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Abstract

Data‐driven surrogates are the most popular replacement models utilized in

many fields of engineering and science, including design of microwave and

antenna structures. The primary practical issue is a curse of dimensionality,

which limits the number of independent parameters that can be accounted

for in the modeling process. Recently, a performance‐driven modeling tech-

nique has been proposed where the constrained domain of the model is

spanned by a set of reference designs optimized with respect to selected figures

of interest. This approach allows for significant improvement of prediction

power of the surrogates without the necessity of reducing the parameter

ranges. Yet uniform allocation of the training data samples in the constrained

domain remains a problem. Here, a novel design of experiments technique

ensuring better sample uniformity is proposed. Our approach involves uniform

sampling on the domain‐spanning manifold and linear transformation of the

remaining sample vector components onto orthogonal directions with respect

to the manifold. Two antenna examples are provided to demonstrate the

advantages of the technique, including application case studies (antenna

optimization).

KEYWORDS

Q3antenna design, constrained modeling, data‐driven modeling, design of experiments, simulation‐

based design, surrogate modeling, uniform sampling

1 | INTRODUCTION

The most versatile and ubiquitous antenna design tools nowadays are full‐wave electromagnetic (EM) simulators. EM
analysis permits reliable performance evaluation when executed at sufficient discretization level of the structure. EM‐

driven design closure (primarily, adjustment of geometry parameters) is mandatory yet challenging stage of the design
process. The primary problem is a high cost of simulation, which may be acceptable for simple designs but not so much
for complex structures described by a large number of parameters. In particular, numerous evaluations required by, eg,
conventional optimization algorithms,1-5 may be impractical. The problem is even more pronounced for tasks involving
massive simulations such as statistical analysis6 or tolerance‐aware design.7,8 The most common work‐around is an
interactive design based on parameter sweeping; however, this approach has serious limitations: It fails to yield opti-
mum designs, cannot handle design constraints, or cannot account for parameter interactions, to name just a few.
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The difficulties outlined in the previous paragraph can be—to a certain extent—overcome by fast replacement
models (surrogates). Surrogates can be roughly divided into approximation (or data‐driven) ones9 and physics‐based
ones.10-13 The first group is far more popular because of a conceptual simplicity and wide accessibility of relevant com-
puter codes. Data‐driven models are obtained by approximating sampled simulation data. The most popular techniques
include polynomial regression,14 kriging,15 neural networks,16 Gaussian process regression,17 or polynomial chaos
expansion.18 In the context of antenna modeling, where typical responses are highly nonlinear and tend to change rap-
idly as both a function of geometry parameters and the frequency, conventional approximation surrogates suffer from
two serious (and related) limitations. These are (i) a low dimensionality of the design space and (ii) relatively narrow
ranges of parameters in which the accurate model can be constructed using a reasonable number of training data points.
The second issue is more important in practical applications because, for the model to be useful as an actual design aid,
it has to be valid for wide variations of geometry parameters (eg, when redesigning a multi‐band antenna for various
operating frequencies19). Popular means for mitigating curse of dimensionality, eg, high‐dimensional model representa-
tion (HDMR),20 or principal component analysis (PCA),21 are of little use for antenna modeling because the parameter
redundancy and correlation are quite limited in typical designs.

The second group of models, physics‐based surrogates, has certain advantages over the data‐driven ones at the
expense of reduced generality. A physics‐based surrogate normally involves an auxiliary low‐fidelity model (eg, equiv-
alent network in case of microwave structures), which is appropriately corrected using sparsely sampled high‐fidelity
data. A few of the most popular approaches include space mapping10 and various response correction methods.22,23 It
should be mentioned that because of a general lack of fast (and sufficiently reliable) low‐fidelity representations of
antenna structures, physics‐based antenna modeling is of limited use.

