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ABSTRACT

We discuss two examples of beam-lattice metamaterials which show attractive mechanical properties concerning their enriched buckling. The first one
considers pantographic beams and the nonlinear solu- tion is traced out numerically on the base of a Hencky’s model and an algorithm based on
Riks’ arc-length scheme. The second one concerns a beam-lattice with sliders and the nonlinear solution is discussed in analytic way and, finally,

extended to the case of uniform in-plane tension. Some concluding remarks draw possible future developments and challenges.
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1. Introduction

Nowadays beam-lattice materials are widely used in civil, me-
chanical and aerospace engineering, see, e.g., [1-5]. As their struc-
ture mimics crystalline lattices and their properties, see e.g. [6-9],
these materials have very promising characteristics such as, e.g., a
light weight with relatively high stiffness, flexibility, acoustic re-
sponse, thermal insulation. In particular, such lattice structures,
e.g. auxetics, demonstrate unusual mechanical property, e.g. a neg-
ative Poisson ratio [10,11]. When beam-lattice structures are ho-
mogenized they might convert into their continual counterpart the
mechanical behaviour shown in the discrete model. Homogenized
model deriving from beam-lattice structures could be a kinemati-
cally enriched medium as, e.g., Cosserat continuum, micromorphic
or strain gradient media, see [12-17].

High flexibility of the beam-lattice metamaterials may results
in the loss of stability as in the case of rods, beams, and frames,
see, e.g., [18-21]. In particular, the buckling of struts in elastomer
open-cell foams leads to softening behaviour in a loading curve [1].
Instability for certain metamaterials are also discussed in [3,22,23].
On the other hand an enriched kinematics of beam-lattice meta-
materials may lead to more complex buckling behaviour than in
the case of classic structural mechanics.

In order to demonstrate possible complex buckling behaviour of
beam-lattice metamaterials we consider here two examples. The
first one concerning the so-called pantographic beam structures,
see [13,16], will be discussed in Section 2. Here we consider the
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Euler type instability for a beam-like pantographic structure and
discuss its difference from the classic case. In Section 3 we con-
sider beam-lattices with sliders under tension as a second exam-
ple of unusual behavior. Recently, elastic systems with sliding in-
terfaces under tensile forces were discussed in [24,25]. Some con-
cluding remarks, Section 4, close the paper and anticipate some
possible future developments.

2. Pantographic beam

We consider the straight pantographic beam reported in Fig. 1
where we distinguish two families of extensional-bending bars
connected in their midpoints by torsional links. By limiting the
analysis to the in-plane behaviour, it has been proven in several
papers, see [26-31], that this system can be modeled by an assem-
bly of extensional and rotational springs such as those reported
again in Fig. 1. The Hencky’s model is completely defined by the
strain energy of each one elastic spring, in formulae
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being &, &, and & the strain energies stored in extensional, bend-
ing and shearing springs, see again Fig. 1; the strain energy &, is
related to rotational springs on the left and right ends of the pan-
tographic beam. The stiffnesses a, b, ¢ and d of above mentioned
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Fig. 1. Geometry, loads and Hencky's model of a pantographic beam in the case @ = 7 /4 under compression load Ap and imperfection load p, (displacement of points A, as

well as vertical displacements of points B, C and D, are set to zero.

springs and the associated strain measures A¢ (stretching), cos 8
(bending), y (shearing) and & (rotation), defined as functions of
the current positions of nodes of the pantographic beam, complete
the definition of the strain energy of each one elastic spring
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where P; and p; are the reference and the current position of the
i-th node (the same is true for nodes j, k and m), respectively,
v=(pj—p;)— (P;—P) and ey, e, are the horizontal and vertical
unit vectors.

The nonlinear system of equilibrium equations, obtained by en-
forcing the stationarity condition for the potential energy with re-
spect to the vector of nodal displacements u, can be written as
s(u] —p[A] =0, 3)
being s the structural reaction vector, depending upon displace-
ments u, and p[A] the vector of external loads described as a func-
tion of the dimensionless load parameter A. The reaction s is de-
fined, starting from the strain energy £ of the system, as

de

S = da’ 4)
and the loads are expressed in the form
plAl=po+AP. (5)

in such a way that we can distinguish loads in a part, pg, inde-
pendent from the dimensionless parameter A (that can be used to
model the so-called imperfections) and a part, Ap, linearly increas-
ing with the dimensionless parameter A.

