
Process arrival pattern aware algorithms for acceleration of scatter
and gather operations

Jerzy Proficz1

Received: 27 January 2019 / Revised: 31 July 2019 / Accepted: 26 December 2019
� The Author(s) 2020

Abstract
Imbalanced process arrival patterns (PAPs) are ubiquitous in many parallel and distributed systems, especially in HPC

ones. The collective operations, e.g. in MPI, are designed for equal process arrival times, and are not optimized for

deviations in their appearance. We propose eight new PAP-aware algorithms for the scatter and gather operations. They are

binomial or linear tree adaptations introducing additional process ordering and (in some cases) additional activities in a

special background thread. The solution was implemented using one of the most popular open source MPI compliant

library (OpenMPI), and evaluated in a typical HPC environment using a specially developed benchmark as well as a real

application: FFT. The experimental results show a significant advantage of the proposed approach over the default

OpenMPI implementation, showing good scalability and high performance with the FFT acceleration for the communi-

cation run time: 16.7% and for the total application execution time: 3.3%.

Keywords Scatter � Gather � Process arrival pattern � MPI � PAP-aware algorithm

1 Introduction

Collective operations, in a non-trivial case, require partic-

ipation of three or more processes, which are supposed to

synchronize their activities or exchange data. The usual

assumption in designing such algorithms is that all pro-

cesses join the operation at the same time [9]. In reality

process arrival time (PAT) differs for each process,

implying the occurrence of the so-called imbalanced pro-

cess arrival patterns (PAP), which sometimes can cause a

significant delay in the performed computations. Thus, it is

desirable to provide mechanisms for imbalanced PAP

detection and design algorithms exploiting such informa-

tion to compensate for the above imbalance.

The scatter collective operation is usually used for split

and distribution of the data between the cooperating pro-

cesses. As input it accepts a vector of data (usually

numerical values, e.g. float) provided by an arbitrary

chosen root process, and as a result it returns the corre-

sponding data partition to each of the processes partici-

pating in the operation. The gather is the opposite

operation, where all processes provide input data vectors

and the root process receives their concatenation. Both of

these operations are defined in the Message Passing

Interface (MPI) standard [12] and are provided in its

implementations.

The contribution of this paper is eight new algorithms

for scatter/gather collective operations exploiting the

imbalanced PAPs to increase the efficiency of communi-

cation. For scatter operation we propose: (i) Sorted LINear

tree (SLIN), (ii) Sorted BiNomial tree (SBN), (iii) Back-

ground Sorted LiNear tree (BSLN) and (iv) Background

Sorted BiNomial tree (BSBN). Similarly for the gather

operation we propose: (v) Sorted Linear Synchronized tree

(SLS), (vi) Sorted Binomial tree (SBN), (vii) Background

Sorted Linear Synchronized tree (BSLS) and (viii) Back-

ground Sorted Binomial tree (BSBN).

For each algorithm we provide the description including

its pseudocode, complexity analysis for communication

(using Hockney model [13]) and computation, as well as

we present the results of the experiments performed in a

real compute cluster environment, showing a performance

& Jerzy Proficz

j.proficz@task.gda.pl

1 Centre of Informatics - Tricity Academic Supercomputer &

networK (CI TASK), Gdansk University of Technology, 11/

12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland

123

Cluster Computing
https://doi.org/10.1007/s10586-019-03040-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2975-9339
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-03040-x&domain=pdf
https://doi.org/10.1007/s10586-019-03040-x

gain of the scatter/gather operations in comparison to the

default (state-of-the-art) OpenMPI implementation. Finally

we prove the usability of the approach by providing a

practical use case improving the performance of the Fast

Fourier Transform parallel implementation, with the

acceleration of communication by 16.7% and total appli-

cation execution by 3.3%.

The following section describes the already existing

works related to PAP-aware algorithms and scatter/gather

collective operations, Sect. 3 provides background infor-

mation about the subject and the next section presents the

proposed PAP-aware algorithms. Section 5 presents the

developed benchmark and the experimental results of its

performance, followed by a section showing a real-life

application: improved parallel FFT processing and its

evaluation in a real HPC environment. In the last section,

conclusions and planned future works are described.

Finally, in Appendix, we present extended results of the

experiments, showing additional measurement parameters.

2 Related works

The following subsection presents the works related to the

scatter/gather algorithms used in the currently available

open-source MPI implementations, and the next subsection

describes the current state-of-the-art of the PAP-aware

algorithms for various collective operations.

2.1 Scatter/gather algorithms

Scatter and gather collectives are often used together, the

typical example can be spotted in the master–slave pro-

cessing, when the scatter operation distributes data to the

slaves, where the actual computing is performed, and the

gather operation is used for transferring the results to the

master process. However, the above schema is not

mandatory, e.g. the result gathering can be performed by

another operation e.g. reduce.

In the state-of-the-art implementations, the following

algorithms are used: (i) binomial (BNOM) tree, (ii) linear

(LIN) tree and, for gather only, the modification of the

latter: (iii) linear synchronized (LS) tree. In the case of the

binomial tree, in each step of scatter operation, any pro-

cess, which already received the data vector, splits it into

two equal parts and sends one of them to a process which is

still waiting, thus the communication is finished after

d log2ðPÞe steps, where P is the process number. The gather

operation works similarly, but the data flow is performed in

the opposite way.

In scatter linear tree algorithm, the root process sends

the split data vector directly to each process one by one,

thus the communications is finished after P steps. The

gather version of this algorithm works similarly, with the

opposite data flow direction. In the linear synchronized tree

gather algorithm the above mechanism is extended by

segmentation of the gathered vector pieces, where each

non-root process sends short part of the data vector and

waits for the synchronization message from the root. This

mechanism enables coordination of the order of the

received messages by the root process. Table 1 presents the

summary of the algorithms used in two most popular open-

source MPI implementations: OpenMPI [10] and MPICH

[11].

There is a number of studies related to the scatter/gather

optimization in which we can distinguish two directions of

the research. The first, where the irregular forms of the

operations are studied (ScatterV/GatherV) and the second,

considering different homogeneous models of the archi-

tecture. In both cases the authors are usually focused on

different communication tree construction to decrease

overlap in the differences in communication times, e.g.

[7, 27, 28] or introduce some hierarchical structures, e.g.

[14].

2.2 Optimization of collectives with imbalanced
PAPs

The first PAP definition with its theoretical and experi-

mental analysis, showing the ubiquity of imbalanced PAPs

was provided in [9]. The authors proposed to use their

STAR-MPI [8] framework, equipped with a vast collection

of various collective algorithms, to improve the perfor-

mance of all-to-all MPI operations, executed for typical

HPC benchmarks, i.e. LAMMPS [17] and NAS [2] kernels.

