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Abstract—In this paper, we investigate an acceleration of
the discrete Green’s function (DGF) formulation of the FDTD
method (DGF-FDTD) with the use of recurrence schemes. The
DGF-FDTD method allows one to compute FDTD solutions as
a convolution of the excitation with the DGF kernel. Hence, it
does not require to execute a leapfrog time-stepping scheme in
a whole computational domain for this purpose. Until recently,
the DGF generation has been the limiting step of DGF-FDTD
due to large computational resources, in terms of processor
time and memory, required for these computations. Hence, we
have derived the no-neighbours recurrence scheme for one-
dimensional FDTD-compatible DGF using solely properties of the
Gauss hypergeometric function (GHF). Using known properties
of GHF, the recurrence scheme is obtained for arbitrary stable
time-step size. In this paper, we show that using the recurrence
scheme, computations of 1-D FDTD solutions with the use of the
DGF-FDTD method can be around an order of magnitude faster
than those based on the direct FDTD method. Although 2- and
3-D recurrence schemes for DGF (valid not only for the magic
time-step size) still need to be derived, the 1-D case remains the
starting point for any research in this area.

Index Terms—computational electromagnetics, Green’s func-

tion methods, finite-difference time-domain methods.

I. INTRODUCTION

The discrete Green’s function (DGF) is a kernel of the

convolution computations that allows one to obtain the same

solutions as those from the FDTD method [1]. Due to its

promising properties, DGF is investigated for many years [2],

[3], [4], [5], [6], [7], [8]. Contrary to the discretization of

the continuous Green’s function, DGF-based solutions have

properties characterized by dispersion, anisotropy and stability

properties of the FDTD method. Hence, it is identified that

DGF can open new prospects for the hybridization of FDTD

with the use of integral-equation methods. The applications of

DGF in the FDTD method includes antenna simulations [2],

[3], FDTD simulations on disjoint domains [9], DGF-FDTD

hybrid simulations [10] and absorbing boundary conditions for

FDTD [4].

Until recently, multiple-precision arithmetic (MPA) [11] has

been required for the DGF generation, which consumes large

computing resources in terms of processor time and memory.

Therefore, possibilities for the DGF generation with the use

of the recurrence schemes are investigated. Recently, such

recurrence schemes [12], [13] have been proposed. Using

the creative-telescoping technique implemented in a symbolic

mathematics software, the recurrence schemes are obtained

without deep understanding of mathematical functions behind

it. Moreover, these results are obtained for the magic time-step

size [1] only, which is not treated as stable in real simulations

[14], [15]. Usually, the time-step size is slightly reduced below

the Courant stability limit (e.g., by multiplying limiting value

of the time-step size by 0.99) to avoid stability issues in

practical simulations.

In [16], we derive the no-neighbours recurrence scheme for

one-dimensional (1-D) FDTD-compatible DGF using solely

properties of the Gauss hypergeometric function (GHF). Scalar

DGF is represented by GHF and using known properties of

GHF, the recurrence scheme is obtained for arbitrary stable

time-step size. In this paper, we evaluate accelerations of

FDTD computations that are possible to obtain with the use

of our recurrence scheme. Although 2- and 3-D recurrence

schemes for DGF (valid not only for the magic time-step size)

still need to be derived, the 1-D case represents the starting

point for any research in this area.

II. DGF-FDTD METHOD

Let us consider the 1-D wave propagation along the z

direction in the FDTD mesh. DGF allows one to represent

1-D FDTD update equations with the use of the convolution

formulation

[

En
k

Hn
k

]

=
∑

n′k′

[

Gee
n−n′

k−k′ Geh
n−n′

k−k′

Ghe
n−n′

k−k′ Ghh
n−n′

k−k′

]

·
[

Jn′

k′

Mn′

k′

]

(1)

where E and H denote respectively electric- and magnetic-

field vectors, J and M denote respectively electric- and

magnetic-current source vectors, and n and k denote respec-

tively temporal and spatial indices of the FDTD mesh. Gee,
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Geh, Ghe, Ghh functions can be obtained for the free space

as follows:

Gee
n
k = −

∆t

ǫ0

(

gnk − gn−1
k

)

Geh
n
k = ∆zγ2

(

gnk − gnk−1

)

Ghe
n
k = ∆zγ2

(

gnk+1 − gnk
)

Ghh
n
k = −

∆t

µ0

(

gn+1
k − gnk

)

(2)

where ǫ0 and µ0 denote respectively permittivity and perme-

ability of the free space, and ∆t and ∆z denote respectively

temporal- and spatial-step size. 1-D scalar DGF can be com-

puted with the use of the following formula [8]:

gnk =

n−1
∑

m=k

γ2m

(

m+ n

2m+ 1

)(

2m

m+ k

)

(−1)m+k (3)

where γ = c∆t
∆z

(c =
(√

µ0ǫ0
)

−1
) denotes the Courant

number that must be less than or equal to one (γ ≤ 1) to

guarantee stability of computations. Scalar DGF (3) requires

MPA computations for large indices in binomial coefficients,

hence applicability of this formula is limited.