In Koziel and Bekasiewicz,24 a constrained modeling technique has been proposed (and further enhanced by
Koziel25) that permits reduction of the computational cost of surrogate construction by appropriate definition of the
model domain. The domain is defined using a set of reference designs, which are optimized for selected figures of inter-
est (eg, operating frequencies) and/or material parameters (eg, substrate permittivity or thickness). The reference
designs are subsequently triangulated, and the resulting manifold is extended in orthogonal directions to yield a set
of dimensionality equal to that of the original parameter space. Although the domain obtained this way is “thin,” it
advantageously covers wide parameter ranges. At the same time, its volume is considerably (by order of magnitudes)
smaller than the volume of the original space, which allows for a significant reduction of the number of training data
points when constructing the model. A practical issue concerning the method of Koziel and Bekasiewicz24 is a design of
experiments (DoE). In particular, it is not possible to use established uniform sampling techniques such as Latin hyper-
cube sampling (LHS),9 or other space‐filling DoE (eg, that of Santner et al26 and Steponavice et al27) because geometry
of the constrained domain is complex and not easily mapped onto a unit hypercube. The DoE approach assumed by
Koziel25 was quite rudimentary: iterative generation of random samples within the hypercube containing the model
domain and accepting those that belong to the latter. Cleary, uniformity of the sample set obtained this way is poor
and negatively affects the model predictive power.

The purpose of this paper is to propose a novel software‐based DoE procedure that permits better uniformity of sam-
ple allocation in the constrained domain. This is a two‐stage scheme that involves transformation of the uniform (LHS‐
based) data set generated in a unit hypercube into the surrogate domain. The first stage is a direct mapping of the first
few components of the sample vector onto simplexes constituting the domain‐defining manifold (cf Koziel25), whereas
the second stage consists of a mapping of the remaining components into orthogonal directions using appropriately
defined linear transformations. Our methodology is demonstrated using two antenna examples and shown to outper-
form the previously utilized DoE with respect to sample uniformity. This directly translates into an improved predictive
power of the surrogate model. A comparison with conventional kriging modeling as well as application cases studies
(antenna optimization) is also provided.

2 | PERFORMANCE ‐DRIVEN ANTENNA MODELING

Conventional data‐driven modeling normally assumes that a model domain is a hypercube. In case of antennas, a vast
majority of designs within a hypercube delimited by given lower or upper parameter bounds are poor. Yet standard uni-
form sampling techniques (eg, LHS,9 orthogonal arrays,28 and Hammersley sampling29) have been developed to handle
such domains. “Good” designs (from the point of view of the considered operating conditions and/or material param-
eters) are typically allocated along certain manifolds being a result of particular parameter correlations and interactions.
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Consequently, constructing the model in the entire space is a waste of resources. For practical antenna structures
described by more than a few parameters, it may be simply infeasible because of an excessive computational expense
related to training data acquisition.

The constrained modeling technique25 has been developed to alleviate the difficulties highlighted in the previous par-
agraph. We denote by F k, k = 1, …, N, the performance figures or operating conditions that are of interest for a given
antenna structure (eg, operating frequencies and substrate permittivity the antenna is to be implemented on).
Constrained modeling restricts the surrogate domain to the most promising regions of the original design space, conven-
tionally determined by the lower and upper bounds on antenna parameters.25 For the sake of defining the constrained
domain, a set of reference designs x(j), j = 1, …, p, is prepared by optimizing the antenna for selected values F (j) = [F 1

(j),
…, FN

(j)]. The vectors F (j) should cover the ranges of the figures of interest that the surrogate is supposed to be valid for.
The method of Koziel25 permits arbitrary allocation of the set {F (j)}j=1,…,p. The reference designs are subsequently struc-
tured by means of Delaunay triangulation.30 It is used to create simplexes S(k) = {x(k.1), …, x(k.N+1)}, k = 1, …, NS, with x(k.
j) ∈ {x(1), …, x(N)}, j = 1, …, N + 1, being vertices. The triangulation process is illustrated in Figure F11 for an exemplary case
involving two figures of interest.