The solution assumed the imbalanced PAPs to occur

repeatably in the same code/process location allowing their

slow evolution. Thus, only rare PAT monitoring data

Table 1 Scatter/gather algorithms implemented in OpenMPI [10] and

MPICH [11]

Data size (N) Process No (P) OpenMPI MPICH

Scatter

Large Any LIN

Small Large BNOM BNOM

Small Small LIN

Gather

Large Any LS

Medium Large/medium BNOM

Medium Small LIN BNOM

Small Large BNOM

Small Medium/small LIN

BNOM binomial tree, LIN linear tree, LS linear synchronized tree

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

exchange between cooperating processes is required for

determining the PATs.

In [21] Patarasuk et al. presented two broadcast algo-

rithms: arrival_b and arrival_nb, optimized for imbalanced

PAPs and used for large data vectors, the former is dedi-

cated for blocking and the latter for non-blocking message-

passing systems. Both solutions sort the cooperating pro-

cesses by their arrival times and transfer broadcasted data

to the faster processes first, so the processes do not need to

wait for data delivery to the slower ones. The monitoring

data, required for sorting the PATs, are exchanged at the

beginning of the operation using non-blocking (arrival_nb)

or blocking (arrival_b) send/receive operations. The

authors performed the positive algorithms’ evaluation

using a developed benchmark, which enabled comparison

to other broadcast implementations using a 16-nodes

compute cluster.

A new PAP-aware all-to-all and all-gather algorithms

exploiting a specific feature of the InfiniBand [26] inter-

connecting network used for HPC clusters was proposed in

[25]. The feature enabled the faster processes to be aware

about the current status of the slower ones. Thus, the data

could be exchanged between the earlier participants first.

The proposed solution also introduced a hierarchical data

flow in the case when a subset of the processes was placed

in the same node. The results of the experiments performed

in a test environment (4 nodes InfiniBand cluster) showed

the performance improvement in comparison to the typical

all-to-all and all-gather algorithms.

In [20] and [19] Marendic et al. presented work on

reduce algorithms considering imbalanced PAPs. The

solution covers both cases: when the PATs are initially

known and when they need to be discovered during

exchange of the reduced data between the cooperating

processes. The algorithms were tested using a specially

developed mini-benchmarks comparing their performance

with other typically used reduction algorithms. The results

showed a significant improvement in performance, espe-

cially in the case when the reduced data could be parti-

tioned into segments and the PATs were known a priori

(the Clairvoyant algorithm).

A hardware-based multicast improving a recursive

doubling algorithm for imbalanced PAPs was proposed in

[1]. The approach assumed introduction of additional tag-

ging of the exchanged messages with some kind of vector

clocks, enabling the receiving process to be aware about a

communication path the data had already performed, what

could help in relaxing tight dependencies between received

and sent messages. The approach was implemented for all-

reduce operation and used a NetFPGA [18], open-source,

programmable Ethernet-based device. The experiments

performed on 8-node cluster showed up to 26% improve-

ment over the standard recursive doubling algorithm.

In [23] we proposed two new, hardware agnostic, all-

reduce algorithms optimized for imbalanced PAP occur-

rence, the solution included a PAP detection mechanism

based on progress monitoring by an additional background

thread placed in every process participating in the collec-

tive operation. A benchmark evaluating the performance of

the algorithms was described and experimental results

comparing with other typically used algorithms were pro-

vided. Finally a real case: machine learning of a deep

neural network was practically examined, showing the

performance advantage of the method: 21% acceleration of

the communication phase.

To the best knowledge of the author there are no prior

works covering PAP-aware algorithms for the scatter or

gather operations. Thus, the comparison of the proposed

solution is performed against typically used algorithms

described in Sect. 2.1.

3 Background

The proposed model is an extension of a model described

in [23], which considers parallel processing in a homoge-

neous compute cluster environment and focuses on the

process arrival and exit patterns. The aforementioned work

is extended by a definition of operation run time, which is

helpful in evaluation of non-symmetric collective algo-

rithms, i.e. broadcast, scatter, gather etc.

We assume the compute cluster consists of a set of

homogeneous compute nodes interconnected by a fast

network. The communication and synchronization between

the nodes is accomplished using the typical message-

passing model, in contrast to the intranode parallelism

which utilizes shared memory. Each node runs one process

and each process can contains multiple control threads, the

processes use direct and collective communication opera-

tions (e.g. MPI [12]) and the threads use shared memory

with some synchronization primitives (e.g. POSIX threads

[4] or OpenMP [6]).

In the proposed model, the processes cooperate to solve

some problem, we assume their algorithm is iterative, i.e. it

consists of the consecutive phases: computation and com-

munication repeated multiple times. During the computa-

tion phase the threads of a process can cooperate with each

other, however the data exchange between the processes

(or nodes) is performed only during the communication

phase. Thus, we assume that the processor load is higher

during the former phase and the network traffic is more

intensive in the latter. A typical examples of such behavior

can be observed in many machine learning applications

where each iteration causes the underlying model to better

approximate the reality. Moreover, we assume that the

computations are deterministic, i.e. it is possible to indicate

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

a point during the computation phase, where the some

specific part (e.g. 50%) of the involved calculations is

already finished.

Process arrival time (PAT) is the time when the process

joins the communication phase after finishing the compu-

tations, for a process i we denote its PAT as ai. Further-

more, we define a process arrival pattern (PAP) as a tuple

ða0; a1; . . .aP�1Þ, where P is the total number of processes

participating in the collective operation. Additionally we

can also define process exit pattern (PEP) as a tuple

ðf0; f1; . . .fP�1Þ, where fi is the time when process i finishes

the communication phase [9]. An example of the above

patterns is presented in Fig. 1.

Imbalanced PAPs, as described in [9], are ubiquitous in

many HPC systems, especially in clusters. Even for highly

homogeneous environments they appear very often, being

rather norm than exception. The expected, natural source of

the imbalances is the non-equal distribution of the com-

putations to the nodes, where, even for perfectly balanced

task assignment, the PATs are not equal. The supposed

cause of the imbalances is the non-deterministic behavior

of both computation and communication parts of the pro-

cessing, which seems to be beyond the control of appli-

cation developers. We assume that the low level causes of

this behavior are related to such phenomena as computa-

tional noise [22], asymmetric placement of nodes in the

network topology or specific architecture features of the

involved communication devices.

For collective algorithm evaluation, performing a given

operation in iteration i with a measured pair of PAP and

PEP, we can define the following measurements: run time

[19]:

ri ¼ max
j
ðfjÞ �min

j
ðajÞ ð1Þ

and average elapsed time [9]:

�ei ¼
1

P

XP�1

j¼0

fj � aj
� �

ð2Þ

where j 2 h0; 1. . .P� 1i. For the sake of simplicity, in the

rest of the paper, we drop the i index, with the assumption

that r and �e represent corresponding mean values over all

iterations in a particularly executed program.

The former shows how long it takes from starting

communication in the first process to finish it in the last

one, and the latter shows how much time is used for

communication by each process, see example in Fig. 1.