The solution of the nonlinear system of equations (3) can
be achieved by using a step-wise procedure based on Newton’s
method. If the pair (u;, A;) - the index i refers to the considered
iteration - represents an equilibrium point, we can estimate the
next, and nearby, equilibrium point (u; + Au, A; + AA) by lineariz-
ing Eq. (3)

s[u;] + KAu — (po + (ki + AL)P) ~ 0, (6)

being the stiffness matrix K defined as

ds

=, 7
du (7
and computed in u;. Newton’s method is based on linearization
(6) that gives

Au=—-AAK1p. (8)

Unfortunately, the Newton’s method fails when K is singular or
nearly-singular, e.g. in or near to limit points of the equilibrium
path, i.e. the stiffness matrix is positive semi definite. In order to
go around this limitation, Riks [32] proposed to reconstruct the
equilibrium path by parameterizing this curve by its arc-length in-
stead than the dimensionless load parameter A. In this way, the
resulting integration scheme bypass the lack of convergence in
the neighborhood of limit points. Obviously, Riks’ method requires
an additional equation to balance the number of unknowns. More
specifically, Riks’ arc-length scheme is based on a correction on the
Newton’s extrapolation (8). Starting from an equilibrium point (u;,
Aj), we can compute the Newton’s extrapolation (Au, A)) and the
successive correction (u, A). The pair (i, A) can be computed from
the linearization

K

s[u; + Au]+ K — (po + (Aj + AA + A)P) ~ 0, 9)
from which we can evaluate a as
=K' (s[u; + Au] - (o + (i + A+ 4)P)). (10)

once A is known.! The additional equation, necessary to compen-
sate the new unknown A, which proves to be computationally ef-
ficient and furnishes very simple results, can be written as

Au-Kia=0, (11)

which forces the orthogonality between Au and u in the scalar
product defined by the stiffness matrix K. From (9) and (11), sim-
ple calculations gives

a-r
==, 12
i (12)
being the rest r=s[u;+ Au]—- (pp+ (X +AA)P) and G=

K[u;]~'p. Successively, by using (10), we can compute the correc-
tion u for the Newton’s extrapolation Au.

T The stiffness matrix K is now computed in u; + Au.



Table 1
Data, in S.I. units, used for numerical simulations
of the pantographic beam reported in Fig. 1.
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Fig. 2. Equilibrium paths of the pantographic beam reported in Fig. 1 changing the
imperfection size: dimensionless parameter A and dimensionless vertical displace-
ment vy/L of the mid-point M.
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Fig. 3. Scaled strain energies versus A. Stretching &,, bending &, + &,, shearing &
contributions to the total strain energy & + &, + & + & (Nye = 21, a = 10,000, b =
10, c=1and d =0).

The algorithm briefly exposed here is simple but well-tailored
to reconstruct complex equilibrium paths deriving from buckling
problems also for complex structures such as pantographic beams,
see [33]. Indeed, solving the Hencky model with the procedure
sketched in the foregoing we can compute the equilibrium path
for the considered pantographic beam. Numerical values employed
for simulations are reported in Table 1.2

From these values and by varying the imperfection size, we
computed the equilibrium paths shown in Fig. 2 obtained by plot-

2 Here, we only consider the case of o = /4 but in [34] there are numerical
simulations for different value of «.

ting the dimensionless vertical displacement of the mid-point M
vs. A for the ratio pg/p = 0.01...10. From this Figure, it can be eas-
ily estimated the value of the bifurcation load, i.e. approximatively
more than 20 (p =1 in S.IL units).

We further plot in Fig. 3 the total strain energy, scaled by ae(z)
(o = v/2L/(2nyc)), versus the dimensionless load parameter A for
the case pg/p=1. In the same figure we also plot the contri-
butions to the total strain energy, scaled again by the product
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Fig. 4. Deformations for four equidistant values of A (in terms of performed steps)
for the case po/p = 1.