Having the reference designs, a manifold M is defined as a union of the convex hulls h(S(k)) of the simplexes S(k)

M ¼ ∪
k

y ¼ ∑Nþ1
j¼1 αjx k: jð Þ :0 ≤ αj ≤ 1; ∑Nþ1

j¼1 αj ¼ 1
n o

: (1)

The surrogate model domain is defined by extending M into orthogonal directions (with respect to the spanning vec-
tors of the simplexes S(k)). The reason for this is the following. Although, by definition, M contains all of the reference
designs (ie, optimum designs for all vectors F (j)), certain “thickness” is to be provided to ensure that the domain will
contain the optimum designs corresponding to all combinations of figures of interest within the ranges of interest.
The extension is arranged as described below. For a point z, we consider the projection Pk(z) onto the hyper‐plane
Hk containing the convex hull h(S(k)). We use the following notation: x(0) = x(k.1) will be referred to as the simplex
“anchor,” whereas v(j) = x(k.j+1) − x(0), j = 1, …, N, are the simplex spanning vectors. The expansion coefficients α(j)

defining the Pk(z) are found by solving25

arg min
α 1ð Þ ;…;α Nð Þ½ �

z− x 0ð Þ þ∑N
j¼1α

jð Þv jð Þ
h i���

���
2
: (2)

Problem 2 can be solved analytically as

α 1ð Þ;…; α Nð Þ
h iT

¼ VTV
� �−1

VT z − x 0ð Þ
� �

: (3)

Note that Pk(z) ∈ h(S(k)) if and only if α(j) ≥ 0 for j = 1, …, N, and α(1) + ⋯ + α(N) ≤ 1; ie, the projection is a convex
combination of the spanning vectors. Let xmax = max{x(k), k = 1, …, p}, xmin = min{x(k), k = 1, …, p}, and the vector
dx = xmax − xmin determines the range of variation of the antenna parameters within the manifold M.

Based on the above considerations, the surrogate model domain XS can now be defined as an orthogonal extension of
M with the “thickness” determined by a user‐selected parameter dmax. A point y ∈ XS if and only if

1. set K(y) = {k ∈ {1, …, NS}: Pk(y) ∈ S(k)} ≠ ∅; and
2. min{||y − Pk(y)||/||dx||: k ∈ K(y)} ≤ dmax.

FIGURE 1 Conceptual illustration of reference designs and their triangulation in two‐dimensional space of figures of interest

KOZIEL ET AL. 3 of 111

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

KSME
Komentarz w tekście
print x(k.j) in one line of text

KSME
Komentarz w tekście
in (1) should be: alfa^(j)  (^ - superscript)
as in (2)


KSME
Komentarz w tekście
in (1) should be: alfa^(j)  (^ - superscript)
as in (2)


KSME
Podświetlony
in (1) should be: alfa^(j)  (^ - superscript)
as in (2)


http://mostwiedzy.pl


The first condition determines whether the point y is sufficiently close to M in the “tangential” sense, whereas the
second condition assesses the “orthogonal” distance between y and the manifold.

There are two critical advantages of restricting the surrogate model domain to XS with respect to the original space.
First, the volume of XS is considerably smaller than the volume of the interval [xmin, xmax] (which is already a proper
subset of a conventional domain). Consequently, the second significant advantage is secured, namely, the number of
training data samples necessary to construct the surrogate can be greatly reduced. For highly dimensional spaces, the
volume ratio can be many orders of magnitude. The flowchart of the modeling process is shown in Figure F22.