Thus, using Hockney model [13], where a is a startup

time of sending a single message, and b is a fraction

depending of the sent data size, in the case of a perfectly

balanced, flat PAP (all the PATs are equal:

a0 ¼ a1 ¼ � � � ¼ aP�1), the run time and the elapsed time

of the scatter/gather LIN algorithms can be estimated as in

the following equations:

rLIN ¼ ðP� 1Þ aþ N

P
b

� �
ð3Þ

�eLIN ¼ 1

P
ðP� 1Þ aþ N

P
b

� �
þ 1

P

XP�1

i¼1

i aþ N

P
b

� �

¼
ðPþ 2ÞðP� 1Þ aþ N

P
b

� �

2P

ð4Þ

where N is the size of a data vector to be scattered/gath-

ered. For the LS gather algorithm, under the same

assumptions, the run time and the elapsed time are as

follows:

rLS ¼ ðP� 1Þ 3aþ N

P
b

� �
ð5Þ

�eLS ¼ 1

P
ðP� 1Þ 3aþ N

P
b

� �
þ 1

P

XP�1

i¼1

i 3aþ N

P
b

� �

¼
ðPþ 2ÞðP� 1Þ 3aþ N

P
b

� �

2P

ð6Þ

For the BNOM scatter algorithm, with additional assump-

tion that the process number is a power of 2:

P ¼ 2k; k 2 N, the run time and the elapsed time have the

same estimation, and can be denoted as follows:

rBN ¼ �eBNs ¼ log2 ðPÞ aþ
ðP� 1ÞN

P
b ð7Þ

Finally, for the BNOM gather algorithm the run time is the

same as for the scatter one (Eq. 7), however the elapsed

time is as follows:

Fig. 1 Example of a process arrival pattern: ða0; a1; a2Þ, a process exit
pattern: ðf0; f1; f2Þ, elapsed times: e0; e1; e2 and a run time: r, where y-

axis labels: h0; 1; 2i indicate process identifiers (P ¼ 3), ai and fi are

respectively arrival and exit times of a process i for the performed

collective communication operation. In this case average elapsed time

can be derived as: �e ¼ e0þe1þe2
3

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

�eBNg ¼ 1

P
P aþ b

N

P

� �
þ P

2
aþ 2b

N

P

� �
þ � � �

�

þ 2 aþ P

2
b
N

P

� ��

¼ 1

P

Xlog2 ðPÞ�1

i¼0

P

2i
aþ 2ib

N

P

� �

¼ 2ðP� 1Þaþ log2 ðPÞbN
P

ð8Þ

Since the Hockney model [13] does not take into consid-

eration a possible contingency over the underlying inter-

connecting network, which can have limited bandwidth,

the above estimations should be perceived as the lowest

bound. Thus, although the BNOM algorithms show the

lowest communication complexity, they also require the

highest bandwidth and in the case of the large data vector

size they can have worse performance than the linear trees.

Thus, some MPI implementations use different algorithms

for specific data vector sizes and cooperating process

numbers, see Table 1 for more details related to MPICH

[11] and OpenMPI [10].

We can notice, that in the case of symmetrical pro-

cessing, where all cooperating processes perform the same

send, receive and compute activities (e.g. all-reduce oper-

ation) the elapsed time seems to be more accurate for the

evaluation, however for operations where one process is

emphasized (e.g. the root process for scatter operation), the

run time seems to be more correlated with the total

application execution time. Thus, for scatter/gather evalu-

ation we rather use the run times. However, in all per-

formed experiments, the trends of both elapsed and run

times are similar, but for the sake of the research scrupu-

lousness, we provide the elapsed time results in Appendix.

In [23] we proposed an iterative model of computations

along with an additional, background thread for monitoring

purposes. The thread performs the data exchange during

the computation phase (when the network is usually

underused), and provides the information about the pro-

gress of the computations to all cooperating processes. The

computation progress is reported by the computation

threads using a special callback function: PAT_Edge(),

called after reaching a specific point of processing, e.g.

when 50% of the computations is finished. The background

thread can also be used for some additional activities like

network warmup before the communication phase, or as we

propose in this paper, to exchange the messages with the

actual collective data, if they are already available for a

given process, even during the computation phase, see

Fig 2.

The background thread pseudo-code is presented in

Fig. 3. The thread uses the working variable as an indicator

of its activity, it is set up in the PAT_Init() function call

and switched off in PAT_Finalize(). The main thread loop

is executed in parallel with the main algorithm iterations

(see Fig. 4 for a pseudo-code of typical PAP-aware oper-

ation usage), where the computation and communication

phases are constantly repeated. The thread starts its main

activities after the PAT_Edge() function call, when a sig-

nificant (usually 50%) part of the computations is already

performed. It estimates the computation phase finish time,

i.e. process arrival time (PAP) for the current iteration, and

exchanges it with other processes using MPI_Allgather

Fig. 2 Iterative model of computations enhanced with the auxiliary

communication and thread (marked by dashed line) for monitoring

and additional data exchange

variables:
working – true as long as the thread is operating

1. while working
2. wait for PAT Edge() function call
3. measure time since processing start
4. estimate the PAP for the current process
5. exchange PAPs with other processes using MPI Allgather()
6. perform additional algorithm related activities

Fig. 3 Pseudo-code of the background thread

1. MPI Init()
2. PAT Init()
3. PAT UseAlg(PAT Gather XXXX)
4. for i := 1 to K // algorithm iterations
5. MPI Scatter(. . .)
6. PAT ProcessingStart()
7. computations: first 50%
8. PAT Edge(50%)
9. computations: second 50%
10. PAT ProcessingEnd()
11. PAT Gather XXXX(. . .)
12. PAT Finalize()
13. MPI Finalize()

Fig. 4 Pseudo-code of typical usage of a PAP-aware gather operation,

with an XXXX algorithm implementation

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

operation. The rest of the time, until the end of the com-

putation phase, can be used to perform additional, algo-

rithm specific activities e.g. preliminary data exchange.

The background thread seems to be somewhat similar to

the possible implementation of the non-blocking collec-

tives, IScatter/IGather. However, we would like to

emphasize the differences between the proposed solution

and IScatter/IGather approach. Firstly, in the case of

IScatter/IGather the computation algorithm needs to pro-

vide the possibility to perform some calculations even

before the collective is finished, many algorithms would

require serious modifications to support such approach, and

some are not even capable to do so. In contrast, the pro-

posed solution does not require changes in the semantics of

the implemented computation algorithm, but only an

introduction of an indicator (calling PAT_Edge() function)

signaling progress of the calculations to the background

thread. Moreover, from the implementation point of view,

the proposed solution actively manages the behavior of the

communication according to the current PAP, while the

non-blocking collectives are designed for exploiting com-

putation and communication overlapping.