N —— —— ﬂ— —— —— ——
EQ h E()
s L
Y
A
=
<0
—— —— 4— —— —— ——
X
Fig. 5. Cross potent beam-like structure with sliders loaded by a force P.
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Fig. 6. a) Translational and b) rotational regime of deformations for the cross potent beam-like structure. Here ¢, are the actual lengths of bars, ¢, are the rotation angles

of the sliders, y, = htan¢y and dy = h/cos ¢y, o =1,2.

ae%, as distinguished in stretching, bending and shearing contri-
butions. We clearly distinguish two distinct mechanical behaviors
separated, approximatively, by the value of the bifurcation load.

Finally, always for the case po/p = 1, we plot in Fig. 4 the cur-
rent configuration of the system for four equidistant values of A
(in terms of performed steps). We note the eight-form of the fi-
nal deformation. We remark that this form is admissible since the
numerical code used for the performed simulations permits the
overlapping of the pantographic beam elements. From the physi-
cal point of view such deformations may occur also due to initial
imperfections in considered structure. The latter may result in “al-
most” in-plane deformations but not exactly in-plane ones.

3. Beam-lattice with sliders

Another example of non-trivial buckling behaviour corresponds
to lattice structures with sliders. Let us consider, in the x — y
plane, a long beam consisting of 2n elastic cells connected to each
other through sliders, see Fig. 5. The left end of the beam is fixed
whereas the right end is loaded by extensional net force P. Each
cell consists of four elastic extensible bars of length ¢q and of stiff-
ness a which are rigidly connected in a central elastic hinge. Each
bar ends by a slider of constant thickness h which consists of two
rigid bars connected through a shear springs of stiffness c as in

[35]. Sliders can rotate with respect to connected elastic bars. So
the shape of the cells is similar to a cross potent. The initial length
of the beam is L = 2n¢qy + (n — 1)h whereas its width is 4¢¢ + h. Let
us note that a two beams structure with a slider was proposed in
[24] in order to demonstrate the phenomena of instability under
tension. In what follows we show that similar behaviour we get
also for the lattice discussed here.

Each cell can possess at least two regimes of deformation. The
first one is a tension/compression along bars, that is along x-, y-
directions, see Fig. 6a, whereas the second one relates to a rota-
tion of sliders, see Fig. 6b. For brevity we call these regimes trans-
lational and rotational, respectively. Note that for the rotational
regime extension/compression of elastic bars is also admissible.

Considering elongation of the beam in x-direction and assum-
ing uniform deformations we get two kinematic variables that are
&1 = (€1 —¢€y)/¢y and ¢, whereas &, = (€5 — £g)/¢p =0 and ¢, =
0. With this assumption the total energy of the beam is given by
the formula
S=8(8,¢)=2na8%+(n—1)h%y]2—Pu, (13)
where

y1 =htang,,

h
u =24pne, +(n—1)m —(n-"1h
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Fig. 7. Cross potent beam-like structure: rotation angle ¢, vs. tensile force P.
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Fig. 8. Cross potent beam-like structure: tensile force P vs. displacement u.

are shear displacement in the sliders and the displacement of the
right end of the beam, respectively.

The equilibrium conditions follow from the stationarity of &
that is from the relations

d€ 0&

— =0, — =0.

ae IO

From the latter we get two equations

4nagq — 26onP = 0, (14)
Pcos ¢y — 2c

From (14) we get &1 = P¢y/2a. As ¢ is in the range —m /2 < ¢ <
w/2, Eq. (15) has the trivial solution ¢; =0 and two non-trivial
ones

¢ = ¢* = +arccos % (16)

The non-trivial solutions exist when the applied force exceeds the
critical value P > P*, where P* = 2c.

So the trivial solution corresponds to the translational deforma-
tions as in Fig. 6a, whereas non-trivial solutions relate to Fig. 6b.
Dependence of ¢; on P is given in Fig. 7. Note that it has a typi-
cal form of a postbuckling behaviour, see, e.g., [19-21]. The loading
curve is presented in Fig. 8. In the range 0 < P < P* we have only
trivial solution with ¢; = 0, whereas for P > P* there exists the ro-
tational regime with ¢;. Note that both solutions ¢ * correspond
to the same loading curve shown in Fig. 8 as the red solid line.
Here u* = 2n¢3P*/2a.