III. RECURRENCE SCHEME

Taking into consideration the formula (2) for calculation of

Gee
n
k and scalar DGF formula (3), one obtains

Gee
n
k = −γ2k ∆t

ǫ0

(

∑n−k−1
j=0 (−1)jγ2j

(

n+k+j−1
2k+2j

)(

2k+2j
2k+j

)

)

= −γ2k ∆t
ǫ0

(
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j=0

(−γ2)j

j!
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(n−k−1−j)!(2k+j)!

)

= −γ2k ∆t
ǫ0

(n+k−1)!
(n−k−1)!(2k)!

(
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= −γ2k ∆t
ǫ0

(n+k−1)!
(n−k−1)!(2k)! ×

2F1(n+ k, k − n+ 1, 2k + 1; γ2) (4)

where (z)j = z ·(z+1)·...·(z+j−1) denotes the Pochhammer

symbol (see Formula (1.5) in [17]) and 2F1(a, b, c; z) denotes

GHF [17].

Our aim is to employ Gauss contiguous relations [18] to

(4). According to [19] and [20], one can find a linear rela-

tion between any three contiguous hypergeometric functions.

Hence, one obtains

b(c−a)
(a−1−b) 2F1(a− 1, b+ 1, c; z) +

a(c−b)
(a+1−b) 2F1(a+ 1, b− 1, c; z) +

(

c− 2a+ (a− b)z + a(a+1−c)
(a+1−b) + (a−1)(a−c)

(a−1−b)

)

×

2F1(a, b, c; z) = 0. (5)

We are interested in values of 2F1(n+k, k−n+1, 2k+1; γ2)
for fixed k ∈ Z, hence the above relation is transformed into

the formula with z = γ2, a = n + k, b = k − n + 1 and

c = 2k + 1

(k−n+1)2

(2n−2) g(n− 1) + (n+k)2

2n g(n+ 1) +
(

1− 2n+ (2n− 1)γ2 + (n+k)(n−k)
2n +

(n+k−1)(n−k−1)
(2n−2)

)

g(n) = 0. (6)

Taking into account that

g(n) = −Gee
n
kγ

−2k ǫ0

∆t

(n− k − 1)!(2k)!

(n+ k − 1)!
(7)

one obtains the recurrence scheme as follows:

Gee
n
k = − (n−k−2)(n−1)(n+k−2)

(n−2)(n+k−1)(n−k−1)Gee
n−2
k

−
(

2(n−1)(3−2n)
(n+k−1)(n−k−1) +

2(n−1)(2n−3)
(n+k−1)(n−k−1)γ

2 + 1

+ (n−1)(n+k−2)(n−k−2)
(n−2)(n+k−1)(n−k−1)

)

Gee
n−1
k . (8)

The initial values for the recurrence may be found directly

from (2), (3) for n = k + 1 and n = k + 2 as

Gee
k+1
k = −γ2k∆t

ǫ0
(9)

Gee
k+2
k = −γ2k∆t

ǫ0

(

2k + 1− (2k + 2)γ2
)

. (10)

Eq. (8) enables fast generation of time-domain Gee waveforms

for fixed spatial position k. Using (2), the scalar DGF wave-

form and dyadic DGF components (i.e., Geh, Ghe, Ghh) can

be computed.

IV. NUMERICAL RESULTS

Codes implementing DGF generation with the use of the

formula (3) requiring MPA computations, the recurrence

scheme (8) and the direct FDTD method are developed in

C programming language. Final results of computations are

obtained in double floating-point precision. Benchmarks are

executed on a single Intel i7 core (i7-7700 CPU @ 3.60GHz).

In the presented results, Courant number is set to γ = 0.9.

Numerical results are presented for varying position k of an

observation point and DGF waveform length L. Since the

value of the scalar DGF waveform is equal to zero up to

n = k + 1, L denotes the waveform length after wave-

front arrival to the observation point. That is, the total FDTD

simulation time is set to k+L for the DGF generation in our

benchmarks. In the FDTD reference computations, the position

of the source exciting the domain is set to k = 0 and the FDTD

domain is symmetrical. Furthermore, the length of the domain

in the FDTD reference computations is minimal allowing us to

avoid reflections from domain boundaries in simulation results.