4 The proposed algorithms

The general idea behind the proposed algorithms is to order

the message exchange of scatter/gather underlying point-

to-point messages according to the predicted PATs.

Moreover, we additionally propose to perform some pos-

sible data exchanging, even during the computation phase,

by the auxiliary background thread, which idles after per-

forming the prediction of the PAP. Table 2 presents the

summary of the main features characterizing the current

state-of-the-art and proposed algorithms.

In comparison to the optimization approaches presented

in the related works, the proposed scatter/gather algorithms

do not change the structure of the communication tree, but

rather modify the order of the connections according to the

arrival time of cooperating processes. On the other hand,

we can perceive such adjustment as some load balancing

technique, however we do not change the process assign-

ment to the computation resources, which, as we assume in

the proposed model, are homogeneous anyway.

4.1 Scatter algorithms

The first algorithm: scatter Sorted LiNear (SLN) tree (see

the pseudo-code in Fig. 5) is an extension to the typical

linear tree algorithm (see Sect. 3), where the scattered data

vector is partitioned by the root and the obtained segments

are sent sequentially to the waiting processes (lines 3–7),

however the order of the sent messages is sorted (line 2)

according to the arrival times of the corresponding pro-

cesses (PATs). Similarly to the regular LIN algorithm, the

only action performed by the leaf processes is the receiving

of their corresponding segments (line 9).

The extension to the above scatter algorithm is Back-

ground Sorted LiNear (BSLN) tree (see the pseudo-code in

input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
dx – input data segments to be scattered, an x segment is to
be sent to the rank x process
rank – the rank of the process
root – the rank of the root process

variables:
result – a result data segment
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1

1. if rank = root then
2. sort(ptr) according to ar

3. for i := 0 to P − 1
4. if i = root then
5. send(segment: dpti , to: pti)
6. else
7. result := drank

8. else
9. result := receive()
10. return result

Fig. 5 Pseudo-code of scatter Sorted LiNear (SLN) tree algorithm

Table 2 Main features in the state-of-the-art and proposed scat-

ter/gather algorithms

Alg. MPI-impl PAT-sort Data-shuf Bg-data

Scatter

LIN 4

SLIN 4

BSLN 4 4

BNOM 4

SBN 4 4

BSBN 4 4 4

Gather

LIN 4

LS 4

SLS 4

BSLS 4 4

BNOM 4

SBN 4 4

BSBN 4 4 4

Alg. algorithm’s name, MPI-impl the state-of-the-art algorithm

already implemented in OpenMPI [10] and/or MPICH [11], PAT-sort

PAP-aware algorithm using PAT sorting, Data-shuf PAP-aware

algorithm requiring data shuffling, Bg-data PAP-aware algorithm

using background thread for data exchange

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 6), where additionally the background thread of a

receiving process handles the incoming messages (lines

1–2) despite the fact that the computation phase can still go

on. The code of the root process remains the same as in the

SLN algorithm (lines 4–9), and foreground actions of a leaf

process are limited to waiting for the background receive of

the data (line 11). Such approach enables the delayed

processes to not block the root if it already finished the

computation phase.

The communication complexity of the SLIN and BSLN

scatter algorithms, for the perfectly balanced, flat PAP is

the same as for LIN (see Eqs. 3 and 4), and the computa-

tion complexity can be estimated as OðP logPÞÞ, due to

sorting the processes by their PATs. However, potentially

both algorithms work much faster in case of an imbalanced

PAP, where the sorted and background send-receive

operations can accelerate the scatter in the earlier (ac-

cording to their PATs) processes.

Let’s analyze run times of the above algorithms con-

sidering a situation when one process, either the first

receiver (id: 1) or the root (id: 0), is delayed. In the first

case a1 [a0 and a0 ¼ a2 ¼ � � � ¼ aP�1, and the run times

can be estimated as in the following equations:

rLINðid:1Þ ¼a1 � a0 þ rLIN ð9Þ

rSLINðid:1Þ ¼max a1 � a0 þ aþ N

P
b; rLIN

� �
ð10Þ

rBSLNðid:1Þ ¼max a1 � a0; rLIN
� �

ð11Þ

where rLIN is defined in Eq. 3. In the latter case, when the

root process is delayed: a0 [a1 and a1 ¼ a2 ¼ � � � ¼ aP�1,

regardless of the used algorithm, all other processes need to

wait. Thus the run times are equal and can be estimated as

in the following equation:

rLINðid:0Þ ¼ rSLINðid:0Þ ¼ rBSLNðid:0Þ ¼ a0 � a1 þ rLIN ð12Þ

The next proposed algorithm: scatter Sorted BiNomial

(SBN) tree (see the pseudo-code in Fig. 7) is based on the

regular binomial tree, extended by sorting the processes by

their PAPs (lines 1–3), in such a way that the faster pro-

cesses are involved in the earlier phases of the algorithm.

This approach requires swapping and shuffling the seg-

ments of the data vector, according to the PAT order (lines

7–8). Afterwards the typical binary tree operations are

executed (lines 11–18).

The scatter Background Sorted BiNomial (BSBN) tree

algorithm (see the pseudo-code in Fig. 8) extends SBN by

input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
dx – input data segments to be scattered, an x segment is to
be sent to the rank x process
rank – the rank of the process
root – the rank of the root process

variables:
result – a result data segment
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1

background:
1. if rank = root then
2. result := receive()

foreground:
3. if rank = root then
4. sort(ptr) according to ar

5. for i := 0 to P − 1
6. if i = root then
7. send(segment: dpti , to: pti)
8. else
9. result := drank

10. else
11. wait() for the background actions to be finished
12. return result

Fig. 6 Pseudo-code of scatter Background Sorted LiNear (BSLN) tree

algorithm
input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
dx – input data segments to be scattered, an x segment is to
be sent to the rank x process
rank – the rank of the process
root – the rank of the root process

variables:
nrank – a new rank of the process after the arrival sorting
result – a result data segment
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1
received – true if the process already received the data

1. swap(pt0, ptroot)
2. sort(ptr) according to ar

3. shuffle(ptr) according to bit reverse, e.g. rev(0111) = 1110
4. nrank := index of rank in ptr
5. k := 2 log2P

6. if rank = root then
7. shuffle(dr) according to ptr
8. shuffle(dr) according to bit reverse, e.g. rev(0111) = 1110

9. i := k/2
10. received := false

11. while i > 0 do
12. if received∨ rank = root then
13. send(segments: (di, . . . d2i−1), to: ptnrank+i)
14. if (¬received) ∧ (nrank& i = 0) then
15. d := receive()
16. received := true
17. i := i/2
18. return d0

Fig. 7 Pseudo-code of scatter Sorted BiNomial (SBN) tree algorithm

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

moving receive operations of non-root processes into the

background thread (lines 5–15), what, in case of delay in

the processes, can accelerate the sending of the data seg-

ments—the delayed receiving processes do not block the

ones which already started sending the data. The activities

of the root stay in the foreground (lines 17–22) and the

results are returned after the the background thread (in the

case of a leaf) finishes its activities (lines 24–25).