At the same time, the region of validity of the surrogate spans over the same ranges of parameters as in the original
domain [xmin, xmax]. This means that the surrogate will cover the same ranges of figures of interest as the model defined
in the original space. The difference is that XS leaves out the designs that are poor with respect to these figures of inter-
est. The surrogate itself is constructed using kriging interpolation.9

3 | UNIFORM SAMPLING IN CONSTRAINED DOMAIN

Given a relatively complex geometry of the constrained domain XS defined in the previous section, the allocation of
training data samples becomes a challenge. A rudimentary approach utilized by Koziel25 was pure random sampling
within [xmin, xmax] with accepting samples that are in XS. The process was repeated until a required number of samples
have been found. Clearly, a uniformity of the data set obtained this way was poor. In Koziel et al,31 a considerably bet-
ter, two‐stage approach has been proposed. In the first stage, the required number of points is assigned to the simplexes
S(k) proportionally to their volumes. Then, in the second stage, the points are allocated on the simplexes using LHS
(mapped from unit hypercubes of appropriate dimensions) and relocated in directions orthogonal to the respective sim-
plexes. Both the relocation ranges and specific directions are determined randomly. This scheme improves sample set
uniformity considerably leading to improvement of surrogate model predictive power.31

FIGURE 2 Flowchart of the constrained modeling procedure of Section 2. EM indicates electromagnetic; FOI, figure of interest
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In this work, an alternative sampling scheme is proposed, supposedly leading to a further improvement of the data
set uniformity over the method of Koziel et al.31 The principal concept is to establish the mapping between LHS‐
sampled unit hypercube and orthogonally expanded simplex S(k). Detailed explanation of the procedure has been given
in the remaining part of this section.

The main challenge regarding the mapping between the n‐dimensional hypercube and the orthogonally extended N‐
simplex is that n‐N coordinates of the hypercube‐sampled points have to be transformed into all directions that are
orthogonal to the simplex. We use the following notation. Let e(j), j = 1, …, n, denote the standard basis in Rn, and
let e(j)⊥ denote the components of e(j) that are orthogonal to the simplex S(k); ie, e(j)⊥ = e(j) − Pk(e

(j)) (as before, Pk
denotes orthogonal projection onto S(k)). Let w(j), j = 1, …, n − N, be the subset of the n‐N (norm‐wise) largest vectors
e(j)⊥. The remaining N vectors e(j)⊥ will be referred to as dependent ones and denoted as wd

(k), k = 1, …, N. We consider a
matrix B defined as a least‐square solution of the problem

WB ¼ w 1ð Þ ⋯ w Nð Þ
h i

B ¼ wd 1ð Þ ⋯ wd Nð Þ
� � ¼ WdB: (4)

Problem 4 can be solved analytically as

B ¼ WTW
� �−1

WW d: (5)

Matrix B contains expansion coefficients of the dependent vectors with respect to the independent basis. Because for
practical problems, we have N < n/2, wherein the representation is unique (the matrix WTW is nonsingular). The rea-
son behind selecting the independent and dependent vectors is that for n‐component sample vectors, the first N com-
ponents will be reserved for allocating the samples on the simplexes S(k) and subsequent n‐N orthogonal directions
are necessary to account for the remaining n‐N components. Although there are many different ways of selecting the
independent vectors, the most natural choice (adopted here) is to have them as the largest orthogonal directions. The
remaining ones are accounted for through their representation in the independent basis.

Let d be the n × 1 perturbation vector, which is a user‐defined parameter, in practice, d = dx·dmax. For d, we repeat
the above procedure of selecting the independent components dind = [d(1), …, d(n−N)]T (associated with the independent
vectors) and the dependent ones ddep = [dd

(1), …, dd
(N)]T (associated with the dependent vectors). Having dind and ddep,

the overall perturbation vector D is calculated as

D ¼ D1;…;Dn−N½ �T ¼ dind þ ∣B∣ddep: (6)

In Equation 6, |B| denotes a matrix of the absolute values of B. It should be noted that the dependent vectors will
contribute to the sample perturbation by increasing the perturbations towards independent directions proportionally
to the expansion coefficients of the latter.