For DGF generation with the use of formula (3) requiring

MPA, the precision of the floating-point computations is set

to 4096 bits.

In Fig. 1(a), the electric field E is presented for excitation

of the FDTD mesh with the use of the harmonic current source

Jn
0 (frequency set to 3.175 GHz). The results are computed as
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Fig. 1. Simulation results (k = 100. L = 500) for FDTD and DGF-FDTD:
(a) waveforms, (b) numerical error.

the convolution of the source with DGF and using the direct

FDTD method for sufficiently long domain. The observation

point and the waveform length are respectively set to k = 100
and L = 500. The obtained waveforms closely overlap, hence,

the difference between both waveforms is studied in detail

in Fig. 1(b). As seen, the difference is around the numerical

noise level (-300 dB), which confirms the correctness of the

developed codes.

In Fig. 2, computing times are presented for the generation

of Gee DGF with the use of the formula (3) requiring MPA,

the recurrence scheme (8) and the direct FDTD method. In

this benchmark, the position of observation point is set to

(a) k = 100, (b) k = 300, (c) k = 500 whereas the length

of the DGF waveform L is varied. In all cases, the time of

the DGF generation increases when the waveform length is

increased. However, the increase of computing times is the

highest for the formula (3) requiring MPA computations and

approaches three orders of magnitude of CPU time for the

DGF waveform length increased from L = 40 to L = 500.

The CPU-time requirement is the lowest for the recurrence

scheme (8) because it does not include overhead related to

computations before the wave-front arrival to the observation

point (n < k). For the considered cases (a)–(c), the generation

of the DGF waveform with the use of the recurrence scheme

(8) is two/thee orders of magnitude faster than the direct FDTD

method.

In Fig. 3, Gee DGF computing times are presented for

varying position of the observation point k and the length

of the DGF waveform set to (a) L = 300, (b) L = 400, (c)

L = 500. For the direct FDTD method, the computing time

increases when the distance from source k is increased. It

stems from increase of the FDTD domain size required to

generate DGF without reflections from boundaries. On the

other hand, the DGF generation methods based on the formula

(3) and the recurrence scheme (8) require constant processor

time when the position of observation point k is varied. For
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Fig. 2. DGF computation times for (a) k = 100, (b) k = 300, (c) k = 500

and varying length of the DGF waveform L.

the considered 1-D cases (a)–(c), the generation of the DGF

waveform with the use of the recurrence scheme (8) is two

orders of magnitude faster than the direct FDTD method and

four orders of magnitude faster than the method based on

formula (3) requiring MPA.

In the next benchmarks, electric fields are computed for

excitation of the FDTD mesh with the use of the harmonic

current source Jn
0 (frequency set to 3.175 GHz). The results

are computed as the convolution of the source with DGF and

using the direct FDTD method. DGF is computed with the use

of the recurrence scheme (8). In Fig. 4, computing times are

presented for the computation of electric field in the FDTD

mesh when the position of observation point is set to (a) k =
100, (b) k = 300, (c) k = 500 and the length of the DGF
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Fig. 3. DGF computation times for (a) L = 300, (b) L = 400, (c) L = 500

and varying position of observation point k.

waveform L is varied. In Fig. 5, computing times are presented

for varying position of observation point k whilst the length

of the DGF waveform is set to (a) L = 300, (b) L = 400,

(c) L = 500. In these benchmarks, the method based on the

recurrence scheme is around a single order of magnitude faster

than the direct FDTD method. This acceleration results mainly

from the FDTD overhead related to computations before the

wave-front arrival to the observation point (n < k). Although

convolution computations slow down DGF-FDTD, it is still

possible to obtain FDTD-compatible simulation results faster

than by using direct FDTD.

V. CONCLUSION

In this paper, a new approach to the generation of the 1-D

FDTD-compatible DGF is presented that employs recurrence
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Fig. 4. Computation times for (a) k = 100, (b) k = 300, (c) k = 500 and
varying length of the DGF waveform L.

scheme. It is valid not only for the magic time-step size but

also for an arbitrary stable value of the Courant number.

Computations of 1-D FDTD solutions with the use of the

DGF-FDTD method can be around an order of magnitude

faster than those based on the direct FDTD method. Our

further research steps are directed towards the DGF generation

in the 2-D case.
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