Similarly to scatter linear trees, the SBN and BSBN, for

the perfectly balanced, flat PAP, do not improve the

communication complexity in comparison to their base

algorithm: the binomial tree (see Eq. 7), and the compu-

tational complexity can be estimated as OðP logPþ NÞ

(because of the process sorting and data shuffling and

swapping). However, in the case of an imbalanced PAP,

some early message exchange (in the background during

the computation phase) with the processes ordered by

PATs can speed up the data flow of the collective

operation.

Similarly to the linear case we can analyze run times of

the binomial-based algorithms considering a situation

when one process, either the first receiver (id: 1) or the root

(id: 0), is delayed. In the first case a1 [a0 and

a0 ¼ a2 ¼ � � � ¼ aP�1, and the run times can be estimated

as in the following equations:

rBNðid:1Þ ¼a1 � a0 þ rBN ð13Þ

rSBNsðid:1Þ ¼max a1 � a0 þ aþ N

P
b; rBN

� �
ð14Þ

rBSBNsðid:1Þ ¼max a1 � a0; rBN
� �

ð15Þ

where rBN is defined in Eq. 7. In the latter case, when the

root process is delayed: a0 [a1 and a1 ¼ a2 ¼ � � � ¼ aP�1,

just like for the linear-based algorithms, regardless of the

used algorithm modifications, all other processes need to

wait. Thus the run times are equal and can be estimated as

in the following equation:

rBNðid:0Þ ¼ rSBNsðid:0Þ ¼ rBSBNsðid:0Þ

¼ a0 � a1 þ rBN
ð16Þ

4.2 Gather algorithms

The gather Sorted Linear Synchronized (SLS) tree algo-

rithm (see the pseudo-code in Fig. 9) is based on linear

synchronized tree (see Sect. 2.1), with the extensions

related to the order of the performed message exchange,

where the data from the faster leaf processes can be

received before the data from the slower ones (line 3). The

other operations seem to stay the same, i.e. the data vectors

are received in two segments (lines 3–12) and the leaf

processes wait for receiving the empty, synchronization

message before sending the data (lines 16–18).

The gather SLS algorithm can be extended to Back-

ground Sorted Linear Synchronized (BSLS) tree (see the

pseudo-code in Fig. 10), where the receiving the data in the

root process is moved into the background thread (lines

1–9). Thus, in case when the root process is delayed, it still

can manage the receiving of the gathered data sent by the

leaves (lines 17–19), even in the ongoing communication

phase, leaving to the foreground only merging its own data

(lines 12–13).

For a perfectly balanced, flat PAP the communication

complexity of SLS and BSLS algorithms is the same as for

input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
dx – input data segments to be scattered, an x segment is to
be sent to the rank x process
rank – the rank of the process
root – the rank of the root process

variables:
nrank – a new rank of the process after the arrival sorting
result – a result data segment
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1
received – true if the process already received the data

1. swap(pt0, ptroot)
2. sort(ptr) according to ar

3. shuffle(ptr) according to bit reverse, e.g. rev(0111) =
1110
4. k := 2 log2P

background:
5. if rank = root then
6. nrank := index of rank in ptr
7. i := k/2
8. received := false
9. while i > 0 do
10. if received then
11. send(segments: (di, . . . d2i−1), to: ptnrank+i)
12. if (¬received) ∧ (nrank& i = 0) then
13. d := receive()
14. received := true
15. i := i/2

foreground:
16. if rank = root then
17. shuffle(dr) according to ptr
18. shuffle(dr) according to bit reverse, e.g. rev(0111) =
1110
19. i := k/2
20. while i > 0 do
21. send(segments: (di, . . . d2i−1), to: ptnrank+i)
22. i := i/2
23. else
24. wait() for the background actions to be finished
25. return d0

Fig. 8 Pseudo-code of scatter Background Sorted BiNomial (BSBN)

tree algorithm

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

LS tree, see Eqs. 5 and 6. However, when some leaf pro-

cesses are delayed, the SLS/BSLS can accelerate the whole

operation, and for BSLS it is possible even in the case of

the delayed root. The additional sorting of the processes by

their PATs introduces a computation overhead estimated as

OðP logPÞ.
Below we analyze run times of the proposed LS-based

algorithms, considering a situation when one process,

either the first receiver (id: 1) or the root (id: 0), is delayed.

In the first case a1 [a0 and a0 ¼ a2 ¼ � � � ¼ aP�1, and the

run times can be estimated as in the following equations:

rLSðid:1Þ ¼ a1 � a0 þ rLS ð17Þ

rSLSðid:1Þ ¼ rBSLSðid:1Þ

¼ max a1 � a0 þ 3aþ N

P
b; rLS

� � ð18Þ

where rLS is defined in Eq. 5. In the latter case, when the

root process is delayed: a0 [a1 and a1 ¼ a2 ¼ � � � ¼ aP�1,

for SLS algorithm, the sending processes need to wait for

the root, thus the run time is the same as for LS:

rSLSðid:0Þ ¼ rLSðid:0Þ ¼ a0 � a1 þ rLS ð19Þ

However, BSLS algorithm uses the background thread for

preliminary data exchange and the root can collect the data

even before the computation phase is finished. Thus the run

time can be estimated as follows:

rBSLSðid:0Þ ¼ max a0 � a1; r
LS

� �
ð20Þ

The gather Sorted BiNomial (SBN) tree algorithm (see the

pseudo-code in Fig. 11) extends a regular binomial tree by

introducing the PAT related order (lines 1–2) of the mes-

sage exchange, causing the faster processes to send their

data at the beginning, without waiting for the slower ones

(lines 11–13). After the above procedure, the root process

needs to shuffle the received data vector back to its proper

order (lines 19–20).

