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Abstract 

The present investigation is focused on the buckling behavior of strain gradient nonlocal beam 

embedded in Winkler elastic foundation. The first order strain gradient model has been combined 

with the Euler-Bernoulli beam theory to formulate the proposed model using Hamilton’s principle. 

Three numerically efficient methods namely Haar Wavelet Method (HWM), Higher Order Haar 

Wavelet Method (HOHWM), and Differential Quadrature Method (DQM) are employed to 

analyze the buckling characteristics of the strain gradient nonlocal beam. The impacts of several 

parameters such as nonlocal parameter, strain gradient parameter, and Winkler modulus parameter 

on critical buckling loads are studied effectively. The basic ideas of the numerical methods Viz. 

HWM, HOHWM, and DQM are presented comprehensively. Also, a comparative study has been 

conducted to explore the effectiveness and applicability of all the three numerical methods in terms 
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of convergence study. Finally, the results, obtained by this investigation, are validated properly 

with other works published earlier. 
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1. Introduction 

Nowadays, numerical methods and algorithms have come to help the engineers and researchers to 

open the way for solving complex scientific problems such as molecular structural analysis, 

meteorology and weather forecasting, systems dynamics, and many other essential topics. In 

general, numerical calculations use the practical results of computing to find new ways to analyze 

problems. In engineering problems, the analysis of structures using modern numerical methods is 

one of the most widely used problems [1].  

More recently, the mechanical and structural analysis of nanostructures due to their widespread 

applications with the help of modern numerical methods has received much attention [2-25]. 

Among these numerical methods, the Haar wavelet method [26-28] and higher-order Haar wavelet 

method [29-30] and also differential quadrature method [31-33] are among the advanced numerical 

methods with excellent precision. The wavelet is a special series of functions that are now known 

as the first wavelet. This series was presented as the simplest type of the wavelet first introduced 

by Alfred Haar in 1909. Mathematically, the wavelet is a set of fixed piece functions that can 

approximate a function. Among the published papers, Hein and Feklistova [34] investigated Haar 

wavelets to study free vibrations of non-uniform and axially functionally graded beams under 

different boundary conditions. They transformed their equations based on the simplest wavelets. 

Their results were appropriately matched with the other presented works. Lepik [35] based on the 

Euler-Bernoulli beam model, studied an elastic local beam containing a crack subjected to a 

longitudinal in-plane load based on the Haar wavelet method. His results proved the high accuracy 

of the Haar wavelet method. Kirs et al. [36] analyzed dynamically a nonlocal Euler-Bernoulli beam 

model based on the Haar wavelets. They also carried out three boundary conditions, namely pined-

pined, clamped-clamped, and clamped-pined ones. 

As it has been seen so far, the properties of materials such as their energy at the nanoscale vary 

with their large-scale state. However, the size reduction is a physical change, and it is not expected 

that the basic properties of the material will change with this physical change. This has made the 
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nanoscale more attractive than other scales. Properties such as electrical conductivity, color, 

mechanical strength, and even weight can be changed at the nanoscale. For example, the 

conductivity of metals is well known. However, metals can be a semiconductor or even insulated 

on a nanoscale. Nanomaterials also have a much higher surface-to-volume ratio compared to bulk 

materials. This is a fundamental property that is extremely important in all processes that occur on 

the surface of the material (such as reactivity). So it can be stated that nano does not just mean a 

thousand times smaller than micro. Investigating the mechanical behavior of a nanostructure at the 

nanoscale is in dire need of a suitable theory that to date elasticity theory of nonlocal of Eringen 

[37-42], couple stress [43-44] and strain gradient theories [45-49] predict the behavior of 

nanostructures extensively as a mechanical analysis under different conditions. However, in this 

study, the size-dependent effects have been described employing the nonlocal strain gradient 

theory, which is a combination of the Eringen's nonlocal theory and the second-order Mindlin 

strain gradient theory, which can well show the effects of size reduction and atomic interaction 

[50-51]. 

