy access remains a critical problem for large-scale platforms designers
[12]. For Cognitive Cyber Physical Systems, the representation in this case plays a very important role as it must
ensure preservation of visual content, and at the same time enabling its search and retrieval in real time.

In this context, uncompressed raw intensity value of each pixel is useful for machine learning and computer vision
applications once they mostly need direct access to the pixel data without the burden of the complex computations
required to determine the location of pixels within a compressed data stream [13]. This also simplifies reading and
displaying the images by dealing with pixel data directly, speeding up retrieval process. Furthermore, raw intensities
values can achieve surprisingly high recognition rates in computer vision applications when used directly as input of,
for instance, Deep Neural Networks [14].

On the other hand, comparison of image samples based on raw pixel data can be very computationally expensive,
and impractical for real time applications. Instead, dimensionality reduction is used to improve the computational
efficiency. These steps are closely related: representing an image by a high-dimensional vector usually provides better
exhaustive search results than with a low-dimensional one and is also better in preserving the visual information.
However, high dimensional vectors are more difficult search efficiently. In contrast, a low dimensional vector is more
easily compared with other vectors and can accelerate the searching process, but its discriminative power is lower and
might not be sufficient for recognizing objects or scenes (loss of visual information) [15].

2.2. Vector of selected features

To reduce the dimension of the vectors for searching purposes, feature selection methods is usually used, such as,
Principal Component Analysis (PCA) [16], supervised Linear Discriminant Analysis (LDA) [17], mRMR [18], among
others. However, the best methodology for feature selection depends on the characteristics of the image and
application. For instance, PCA and LDA are popular due to their simplicity and effectiveness. However, PCA and
LDA may fail to discover essential data structures that are nonlinear [19]. For systems that aim generality and
knowledge sharing this result in an impasse: the platform should enable the implementation of the method the suits
the given application the best, but the subset of features generated by each methodology may differ from each other
which compromise the comparison and reuse of that experience.

In fact, feature selection is a growing research area, and the competence of new methods in generating more
compact and meaningful set of features is increasing every year. To demonstrate the growing interest of researchers
in this topic along the years we have collected information about published papers in this field for the past 50 years
that have been indexed by Google Scholar [20] (Fig. 1), which main topic was found to be Feature Selection.
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Fig. 1. History of papers indexed by Google Scholar with Feature Selection as main topic.
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Fig. 1 only gives an estimation of this growing interest in Feature Selection field, but it is a reasonable evidence
that notable advances can be expected in this field for the next years. For that reason, general systems may not adhere
to any of those methodologies in specific, but instead, give support for their concurrence in the same application or
facilitate the migration from one technology to another across different platforms.

2.3. Annotation Representation

High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually
difficult and expensive to produce because of the large amount of time needed to label the data [21]. Many advances,
such as data modeling, multidimensional indexing, and query evaluation, have been made along this research direction
[22]. However, there are three major problems, especially when the size of image collections is very large. One is the
enormous amount of labor required for manual image annotation [23]. Another difficulty, which is more essential,
results from the rich content in the images and the subjectivity of human perception. That is, for the same image
content different people may perceive it differently, especially if annotating images for different purposes and
applications. The perception subjectivity and annotation impreciseness may cause unrecoverable mismatches in later
retrieval processes and duplication of image content [24]. Finally, the last one is the lack of structured and standardized
annotation that can be represented together with the image content (or easily coupled), giving support for the
comparison and integration of different annotations into one single structure when a duplicated image content is found.

2.4. Set of Experience and Decisional DNA

The Set of Experience Knowledge Structure (SOEKS) is a knowledge representation designed to acquire and store
formal decision events as experiences in a structured form. It is based on four key basic elements: variables, functions,
constraints, and rules. Variables are in general used to represent knowledge in an attribute-value form, following the
traditional approach for knowledge representation. Given that, the set of Functions, Constraints, and Rules of SOEKS
are different ways of relating those variables. It is safe to say that variables are the central component of the entire
knowledge structure. Functions define relations between a dependent variable and a set of input variables; thus,
SOEKS uses functions as a way to create associations among variables and to build multi-objective goals. Likewise,
constraints are functions that act as a way to limit the space of possibilities, or set of possible solutions and control the
performance of the system in relation to its goals. Lastly, rules are relationships that operate in the universe of variables
and express the condition-consequence connection as “if-then-else” and are used to represent inferences and associate
actions with the conditions under which they should be implemented [8].