The last proposed gather algorithm: Background Sorted

BiNomial (BSBN) tree modifies the SBN, by moving the

loop with the receiving operations into the background

input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
rank – the rank of the process
root – the rank of the root process
inp – the data to be sent to the root by the current process

variables:
inpA, inpB – the variable to be used for splitting the input
data to two segments
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1
dAx , dBx – the data segments to be gathered by the root
process, x segments are to be received from the rank x
process

1. split(inp, into: inpA, inpB)
2. if rank = root then
3. sort(ptr) according to ar

4. for i := 0 to P − 1
5. if i = root then
6. dApti

:= ireceive() // non-blocking
7. send(NIL, to: pti) // an empty message
8. dBpti

:= ireceive() // non-blocking
9. wait() for receiving segment dAi
10. else
11. dArank := inpA

12. dBrank := inpB

13. wait() for receiving all segments dBr
14. return (d0, . . . dP−1)
15. else
16. receive() // an empty message
17. send(segment: inpA, to: root)
18. send(segment: inpB, to: root)

Fig. 9 Pseudo-code of gather Sorted Linear Synchronized (SLS) tree

algorithm

input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
rank – the rank of the process
root – the rank of the root process
inp – the data to be sent to the root by the current process

variables:
inpA, inpB – the variable to be used for splitting the input
data to two segments
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1
dAx , dBx – the data segments to be gathered by the root
process, x segments are to be received from the rank x
process

background:
1. if rank = root then
2. sort(ptr) according to ar

3. for i := 0 to P − 1
4. if i = root then
5. dApti := ireceive() // non-blocking
6. send(NIL, to: pti) // an empty message
7. dBpti := ireceive() // non-blocking
8. wait() for receiving segment dAi
9. wait() for receiving all segments dBr

foreground:
10. split(inp, into: inpA, inpB)
11. if rank = root then
12. dArank := inpA

13. dBrank := inpB

14. wait() for the background actions to be finished
15. return (d0, . . . dP−1)
16. else
17. receive() // an empty message
18. send(segment: inpA, to: root)
19. send(segment: inpB , to: root)

Fig. 10 Pseudo-code of gather Background Sorted Linear Synchro-

nized (BSLS) tree algorithm

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

thread (lines 8–15), but keeping the sending operations in

the foreground (line 18) (Fig. 12). This approach can

accelerate the operation in case the non-leaf processes are

delayed in their computation phase. Similarly to the SBN,

there is performed sorting of the processes (line 1–2) and

shuffling of the received data (lines 20–21).

The communication complexity of the SBN and BSBN

algorithms, for the perfectly balanced, flat PAP is similar to

the regular BNOM and is denoted by Eqs. 7 and 8. The

improvements in performance are possible, when some

cooperating processes are delayed, and the introduced

order of message flow and/or the background activities

cause the faster participants to act earlier than the delayed

ones. Due to process sorting and data shuffling, the com-

pute complexity can be estimated as OðP logPþ NÞ.
We can analyze run times of the above algorithms

considering a situation when one process, either the first

receiver (id: 1) or the root (id: 0), is delayed. In the first

case a1 [a0 and a0 ¼ a2 ¼ � � � ¼ aP�1, and the run times

can be estimated as in the following equations:

rBNðid:1Þ ¼rSBNgðid:1Þ ¼ a1 � a0 þ rBN ð21Þ

rBSBNgðid:1Þ ¼max a1 � a0 þ aþ ðP� 1ÞN
2P

b; rBN
� �

ð22Þ

where rBN is defined in Eq. 7. Similarly to the LS-based

algorithms, in the latter case, when the root process is

delayed: a0 [a1 and a1 ¼ a2 ¼ � � � ¼ aP�1, in SBN algo-

rithm, the sending processes need to wait for the root, thus

the run time is the same as for BN:

rBNðid:0Þ ¼ rSBNgðid:0Þ ¼ a0 � a1 þ rBN ð23Þ

However, BSBN algorithm uses the background thread for

preliminary data exchange and the root can collect the data

even before the computation phase is finished. Thus the run

time can be estimated as follows:

rBSBNgðid:0Þ ¼ max a0 � a1; rBN
� �

ð24Þ

input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
rank – the rank of the process
root – the rank of the root process
inp – the data to be sent to the root by the current process

variables:
nrank – a new rank of the process after the arrival sorting
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1
dx – the data segments to be gathered by the root process,
an x segment is to be received from the rank x process
sent – true if the process already sent the data

1. swap(pt0, ptroot)
2. sort(ptr) according to ar descending
3. nrank := index of rank in ptr
4. k := 2 log2P

5. d0 := inp
6. i := k/2
7. sent := false
8. s := 1

9. while i > 0 do
10. if ¬sent then
11. if nrank&i = 0 then
12. send(segments: (d0, . . . ds−1), to ptrank−i)
13. sent := true
14. else
15. segments: (ds/2, . . . ds−1) := receive()
16. i := i/2
17. s := s × 2
18. if rank = root then
19. shuffle(dr) according to bit reverse, e.g. rev(0111) = 1110
20. shuffle(dr) according to ptr
21. return (d0, . . . dP−1)

Fig. 11 Pseudo-code of gather Sorted BiNomial (SBN) tree algorithm

input parameters:
P – number of processes/nodes (one process per node)
ar – arrival time of process r
rank – the rank of the process
root – the rank of the root process
inp – the data to be sent to the root by the current process

variables:
nrank – a new rank of the process after the arrival sorting
ptr – an array with rank identifiers, r = 0, 1, . . . , P − 1
dx – the data segments to be gathered by the root process,
an x segment is to be received from the rank x process
sr – indicates where to send a partially gathered vector data

1. swap(pt0, ptroot)
2. sort(ptr) according to ar descending
3. sr := −1
4. s := 1

background:
5. nrank := index of rank in ptr
6. k := 2 log2P

7. i := k/2

8. while i > 0 do
9. if sr = −1 then
10. if nrank&i = 0 then
11. sr := ptrank−i

12. else
13. segments: (ds/2, . . . ds−1) := receive()
14. s := s × 2
15. i := i/2

foreground:
16. d0 := inp
17. if rank = root then
18. send(segments: (d0, . . . ds−1), to sr)
19. else
20. shuffle(dr) according to bit reverse, e.g. rev(0111) = 1110
21. shuffle(dr) according to ptr
22. return (d0, . . . dP−1)

Fig. 12 Pseudo-code of gather Background Sorted BiNomial (BSBN)

tree algorithm

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

5 Experimental evaluation

A benchmark evaluating the proposed algorithms emulates

a typical iterative application (e.g. machine learning),

where the input data with a given size are exchanged

between the cooperating processes, which some of them

are delayed according to a given, randomly generated PAP.

Each such process uses the usleep() function calls to

indicate the progress of the emulated computations to the

background thread, including their start, edge point (at 50%

of computations) and finish, see Fig. 13 for the benchmark

pseudo-code.

The implementation uses C language (v. C99, compiled

by GCC v. 7.3.0 with –O3 optimization), with OpenMPI

[10] (v. 3.0.0) for processes/nodes message exchange,

POSIX Threads [4] (v. 2.12) for intranode communication

and synchronization, and GLibc (v. 2.0) for dynamic data

structures’ management. The similar approach was used in

[23].

5.1 Test environment and configuration

The benchmark was executed using a typical HPC cluster:

Tryton, located in Centre of Informatics – Tricity Aca-

demic Supercomputer and networK (CI TASK) at Gdansk

University of Technology, Poland. The supercomputer

consists of 40 racks with 1600 nodes intraconnected by

FDR 56 Gbps InfiniBand [26] and 1 Gbps Ethernet net-

works, and has in total 1.48 PFLOPS of theoretical com-

pute power. The typical node contains 2 processors (Intel

Xeon Processor E5 v3, 2.3 GHz, Haswell architecture),

with 12 physical cores (24 cores per node) and 128 GB

RAM [16].