At this point, we are ready to formulate the proposed uniform sampling procedure, which works as follows:

1. Calculate the volumes Vk of simplexes S(k).
2. Set Kk = ⌈KVk/∑jVj⌉ (here, ⌈ ⌉ is a ceiling function).
3. For each k = 1, …, NS,

• allocate mKk LHS6 samples in a unit hypercube [0, 1]n (here, m is the volume ratio between the unit hypercube
and the unit simplex, both of the dimension N);

• choose samples y for which the vectors that consist of the first N components of y are allocated in the unit
N‐simplex;

• map the samples selected in the previous step onto a convex hull of simplex S(k) as follows: x → x(0) + ∑j=1,…,N

xjv
(j), where x(0) and v(j) are defined under Q4(1), and x = [x1, …, xn]

T (note that the first N components of x are
used); and

• perturb the mapped samples by adding vectors xd = Σj=1,…,n−N xN+jDjw
(j).

The sampling procedure described above allows for mapping the LHS‐allocated samples from a unit hypercube (of a
dimension corresponding to that of the antenna parameter space) onto individual segments of the constrained domain.
Figure F33 shows the flowchart of the sampling procedure.

Visualization of the three DoE methods (random sampling of Koziel,25 improved sampling of Koziel et al,31 and the
procedure proposed here) is provided in Figure F44. For the sake of clarity, only one domain segment is shown. It can be
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observed that sample uniformity is considerably improved for the method of Koziel et al31 as compared with that for the
random sampling.25 The scheme proposed here provides further improvement. As demonstrated in Section 4, this will
translate into a better accuracy of the surrogate model. Obviously, an additional improvement is expected to be mild
given that relatively uniform sample allocation already provided by the method of Koziel et al.31

FIGURE 4 Example distribution of 500 samples for one simplex in three‐dimensional parameter space: A, random sampling25; B,

improved sampling31; C, uniform sampling proposed in this work

FIGURE 3 Flowchart of the proposed uniform sampling procedure. LHS indicates Latin hypercube sampling
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FIGURE 5 Dual‐band uniplanar dipole

antenna: A, geometry32; B, allocation of

reference designs

TABLE 1 Surrogate model accuracy for antenna of Figure 5

Number of
Training
Samples

Average RMS Error

Unconstrained
Surrogate, %

Constrained Surrogate

Random Sampling25, % Improved Sampling31, % Uniform Sampling (This Work), %

100 15.6 7.7 4.8 4.3

200 11.7 4.6 3.7 3.4

500 7.8 3.2 2.5 2.2

Abbreviation: RMS, root mean square.

FIGURE 6 Responses of the antenna of

Figure 5 at the selected test designs for

N = 500: high‐fidelity electromagnetic

model (—) and surrogate with uniform

sampling (o)
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4 | CASE STUDIES AND RESULTS

For the sake of validation and benchmarking, the constrained surrogate modeling technique is applied here for two
antenna structures, using the three DoE schemes of Koziel25,31 and the one proposed here.

The first example is a uniplanar dual‐band dipole antenna as shown in Figure F55A.32 The structure is implemented on
Taconic RF‐35 substrate (εr = 3.5, tanδ = 0.0018, h = 0.762 mm). The design variables are x = [l1 l2 l3 w1 w2 w3]

T; other

FIGURE 7 Surrogate (o) and

electromagnetic model (—) responses at

the two verification designs corresponding

to f 1 = 2.8 GHz and f 2 = 6.1 GHz (left)

and f 1 = 3.1 GHz and f 2 = 4.8 GHz

(right). Vertical lines indicate the required

operating frequencies

FIGURE 8 Geometry of the dual‐band patchQ5 antenna33: A, geometry33; B, allocation of reference designs
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parameters are fixed: l0 = 30, w0 = 3, s0 = 0.15, and o = 5 (dimensions in mm). The computational model R (approx-
imately 100 000 cells; simulation time 60 s) is implemented in CST. The goal of the modeling process is to construct
the surrogate for the following ranges of operating frequencies 2.0 GHz ≤ f 1 ≤ 4.0 GHz (lower band) and
4.5 GHz ≤ f 2 ≤ 6.5 GHz (upper band). There are 12 reference designs selected and allocated as shown in Figure 5B.
For the sake of computational efficiency, the designs have been obtained using a feature‐based optimization
algorithm.23