The Decisional DNA is a structure which has the capability of capturing decisional fingerprints of an individual or
organization and has the SOEKS as its basis. Multiple Sets of Experience can be gathered, classified, organized and
then grouped into decisional chromosomes, which accumulate decisional strategies for a specific area. The set of
chromosomes comprise, finally, what is called the Decisional DNA (DDNA) of the organization [9].

3. Knowledge representation for visual content using SOEKS and DDNA

Choosing the most appropriate and effective formalization of knowledge for a given system is not trivial, and the
consideration of using SOEKS can be founded in the fact that experience must considered if the objective is to mimic
the human intelligence capabilities [2]. Therefore, SOEKS has been extended to the visual domain and used as carrier
for decision making in Cognitive Cyber Physical Systems.

To preserve the visual content and also accelerate the retrieval process, in the proposed representation we include
a minimally processed image pixel field cvalue, which contains the image pixel data I, and is the starting value of the
visual variable before being optimized:

cvalue 3 I, (1)

To ensure efficiency in terms of search and indexing, and at the same time preserving generality, our representation
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also has the optimized image evalue (which includes the set of selected features I.). The feature selection methodology
and specifications is included in the header of the SOE for searching and indexing purposes:

evalue 3 1, 2)

In this representation, images and the annotations (or detections), which are labeled bounding boxes coordinates of
the objects or regions of interest (ROIs), are represented together. By coupling images and annotations, the sharing
and reuse of these experiences may be facilitated, avoiding duplication of samples as well as promoting generation of
new knowledge by the fusion of different annotations in one single image.

The framework representing the capture of visual content (from datasets or when the system is running in real
time), its update for the generation of the optimized evalue as well as retrieval (in the presented case for user’s feedback
purposes) is represented in Fig. 3.

Image from Image Database
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SOEKS representation
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Extract Feature
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Capture
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Fig. 3. Process of creation and update of experiences.

The explicitly represented knowledge in a SOEKS format may be used for three main purposes in general C-CPS.
Firstly to promote code and knowledge reuse. Also, when facing a situation that has happened in the past the system
may recommend a decision based on past experiences. In addition, in case of unexpected or unknown events where
the given solution has not been found by user’s feedback as an optimal solution, this new generated experience may
be incorporated in the DDNA repository and used to retrain the system, thus improving the decision making process.

4. CVP-HC: Preciseness, uncertainty and creation of new knowledge

For the purpose of demonstrating the SOEKS representation for images, we embed this structure in a Cognitive
Vision System (which could also be extended to Cognitive-CPS), enabling the representation of visual content together
with contents from other domains (textual, sensorial etc), and giving support to its reuse. The knowledge retrieval is
facilitated by taking into account the preciseness and uncertainty of each generated experience. These metrics are part
of the SOEKS and used for calculation of similarity between new experiences gathered by the system and existing
ones. By calculating similarity, we avoid replication of samples, improve the intelligence capabilities of the system
by learning actively [25], and build a unique DDNA for each company’s application as the system runs.
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In addition, for the visual information in specific, the content of manual annotation is subject to human perception
and application focus of interest. That is, for the same image content some people may perceive objects and regions
that might have been unnoticed by others, especially if those entities are not relevant for system application in analysis.
In this case, new knowledge may be generated by the fusion of similar image content but different annotated regions
or objects.