The tests were performed in a separated rack containing

48 typical nodes connected by 1 Gbps Ethernet switch (HP

J9728A 2920-48G). The benchmark was executed for both

scatter (LIN, BNOM, SLIN, SBN, BSLN, BSBN) and

gather (LS, BNOM, SLS, SBN, BSLS, BSBN) operations,

including the proposed algorithms and, for comparison

purposes, the typical ones. The range of data size covered:

128 K, 256 K, 512 K, 1 M, 2 M of floats (4 bytes long).

The above values do not exceed the cache size of the used

processors, thus we avoided the additional noise caused by

the unpredictable intranode data transfers, a similar

approach was taken for the internode communication,

where we focused on sizes covering the rendezvous send-

receive protocol.

The PAPs were generated randomly, with uniform dis-

tribution, and the following maximum delays (PATs) were

used: 0, 1, 5, 10, 50, 100, 500 ms. The above values were

set up experimentally, we performed the tests with

increasing delays, until the changes of the absolute mea-

sured time values stabilized on the same level, i.e. an

introduction of a lager delay gave the same improvement

(in ms), in comparison to the base algorithm, e.g. LIN, as

the previous one.

The benchmark performed 128–256 iterations, depend-

ing on the maximum PAT (more for lower delays). Even-

tually the tests were executed for different sizes of process/

nodes set: 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48.

5.2 The results

Fig. 14 presents the results of the benchmark execution for

different scatter algorithms regarding the changing maxi-

mum arrival time-delay of the processes. We can observe

the larger the delay in arrival times (PATs) the better the

input parameters:
size – number of elements (floats) in scattered/gathered data
N – number of iterations
maxDelay – maximal delay of the process(es)
algorithm – tested algorithm, e.g. SLS, BSBN
P – number of processes
id – process id – MPI rank: 0. . .P − 1

output:
rtResults – vector of measured average run times
etResults – vector of measured average elapsed times

variables:
halfT ime – 50% of the emulated computation time
startT ime – start time of measurement
endT ime – end time of measurement
myET – elapsed time measured in the current process
sumET – sum of the average elapsed times of all processes
data – vector of data to be scattered/gathered

1. MPI Init()
2. PAT Init()
3. PAT UseAlg(algorithm)
4. for i := 1 to N
5. data := generateRandomData(size)
6. halfT ime := 100ms + random(0. . .maxDelay)/2
7. MPI Barrier()
8. MPI Barrier()
9. PAT ProcessingStart()
10. usleep(halfT ime)
11. PAT edge(50%)
12. usleep(halfT ime)
13. PAT ProcessingEnd()
14. startT ime := MPI Wtime()
15. makeOperation(algorithm, data)
16. endT ime := MPI Wtime()
17. checkCorrectness(data)
18. MPI Allreduce(minAT , endT ime, MPI MIN. . .)
19. MPI Allreduce(maxAT , endT ime, MPI MAX. . .)
20. rtResults[i] := maxAT − minAT
21. myET := endT ime − startT ime
22. MPI Allreduce(sumET , myET , MPI SUM. . .)
23. etResults[i] := sumET/P
24. PAT Finalize()
25. MPI Finalize()

Fig. 13 Pseudo-code of the performance benchmark

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

PAP-aware algorithms’ behavior: the measured run times

are shorter. For the assumed configuration (48 nodes with

2 M of floats data size) BSLN achieves the best results,

stabilizing the gained advantage with more imbalanced

PAPs (with the maximum delay over 100 ms).

Let’s analyze scatter results for 0 ms and 50 ms maxi-

mum delay as an example, the distribution is uniform, thus

in the latter case the mean delay is 25 ms. The average run

times are as follow: for 0 ms LIN 65 ms, SLIN 64 ms,

BSLN 64 ms and for the 50 ms LIN 104 ms, SLIN 94 ms,

BSLN 91 ms. So, the BSLN run time for 50 ms delay is

greater than maximum and mean delays, as well as base

result for 0 ms delay. Thus it alleviates imbalances for

14 ms in comparison to LIN (default MPI). The interesting

observation is that in some limited range LIN algorithm

itself alleviates the imbalances, its run time is lower than a

sum of the base result (for 0 ms delay) and maximum delay

(50 ms in this case). The above phenomenon is true for

other scatter and gather results.

The detailed results comparison between the PAP-aware

scatter algorithm: background sorted linear (BSLN) tree

and the regular linear (LIN) tree is presented in Table 3.

Apart from the mentioned delay, we can also notice that the

BSLN works better with larger data size, where the gained

improvement can be estimated up to 21% (faster by factor

1.27, for maximum delay 50 ms and data size 1 M of

floats). As we expected in the theoretical analysis (see

Sect. 4.1), the aforementioned algorithm does not provide

significant performance increase in the case of the balanced

PAPs.

The performance results of the gather algorithms for 48

processes/nodes and data vector size 2 M of floats are

presented in Fig. 15. The chart shows the advantage

(shorter run times) of the PAP-aware algorithms (SLS,

SBN, BSLS and BSBN) in the case of larger delays—

arrival times of the processes (PATs). For the more bal-

anced PAPs the typical approach (LS and BNOM) shows

better behavior, which is compliant with the theoretical

analysis presented in Sect. 4.2. We can notice that for the

provided conditions, BSLS presents the best performance,

showing the advantage over other algorithms.

An interesting phenomenon can be observed for SLS

and BSLS algorithms: the average run time is decreasing

with the increasing delays, in interval 0–50 ms. We assume

the reason is related to the diminishing contingency: linear

sync based algorithms (LS, SLS and BSLS) start with

sending messages (the first segments) from the leaves to

the root node, what can cause a collision, which has to be

resolved by the network switch, leading to some additional

latency in the data transmission. However, when the pro-

cesses are sorted according to their arrival times (PATs)

and spread due to the introduced random delays, the above

collision does not occur or, at least, is less significant,

causing the observable performance improvements.

Thus, Table 4 presents the detailed comparison between

the BSLS and the regular LS run times. We can notice, that

even for shorter data size the algorithm performs quite

well, and the results seem to be better for the higher

maximum delays, up to 60% time saving (faster by factor

2.52, for maximum delay 50 ms and data size 2 M of

floats).

Figure 16 presents the algorithms’ behavior in the case

of increasing scattered data size with the constant maxi-

mum delay and node number. Analyzing the chart, we can

observe that the longer messages, the larger benefit of using

the PAP-aware algorithms, however the absolute gains

decrease with the size. Thus, for small data size, where the

network latency is more important, the proposed algo-

rithms are not so efficient in comparison with their non-

PAP-aware counterparts, but with the longer messages

where the bandwidth is more important, the algorithms

provide greater performance improvements. Eventually, in

the case of the largest data sizes, due to the constant

maximum delay, the benefits of the algorithms usage

stabilize.