More recently, some researchers have focused on the main model of nonlocal strain gradient 

theory, namely its integral forms [52-53]. As a matter of fact, both nonlocal and strain gradient 

terms instead of their differential models have been re-considered in their integral models. They 

have found that in some beam analyses, the results of differential models may be inconsistent with 

the integral ones’ results. In addition, in some valuable researches [54-55], researchers have 

presented that while considering nonlocal elasticity theory of Eringen or nonlocal strain gradient 

approach, there have been more appropriate numerical outcomes if the effect of change in the 

thickness is investigated in the gradients of stress and strain. That is, although the effect of changes 

in the thickness have been ignored in the strains by researchers, the effect of size-dependent can 

be crucial in the thickness direction. Of some important conclusions within these studies, they 

showed that the thickness effect makes strengthen the stiffness-hardening effect of nonlocal strain 

gradient theory and by ignoring the effect of thickness the stiffness-hardening effect is 

underestimated. In fact, the stiffness-hardening and stiffness-softening influences are affected by 

the length to thickness ratio when considering the thickness effect. 

This research has come to consider profoundly and comprehensively various advanced numerical 

approaches, namely Haar wavelet method (HWM), higher-order Haar wavelet method (HOHWM) 

and differential quadrature method (DQM) to analyze a nanobeam under mechanical stability 
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situation. To this, the classical beam model is embedded in the energy formulation in order to 

extract the equilibrium equations and the strain gradient nonlocal model reformulates the obtained 

local equations to implement a nanoscale behavior in the problem. Moreover, the Winkler elastic 

matrix is assumed to be as an outer effect. Afterward, several diagrams are graphically plotted with 

the results of the HWM, HOHWM, and DQM for two boundary conditions, namely pined-pined 

and clamped-clamped ones to show the stability behavior of the modeled nanobeam. 

 

2. Review of the strain gradient model 

The stress field as per the first-order nonlocal strain gradient model [19,50-68], is presented as 

                                                                  ,*

xxxxxx  −=                                                         (1) 

where ( ) ( ) xdxaexxE xx

L

xx
= 

 
0

0,,  and ( ) ( ) xdxaexxEl xxx

L
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=  ,

0

1

*2* ,,   denote the 

classical nonlocal stress tensor and the higher-order nonlocal stress tensor, respectively.  

( )aexx 0,,   and ( )aexx 1

* ,,   are the nonlocal kernel, xx and xxx , represent the strain and 

gradient of strain, L and l  are the length of nanobeam and material length scale parameter, and 

ae0 , and ae1 are the nonlocal parameters due to the higher-order strain gradient stress field. 

Applying the nonlocal differential operator ( )( )1,0,1 22
=−= iaeii  on the stress field Viz. 

Eq.(1), the first order strain gradient model for a one-dimensional elastic material is described as 

[53] 
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Considering 10 ee = , the Eq. (2) is converted into [50-68]: 
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3. Formulation of Proposed Model 
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The displacement field of the Euler-Bernoulli beam at any point may be defined as [37] 

                                                    ( ) ( )
( )
x

txw
ztxutzxu


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−=

,
,,,1                                                 (4.a) 

                                                    ( ) 0,,2 =tzxu                                                                           (4.b) 

                                                    ( ) ( )txwtzxu ,,,3 =                                                                   (4.c) 

Here ,, 21 uu and 3u represent displacements along ,, yx and z directions, respectively whereas 

( )txu , and ( )txw , denote axial and transverse deflections of the point on the mid-plane of the 

beam. Using Von Kármán hypothesis, the nonlinear strain-displacement relation may be expressed 

as  
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Hamilton’s principle for the conservative system is presented as  