The numerical results have been gathered in Table T11, which shows the comparison of the (conventional) surrogate
obtained in an unconstrained domain, as well as the constrained domain using random sampling,25 improved sam-
pling,31 and uniform sampling proposed in this work. In order to investigate scalability of the models, the
benchmarking has been executed for various numbers of training data samples (100, 200, and 500). As expected, train-
ing data allocation has a profound effect on the modeling error, especially when comparing the random sampling with
the improved DoE of Koziel et al.31

The sampling scheme introduced here leads to further improvements of the predictive power, which is not as signif-
icant but noticeable. The surrogate and EM‐simulated high‐fidelity model response at the selected test designs are
shown in Figure F66.

In order to demonstrate usefulness of the model for design purposes, the antenna has been optimized for the selected
operating frequencies, f 1 = 2.8 GHz and f 2 = 6.1 GHz (Case I) and f 1 = 3.1 GHz and f 2 = 4.8 GHz (Case II). The results
shown in Figure F77 indicate not only good quality responses but also excellent agreement between the surrogate and EM
simulations of the antenna.

The second verification example is a dual‐band planar antenna.33 The antenna geometry is shown in Figure F88A. The
structure is implemented on a 0.762‐mm‐thick substrate. The design variables are x = [L l1 l2 l3 W w1 w2 g]

T. The param-
eters o = 7, l0 = 10, and s = 0.5 are fixed; the feed line width w0 is adjusted for a given substrate permittivity to ensure
50‐Ω impedance. The EM model is implemented in CST (approximately 400 000 mesh cells, simulation time 3 min). For
this example, we aim at constructing the surrogate for the following ranges of operating frequencies:
2.0 GHz ≤ f 1 ≤ 3.0 GHz (lower band) and 4.0 GHz ≤ f 2 ≤ 6.0 GHz (upper band). Furthermore, the model should be
valid for a range of substrate permittivities: 2.5 ≤ εr ≤ 5.0. Here, 20 reference designs have been selected and allocated
as indicated (along with their triangulation) in Figure 8B.

Table T22 shows the model predictive power as well as results of benchmarking. It can be observed that the proposed
uniform sampling leads to further improvement of the modeling accuracy (both over the random sampling and the
improved scheme of Koziel et al31). Visualization of antenna characteristics at the selected designs is shown in
Figure F99.

TABLE 2 Surrogate model accuracy for antenna of Figure 8

Number of
Training
Samples

Average RMS Error

Unconstrained
Surrogate, %

Constrained Surrogate

Random Sampling25, % Improved Sampling31, % Uniform Sampling (This Work), %

100 50.5 19.1 16.7 14.3

200 49.1 16.5 14.8 13.1

500 48.5 13.8 13.1 12.3

Abbreviation: RMS, root mean square.

FIGURE 9 Responses of the antenna of

Figure 8 at the selected test designs for

N = 500: high‐fidelity electromagnetic

model (—) and surrogate with uniform

sampling (o)

KOZIEL ET AL. 9 of 111

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

koziel
Sticky Note
Change Ref. 23 to Ref. 34

http://mostwiedzy.pl


5 | CONCLUSION

A novel DoE approach for uniform data sampling in constrained domains has been proposed. Our methodology
involves a mapping between a unit hypercube and individual domain segments, the latter being simplexes expanded
in orthogonal directions. The scheme allows better sample uniformity than provided by a rudimentary random sam-
pling as well as a recently reported enhanced procedure. As a result, improved predictive power of the surrogate model
is observed as demonstrated using two examples of dual‐band antenna structures. The proposed technique has been rig-
orously formulated, comprehensively validated, and benchmarked.
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