Let us note that the here observed rotational instability is sim-
ilar to one discussed in [24,25] for structures with sliders. On the
other hand, it is different from the case of simple nonlinear elas-
tic materials. Indeed, considering in-plane deformations of an elas-
tic bar under tension within the nonlinear elasticity, in [36] it was
proven that the bifurcation points, if exist, lie on a declined branch
of the loading curve. Here we have the bifurcation point (u*, P*)
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Fig. 9. Uniform extension of the n x n-lattice with sliders, p = P/n, n = 10.

on inclined loading line. So a continuum limit of the considered
structure with sliders cannot be the Cauchy continuum. Again, one
can see that a model with enriched kinematics may possess more
complex buckling.

The here considered lattice with sliders demonstrates also the
buckling under uniform in-plane tension. Indeed, let us consider a
n x n lattice loaded by the force P/n as shown in Fig. 9 for n = 10.
Here we have €1 = ¢, ¢; = ¢, and the energy of the lattice coin-
cides with (13) up to a constant factor. So we have here the bifur-
cation under uniform in-plane tension.

Let us note that solutions ¢~ and ¢* are equivalent as they cor-
respond to the same value of the cell energy. So for m x n-lattice
with sliders we have 2™" possible rotated states after bifurcation.
In other words, the multiplicity of the eigenvalue corresponding to
the bifurcation is quite large, that makes computations more diffi-
cult.

4. Concluding remarks and future challenges

The two examples of beam-lattices metamaterials presented
and discussed in the foregoing show peculiar buckling behaviour.
We used the term enriched to indicate that the mechanical re-
sponse, ie. the equilibrium path, depends from a fixed number
of parameters, e.g. the stiffnesses of the springs which define the
beam-lattice metamaterial, which can be accurately tuned to have
the desired mechanical response. Both the examples show how
to the numerically-driven approach, for the first example, and
mathematically-driven approach, for the second example, can be
profitably used for metamaterials design.

Considering the buckling of beam-lattice metamaterials pre-
sented here we conclude that enriched kinematics of a panto-
graphic beam or cross potent beam with sliders results also in
more complex buckling behaviour which can also call enriched. In
the case of structural mechanics the typical extension of the Euler
formula sound as

P* = kp;,

where P} is a “canonical” Euler’s critical force and k is a factor ac-
counting for boundary conditions, shear deformations, shortening



during loading and other phenomena [18,19,21]. Here this modifi-
cation does not work, in general. Indeed, the buckling for the beam
with slider occurs under tension and P} does not exists in this case.
For the pantographic beam we observe not only high level of de-
formations for springs [18], but also an “exotic” 8-shape mode of
buckling, see Fig. 2.

Summarizing, we conclude that the buckling of beam-lattice
metamaterials can be characterized by: i) large stretching, trans-
lations and rotations; ii) multiplicity of buckling modes; iii) pos-
sible bifurcation in unusual regimes, such as the buckling under
tension or under bending [33]; iv) high sensitivity to geometrical
and mechanical parameters of the structure. For example, with too
soft pivots the pantographic beam can “escape” buckling through
shortening.

Future challenges concerns: i) the extension of the two exam-
ples shown in the above to three-dimensional case; for the first
one a well-grounded starting point is the three-dimensional beam
model presented in [37], for the second one spatial structures con-
sisting of cubic elastic cells with sliding contact should be devel-
oped; ii) the building of homogenized models capable to predict
the mechanical behaviour in case of large deformations; iii) similar
to the nonlinear elasticity [38,39] and to Cosserat continuum [40-
42] the elastic stability theory should be developed also for micro-
morphic and strain-gradient media; iv) both examples discussed in
the foregoing can be studied experimentally by means of simple
compression tests (avoiding the out-of-plane buckling with a spe-
cific design, for example by considering a package of pantographic
beams), using the capability of the new 3D printing technology
and of the digital image correlation, see [16,17] and therein refer-
ences for pantographic structures, conversely, cross potent beam-
like structures require besides standard traction tests a prelimi-
nary accurate design above all for the sliders; v) the introduction
of opportunely defined damaging law, such as depicted in [43,44],
is surely interesting besides to be simply to code in an algorithm
such as briefly sketched in this work.
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