                                                             ( ) ,
2

1
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e +=                                                        (6) 

where U  is the strain energy and eW  is the work done by the elastic foundation. The variations in 

strain energy and external work done are given as 
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where wk is the Winkler modulus, xx is the normal stress, ,=
A

xx dAN  and =
A

xx dAzM   are 

axial force and bending moment, respectively. Substituting Eq. (7) and Eq. (8) in Eq. (6) and 
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On simplification of Eq. (9) and taking PN xx = , the constitutive relation may be derived as 
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Multiplying Eq.(3) by zdA and integrating over A , we have     
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where 0e and a denote material constant and internal characteristic length, respectively, =
A

dAzI 2  

is the second moment of inertia and E  is Young’s modulus. Inserting Eq. (10) in Eq. (11), the 

nonlocal bending moment nl

xxM  can be changed into 
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Putting Eq. (12) in Eq. (10), and assuming ( ) ( ) txwtxw sin, 0= , the governing equation is given 

as 
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4. Preliminaries  

4.1 Haar wavelet 

The Haar function can be expressed as [28-30,35,36,69,70] 
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Here 1++= kmi , where jm 2=  and k  denote the maximum number of square waves and the 

position of the particular square wave in the interval  21, II . Also, ( )
j
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++= , where j ( )Jj ,,1,0 =  and k

( )12,,1,0 −= jk   represent the dilatation and translation parameters of the wavelets, respectively. 

J is termed as maximal of resolution of the wavelets. The Haar function, presented in Eq.(15) is 

only valid if .2i For 1=i , 1)(1 =xh  for  21, IIx and 0 elsewhere. 

The  -th integral of the Haar function (for 1i ), presented in Eq.(1) can be derived analytically 

as [28-30,35,36,69,70]  

              

 )

( )  )

( ) ( )  )

( ) ( ) ( )  )











−+−−−

−−−

−



=

23321

3221

211

11

,

),(for )()(2)(

)(),(for )(2)(

)(),(for)(

)(,for 0

!

1
)(

Iixixixix

iixixix

iixix

iIx

tp i

















                  (16) 

For 1=i , we have 11 I= , 232 I==  and ( )

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1
)(1, .                                                                                      

The collocation points are considered as[29,35,70] 
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PPPPH ,,,,, 321   are the Haar matrices of dimension 
12 +J
 and the elements of these matrices are 

expressed by ( ) )(, ki xhkiH = and ( ) )(, , ki xpkiP  = .  

4.2 Differential Quadrature Method 

In the present investigation, Quan and Chang’s [71-72] version of Differential Quadrature Method 

has been implemented. According to this approach, the derivatives of  any function )(XW  at a 

given discrete point i  can be  expressed as linear sums of functions at discrete grid points, which 

are demonstrated as [31-33] 
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Here ijijij CBA ,, , ijD , ijE  and ijF  are the weighting coefficient matrices, and N  is the number of 

discrete grid points. Chebyshev-Gauss-Lobatto grid points have been used in this study which is 

defined as [31-33] 
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The weighting coefficient matrices can be computed using Lagrange interpolation by the following 

procedure [31-33]. 
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Other weighting coefficients of higher order derivatives cab by produced by performing matrix 

multiplications as [31-33] 
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5. Implementation HWM, HOHWM, and DQM in the proposed model   

For the investigation of buckling behavior of Stain Gradient Nonlocal beam, Pined- Pined (P-P), 

and Clamped-Clamped (C-C) boundary conditions are taken into consideration which is given as 

[58] 

Pined- Pined (P-P): 
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Clamped-Clamped (C-C):  
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5.1 Haar Wavelet Method 
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According to HWM, the highest order derivative of the governing equation Viz. 
6

6

dX

Wd
 in Eq. (14) 

can  be expressed as [35,36] 
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where 12 += JN . Performing sixth-time integration successively, we have 

                                                           ( ) 115

5

)( dXPCX
dX

Wd T +=                                                           (29.a) 

                                                          ( ) 2124

4

)( dXdXPCX
dX

Wd T ++=                                            (29.b) 

                                                     32

2

133

3

2
)( dXd

X
dPCX

dX

Wd T +++=                                   (29.c) 

                                             43

2

2

3

142

2

26
)( dXd

X
d

X
dPCX

dX

Wd T ++++=                         (29.d) 

                                          54

2

3

3

2

4

15
2624

)( dXd
X

d
X

d
X

dPCX
dX

dW T +++++=                      (29.e) 