The implementation of such representation and an example of how to define the preciseness and uncertainty of
experiences composed by images and annotations has been tested in a Cognitive Vision Platform for Hazard Control
(CVP-HC) that identify workers’ exposure to risks in industrial environments, in special by the non-use of personal
protective equipment. For this tests that have been performed, a set of 2500 images containing or not replicated
samples and similar or not annotated regions have been represented as a SOEKS. For dimensionality reduction, PCA
has been applied and a simple Euclidian distance [26] used to calculate the similarity between samples by a given
precision. Results has shown gain in computational efficiency of search when a dimensionality reduction is applied,
which justify the importance of having such selected features in the representation. On the other hand, time is the
retrieving process is saved by keeping the original pixel values (once the transformation of the selected feature vector
into pixel values are necessary for visualization purposes). Finally the capacity of the system to generate new and rich
visual knowledge is achieved by including the annotation together with visual content in the same structure.

4.1. Dimensionality reduction search efficiency
PCA as any dimensionality reduction method is used to estimate how many components from the original pixel

vector representation are needed to describe the giving data [16]. This can be determined by looking at the cumulative
explained variance ratio as a function of the number of components of the dataset, as presented in Fig 4.
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Fig. 4: Cumulative explained variance for the first N components of the sample dataset using PCA.

The values obtained quantifies how much of the total of a small 64 x 36-dimensional image is contained within the
first N components. For example, we see that the first ~500 components contain approximately 95% of the variance
(and a reduction of 80% of the initial image vector size), while over 2,000 components would be necessary to describe
close to 100% of the variance (Fig. 4).This value gives a good estimate for uncertainty of that reduced representation,
once it is an estimation of how much information from the initial raw data has been kept to describe that image. The
chosen value of uncertainty (for instance 95%) is stored as part of the experience and will be used to define how many
components will be kept in the optimized value for next collected experiences.

Using a simple Euclidian distance, we calculated computational costs in terms of time (Fig. 5-a) in relation to the
reduced number of components as well as in relation to the cumulative explained variance (Fig. 5-b).


http://mostwiedzy.pl

/\/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

J—

Caterine Silva de Oliveira et al. / Procedia Computer Science 159 (2019) 2249-2257 2255

1200 10

1000

=
o

OO

number of components
2
=
= =
s @

cumulative explained variance
=
I

[u] 2 4 i} B 10 12 14 Ju] 2 4 i} & 10 12 14
time(s) time(s)

(a) (b)

Fig. 5: Time processing in terms of number of components (a) and cumulative explained variance (b).

We can observe from Fig. 5 that, for a reduced vector composed by the 500 most relevant components (95%
cumulative explained variance) when compared to the original vector size as results has shown a reduction of 30% of
computational time.

4.2. Annotation and creation of new knowledge

In addition to the uncertainty for the calculation of the visual content similarity, preciseness is also a metric used
to define to which extent an experience can be consider similar or equal to another. Similar experiences can be pruned
to improve the intelligence of system by learning actively [25]. Moreover, by the pre-definition of preciseness,
annotations can be joined into one single structure when the image inputs are considered highly similar or equal;
therefore, resulting in the creation of new knowledge (Fig. 6).

Fig 6. Generation of new knowledge by the combination of annotations from highly similar image inputs.
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5. Conclusions and Future work

The paper presents a knowledge representation for visual content in Cognitive Cyber Physical Systems (C-CPS).
For the purpose of demonstrating the SOEKS representation for images, we embed this structure in a Cognitive Vision
System, enabling the representation of visual content together with contents from other domains (textual, sensorial
etc), and giving support to its reuse. The knowledge retrieval is facilitated by taking into account the preciseness and
uncertainty of each generated experience. These metrics are part of the SOEKS and used for calculation of similarity
between new experiences gathered by the system and existing ones. By calculating similarity, we avoid replication of
samples, improve the intelligence capabilities of the system by learning actively, and build a unique DDNA for each
company’s application as the system runs (without compromising the platform generality).

In addition, for the visual information in specific, the content of manual annotation is subject to human perception
and application focus of interest. In this case, new knowledge may be generated by the fusion of similar image content
but different annotated regions or objects. Conflicting regions of interest (different annotations labels for same areas
or objects) still has to be solved manually by the user.

The representation for images discussed in this paper will be evaluated for other sensorial data. Suitability of
reusing experiences will also be explored for different case scenarios and the automation of decision making for
conflicting annotations labels and regions will be further assessed.
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