                                             65

2

4

3

3

4

2

5

16
2624120

)( dXd
X

d
X

d
X

d
X

dPCXW T ++++++=             (29.f) 

Here ( )TNccccC ,,, 321=  and ,,,,, 54321 ddddd and 6d  are integration constants which are 

different for particular boundary conditions. Substituting Eq. (29) with proper boundary condition, 

the governing equation (14) will be converted into an Eigenvalue problem as 

                                                                ,ˆ CPC =                                                              (30) 
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Theorem 1: Let us assume a square-integrable, finite function 
n

n

dx

xd
x

)(
)(


 =  in the interval  1,0  

and     such that 



dx

xd )(
, for all  1,0x , then the HWM based on the discretized approach 

is convergent and the order of convergence is computed as two. 

Proof: For the proof, one may see an interesting paper [73].  

5.2 Higher-Order Haar Wavelet Method 

From the above Theorem 1, it is found that the order of convergence of HWM is two. In order to 

improve the order of convergence, Majak et al [30] proposed another approach. According to this 

technique, we have 

                                                  ,2,1,
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==
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Wd T

n

n

                                                     (31) 

where n is the highest order derivative and  is the extra term which is going to enhance the order 

of convergence of  HOHWM. Assigning 1= , 2+n  integration constants will be generated and 

the extra two integration constants can be handled by using the algorithm presented in [30,74]. 

Now setting 1=  and following the procedures of HOHWM, we obtain  

                                                   HChc
dX

Wd T
N

i

ii ==
=1

8

8

                                                                      (32) 

Integrating successively, we get 

                                         ( ) 2126

6

dXdXPC
dX

Wd T ++=                                                     (33.a)   

( ) 32

2

135

5

2
)( dXd

X
dXPCX

dX

Wd T +++=                                         (33.b) 

                                       ( ) 43

2

2

3

144

4

26
)( dXd

X
d

X
dXPCX

dX

Wd T ++++=                                 (33.c) 

                        ( ) 54

2

3

3

2

4

153

3

2624
)( dXd

X
d

X
d

X
dXPCX

dX

Wd T +++++=                           (33.d) 
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                     ( ) 65

2

4

3

3

4

2

5

162

2

2624120
)( dXd

X
d

X
d

X
d

X
dXPCX

dX

Wd T ++++++=                   (33.e) 

            ( ) 76

2

5

3

4

4

3

5

2

6

17
2624120720

)( dXd
X

d
X

d
X

d
X

d
X

dXPCX
dX

dW T +++++++=             (33.f) 

     ( ) 87

2

6

3

5

4

4

5

3

6

2

7

18
26241207205040

)( dXd
X

d
X

d
X

d
X

d
X

d
X

dXPCXW T ++++++++=     (33.g) 

Here ( )TNccccC ,,, 321=  and 7654321 ,,,,,, ddddddd  and 8d  are integration constants. Out of 

these eight constants, six can be obtained from each of the boundary condition, presented in Eq. 

(26) and Eq. (27) whereas the rest two can also be obtained from the governing equation as 

                                                       

( ) ( )
( )

( ) ( ) ( )
( )

( )













−=−+− 00ˆ0000

4

4

2

2

0

2

2

2

2

2

2

0

4

4

6

6
2

dX

Wd

L

ae

dX

Wd
PWK

dX

Wd
K

L

ae

dX

Wd

dX

Wd
ww     (34) 

          ( ) ( )
( )

( ) ( ) ( )
( )

( )













−=−+− 11ˆ1111

4

4

2

2

0

2

2

2

2

2

2

0

4

4

6

6
2

dX

Wd

L

ae

dX

Wd
PWK

dX

Wd
K

L

ae

dX

Wd

dX

Wd
ww      (35)              

Plugging Eq. (31) in the governing Eq. (14) and performing the procedures properly as mentioned 

in [30,74], the governing Eq. (14) will be converted into a generalized Eigenvalue problem as Eq. 

(30) where the Eigenvalues represent the buckling load parameters. 

5.3 Differential Quadrature Method 

Applying Eqs. (21-25) on the Eqs. (26-27), the Pined-Pined (P-P) and Clamped- Clamped (C-C) 

boundary conditions are given as [19] 

Pined-Pined:  

}]{[}{ WAW =  

}]{[}]{[][}{][}{ WBWAAWAW ===  

}{][}{][][}{][}{ WCWBAWAW ===  

}{][}{][][}{][][}{][}{ WDWBBWCAWAW IV ====  
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}{][}{][][][}{][][}{][}{ WEWBBAWDAWAW IVV ====  

}{][}{]][[][}{][]][[][}{][][}{][}{ WFWDAAWBBAAWEAWAW VVI =====  

Clamped- Clamped: 

 WAW ][}{ =  

}{][}{][][}{][}{ WBWAAWAW ===  

}{][}{][][}{][}{ WCWBAWAW ===  

}{][}{][][}{][}{ WDWCAWAW IV ===  

}{][}{][][][}{][][}{][}{ WEWCAAWDAWAW IVV ====  

}{][}{][]][[][}{][][}{][}{ WFWCAAAWEAWAW VVI ==== . 

In which 1,, AAA and 2A  are given as  



















=

−

−

−

NNNNNN

NN

NN

AAAA

AAAA

AAAA

A

,1,21

,21,22221

,11,11211









       



















=

−

−

−

00

00

00

1,2

1,222

1,112

NNN

N

N

AA

AA

AA

A









   



















=

NNN

N

N

AA

AA

AA

A

,2,

,22,2

,12,1

1

0

0

0









               .

0

0

0

1,12,1,

1,22,21,2

1,12,11,1

2



















=

−−

−

−

NNNN

N

N

AAA

AAA

AAA

A









 

Substituting Eq. (18) along with above boundary conditions in Eq. (14), a generalized Eigenvalue 

problem will be formed. 

6. Numerical results and discussion 

The governing equation (14) has been solved by HWM, HOHWM, and DQM as an Eigenvalue 

problem using MATLAB codes developed by the authors. The critical buckling load parameter 

( )crP̂  also has been obtained for Pined-Pined and Clamped-Clamped boundary conditions with 

1=E TPa, 10=L nm, and 1=h nm. 
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Fig. 1 Validation of Present results with [75] 

 

6.1 Validation 

The critical buckling loads, obtained by HWM, HOHWM, and DQM for both the PP and CC 

boundary conditions are validated with Wang et al. [75] assigning 0=wK  and 0= whereas 

other parameters remain same as Wang et al. [75]. The comparisons of results are given in a 

graphical form which is illustrated in Fig. 1. The graphical results are drawn by varying the 

nonlocal parameter ( )ae0 from 0 to 2 with an increase of 0.5. From the Fig.1, it is revealed that the 

results obtained by present methods are showing a decent agreement with the reference.  

6.2 Convergence study 

Convergence studies are carried out for all the three methods Viz. HWM, HOHWM, and DQM 

concerning the critical buckling load. In this regard, Pined-Pined boundary condition has been 

considered for the study. The critical buckling loads are calculated with 5.00 =ae , 50=wK , 

2.0= , and 20=L . For HWM, the convergence is attained at 5=J  whereas, for HOHWM, the 

same results are obtained at 2=J . In the case of DQM, the results start converging at 8=N  or 

2=J . These investigations are noted in Table 1 and Fig. 2. Also, the order of convergence for 
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HWM and HOHWM are calculated based on the formula presented in [76], and it is found that the 

order of convergence is approximately two and four, respectively. It may also be noted that 

HOHWM converges as fast as DQM exhibiting its supremacy over HWM.  

Table 1: Convergence of Critical buckling load parameter ( )crP̂  by HWM, HOHWM, and DQM 

with 5.00 =ae , 50=wK , 2.0= and 20=L  for Pined- Pined (P-P) boundary condition. 

J  
12 += JN  HWM HOHWM DQM ( )HWM  ( )HOHWM  

1 4 2.314765 2.301424 2.430377 - - 

2 8 2.303851 2.300723 2.300684 - - 

3 16 2.301451 2.300683 2.300680 2.1851 4.1364 

4 32 2.300871 2.300680 2.300680 2.0503 4.0345 

5 64 2.300728 2.300680 2.300680 2.0128 4.0086 

6 128 2.300692 2.300680 2.300680 2.0032 4.0021 

7 256 2.300683 2.300680 2.300680 2.0008 4.0005 

8 512 2.300681 2.300680 2.300680 2.0002 4.0000 

 

 

Fig. 2 Convergence study of HWM, HOHWM, and DQM  
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6.3 Effect of nonlocal parameter 

The impacts of nonlocal parameters ( )ae0  are noted on the critical buckling load ( )crP̂  and critical 

buckling load ratio in forms of tabular result and graphical plot.  The critical buckling load ratio is 

defined as the ratio of critical buckling load parameter using nonlocal theory and critical buckling 

load parameter using classical theory. The results are calculated with 100=wK , 1.0= and 

10=L . Also, 8=J  for HWM, 4=J  for HOHWM, and 25=N  for DQM are taken in the 

computation. The nonlocal parameters ( )ae0 are varying from 0 to 4 with an increment of 0.5. The 

results are demonstrated in Table 2 and Figs. 3-4. From these results, it is observed that the critical 

buckling load parameters are decreasing with an increase of ( )ae0  for both the boundary condition 

and this reduction in critical buckling load is more significant in case of Clamped-Clamped 

boundary condition.  

 

 

 

Fig. 3 Critical buckling load Vs. Nonlocal parameter 
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Fig. 3 Critical buckling load ratio Vs. Nonlocal parameter 

 

 

Table 2: Effect of  ae0  on critical buckling load parameter ( )crP̂  and critical buckling load ratio 

by HWM, HOHWM and DQM with 100=wK , 1.0= and 10=L . 

ae0  Pined-Pined Clamped-Clamped 

crP̂  Critical load ratio 
crP̂  Critical load ratio 

0 10.2965 1.0000 30.7494 1.0000 

0.5 10.1683 0.9875 28.0985 0.9138 

1 9.8183 0.9536 22.3967 0.7284 

1.5 9.3292 0.9061 16.8676 0.5486 

2 8.7899 0.8537 12.6817 0.4124 

2.5 8.2657 0.8028 9.7509 0.3171 

3 7.1799 0.6973 7.7219 0.2511 
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3.5 5.8748 0.5706 6.2973 0.2048 

4 4.9377 0.4796 5.2743 0.1715 

 

6.4 Effect of strain gradient parameter 

In this subsection, the response of the strain gradient parameter ( )  on critical buckling load ( )crP̂  

has been noted with 200=wK , and 10=L . Critical buckling loads are calculated for different 

nonlocal parameters ( )ae0 by varying strain gradient parameter from 0 to 1 with an increment of 

0.2. Critical buckling loads increase with the increase of strain gradient parameters, but this 

increase is much faster in case of Clamped-Clamped boundary conditions, which can be illustrated 

in Table 3 and Figs. 4-5. Also, critical buckling load is maximum in the case of classical theory 

with higher values of strain gradient parameters, and this trend is equal for both the boundary 

conditions.  

 

Table 3: Effect of   on Critical buckling load parameter ( )crP̂  by HWM, HOHWM, and DQM 

with 200=wK , and 10=L . 

  Pined-Pined Clamped-Clamped 

( )0ˆ
0 =aePcr  ( )1ˆ

0 =aePcr  ( )2ˆ
0 =aePcr  ( )0ˆ

0 =aePcr  ( )1ˆ
0 =aePcr  ( )2ˆ

0 =aePcr  

0 14.7919 14.3567 10.0005 26.6948 19.7635 10.7700 

0.2 16.7045 16.0975 14.7919 57.4281 41.8764 23.7876 

0.4 22.4424 21.3200 18.9057 149.2444 107.7055 59.3884 

0.6 32.0055 30.0240 25.7621 302.2572 217.4091 118.7157 

0.8 45.3939 42.2097 35.3609 516.4730 370.9927 201.7729 

1 62.6075 57.8770 47.7024 791.8928 568.4567 308.5605 
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Fig. 4 Critical buckling load Vs. Strain gradient parameter for PP case 

 

 

 

Fig. 5 Critical buckling load Vs. Strain gradient parameter for CC case 

 

6.5 Effect of Winkler modulus parameter 
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The impacts of Winkler modulus parameters ( )wK  on critical buckling loads are studied through 

this subsection. The results are computed with 10 =ae , and 10=L  by HOW, HOHWM, and DQM 

by considering 8=J , 4=J , and 20=N , respectively. Both the boundary conditions such as PP 

and CC are considered for the study by changing wK  from 0 to 500 with an increase of 100 for 

different values of strain gradient parameters. Both the graphical and tabular results are presented 

in Figs. 6-7, and Table 4. From these results, it can be concluded that the increase of Winkler 

modulus parameter increases the critical buckling load for both the boundary conditions. Also, this 

increases much higher in CC boundary condition with higher values of strain gradient parameters. 

 

Table 4: Effect of wK on Critical buckling load parameter ( )crP̂  by HWM, HOHWM, and DQM 

with 10 =ae , and 10=L . 

wK  Pined-Pined Clamped-Clamped 

( )0ˆ =crP
 

( )25.0ˆ =crP
 

( )5.0ˆ =crP
 

( )0ˆ =crP
 

( )25.0ˆ =crP
 

( )5.0ˆ =crP
 

0 4.4095 7.1295 15.2896 13.8939 48.1758 151.0215 

100 9.3831 12.1031 20.2632 16.8814 51.2004 154.0474 

200 14.3567 17.0767 25.2368 19.7635 54.2215 157.0724 

300 17.6240 22.0503 30.2104 22.4776 57.2391 160.0965 

400 18.8674 27.0239 35.1840 24.9242 60.2529 163.1197 

500 20.1108 31.9975 40.1576 26.0613 63.2630 166.1420 

 

6.6 Buckling mode shape 

Buckling mode shape is essential to predict the buckling characteristics of structural members. In 

this regards, mode shapes are plotted by considering the PP boundary condition with 100=wK , 

2.0= and 10=L . Mode shapes are plotted for different nonlocal parameters such as 

5.0,0 00 == aeae and 10 =ae  which can be seen in Fig. 8.  From this figure, it is found that the 

critical buckling loads are affected significantly by varying different scaling parameters.  
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Fig. 6 Critical buckling load Vs. Winkler modulus parameter for PP case 

 

  

 

Fig. 7 Critical buckling load Vs. Winkler modulus parameter for CC case 
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Fig. 8 Critical buckling mode shape for PP boundary condition 

 

7. Concluding remarks 

Buckling behavior of strain gradient nonlocal beam embedded in Winkler elastic foundation is 

studied by using HWM, HOHWM, and DQM. The validation of the present model is conducted 

and found to be perfectly agreed with the previously published article. A convergence study is also 

performed to exhibit the superiority of the methods. The responses of all the scaling parameters on 

critical buckling loads are also reported in terms of graphical and tabular results for both the 

boundary condition such as Pined-Pined and Clamped-Clamped. Followings are the main 

observations regarding the present investigation; 

❖ The HOHWM and DQM are converging much faster as compare to HWM. The order of 

convergence of HOHWM is found to be four, whereas the order of convergence of HWM is 

two. 

❖ The critical buckling loads are decreasing with an increase of nonlocal parameters for both the 

boundary condition and this reduction in critical buckling load is more significant in case of 

Clamped-Clamped boundary condition. 
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❖ The critical buckling loads increase with the increase of strain gradient parameters, but this 

increase is much faster in case of Clamped-Clamped boundary conditions, and the critical 

buckling load is maximum in case of classical theory with higher values of strain gradient 

parameters, and this trend remains constant for both the boundary conditions. 

❖ An increase in Winkler modulus parameter increases the critical buckling load for both the 

boundary conditions, and this increase much higher in CC boundary condition with higher 

values of strain gradient parameters. 
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