Finally we can asses the scalability of the PAP-aware

algorithms, Fig. 17 shows the measurements of the run

times of the scatter algorithms regarding the increasing

number of processes/nodes (up to 48). We can observe that

although the times increase for larger configurations, the

growth is moderate and the PAP-aware algorithms show

their advantage for the whole range of the performed tests.

0 0.02 0.04 0.06 0.08 0.1 0.12
Max. delay [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
A

ve
ra

ge
 ru

nt
im

e
[s

]

LIN
BNOM
SLIN
SBN
BSLN
BSBN

Fig. 14 Benchmark results of the scatter algorithms’ run times for

increasing maximum delay. The experiments were performed on 48

nodes connected by 1 Gbps Ethernet network, the processes were

delayed randomly (uniform distribution), and the total data size: 2 M

of floats (8 MB). The error bars are set to �r (68% of the

measurements for the normal distribution)

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

We can conclude that the experimental results show a

clear improvement of the scatter/gather operations’ per-

formance while executed in imbalanced PAP environment,

in comparison to the default OpenMPI (LIN/LS) and

MPICH (BNOM) algorithms. The analogous results of the

same experiments, but presenting the average elapsed times

instead of run times, are presented in Appendix, showing

the similar advantages of the proposed PAP-aware

algorithms.

6 Practical use case: parallel FFT

As the use case of typical usage of the HPC cluster we

propose Fast Fourier Transform (FFT) parallel implemen-

tation, with hierarchical partitioning of the processed data

under the master–slave programming paradigm. We use a

typical Radix-2 algorithm with Decimation-In-Frequency

approach enabling easy distribution of preprocessed data to

the slave processes deployed in separated computation

nodes [3]. At the higher, internode level the communica-

tion is performed by MPI [12] calls, using both point-to-

point (for data distribution to the slaves) and collective (for

data gathering to the master) operations. At the intranode

level the computations are performed using OpenMP [6]

where the shared memory is used for data exchange and

thread synchronization.

The implementation uses up to 24 threads per node for

the computation purposes, managed by the OpenMP

framework [6]. The underlying hardware (2�Intel Xeon

CPUs per node) provides matching 24 physical cores with

the Hyper Threading mechanism switched off—a typical

configuration used in HPC computations. For the PAP-

aware algorithms, the background thread is implemented

using a different approach of parallelization, namely

POSIX Thread library [4]. Thus, in this case, the back-

ground thread does not have a dedicated core, and causes

processor oversubscription, this overhead is perceived as a

computational cost of the proposed solution, however when

we compare compute times measured in the performed

experiments we can observe that it is negligible: the dif-

ferences do not seem to depend on the algorithm used and

they are smaller than 0.5%.

The input data were randomly generated by the master

process and distributed to 7 slaves (the master also per-

forms computations), where the processing was performed

0 0.05 0.1 0.15
Max. delay [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

 ru
nt

im
e

[s
]

LS
BNom
SLS
SBN
BSLS
BSBN

Fig. 15 Benchmark results of the gather algorithms’ run times for

increasing maximum delay. The experiments were performed on 48

nodes connected by 1 Gbps Ethernet network, the processes were

delayed randomly (uniform distribution), and the total data size: 2 M

of floats (8 MB). The error bars are set to �r (68% of the

measurements for the normal distribution)

Table 3 Comparison of BSLN

and LIN scatter algorithms for

1 Gbps Ethernet and 48

processes/nodes

Max delay ! 0 1 5 10 50 100 500

Size# Mean run time

128 0.0 - 0.1 0.0 - 0.1 - 0.1 - 0.1 0.0

1.02 1.20 1.01 1.01 1.00 1.00 1.00

256 0.2 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1

0.85 1.12 1.01 1.01 1.00 1.00 1.00

512 - 0.1 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1

1.06 0.94 1.02 1.01 1.00 1.00 1.00

1024 0.2 - 0.8 - 0.6 - 2.9 - 15.6 - 15.3 - 16.9

0.99 1.03 1.02 1.08 1.27 1.15 1.04

2048 - 1.3 - 1.6 - 1.4 - 2.3 - 13.8 - 26.2 - 37.0

1.02 1.03 1.02 1.03 1.15 1.21 1.08

Maximum delay is measured in ms and size in K of floats (4�KB). Each entry consists of two values: a

difference of the run times in ms (rBSLN � rLIN) and acceleration: a quotient of the run times (r
LIN

rBSLN
). The bold

values indicate better performance in comparison with the BSLN algorithm

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

in iterative manner, and every iteration data vector size is

256 K of floats (1 MB), and 1000 iterations were executed

for each test. The experiments were deployed with a sim-

ilar configuration as the one used by the benchmark (see

Sect. 5.1), except that the regular Tryton supercomputer

queue system (SLURM [29]) was utilized, just like for any

other compute jobs started by regular users, in contrast to

the separated rack designated for the benchmark. Each

experiment, consisting of the 1000 iterations for each tested

algorithm, was repeated 100 times on 8 compute nodes

with 1 Gbps Ethernet connection.

Table 5 presents the results of the experiments. The

PAP-aware algorithms show their advantage over the

regular approach, and for this configuration, the best per-

formance is obtained by SLS and BSLS, with 3.3%

acceleration of the total application execution time (2.126 s

in absolute value) over default LS, which was also used by

OpenMPI [10] implementation, providing similar results.

This result was achieved by optimizing gather operation

only, in a parallel program, where, on average, the com-

putations cover over 60% of the processing time (43.517 s

in absolute value).

The other measurements also confirm even more the

superiority of the SLS/BSLS algorithms, with the lowest

run times (10 ms, 16.7% shorter than LS) and average

elapsed times (4 ms, 50% shorter than LS). Finally, the

0 0.5 1 1.5 2 2.5
Data size [float] 106

0

0.02

0.04

0.06

0.08

0.1

0.12

A
ve

ra
ge

 ru
n

tim
e

[s
]

LIN
BNOM
SLIN
SBN
BSLN
BSBN

Fig. 16 Benchmark results of the scatter algorithms’ run times for

increasing data size. The experiments were performed on 48 nodes

connected by 1 Gbps Ethernet network, the processes were delayed

randomly (uniform distribution), and the maximum delay was set to

50 ms. The error bars are set to �r (68% of the measurements for the

normal distribution)

0 5 10 15 20 25 30 35 40 45 50
Process/node number

0

0.02

0.04

0.06

0.08

0.1

0.12

A
ve

ra
ge

 ru
nt

im
e

[s
]

LIN
BNOM
SLIN
SBN
BSLN
BSBN

Fig. 17 Benchmark scalability results of the scatter algorithms. The

experiments were performed on up to 48 nodes connected by 1 Gbps

Ethernet network, the processes were delayed randomly (uniform

distribution), the maximum delay: 50 ms, and the total data size: 2 M

of floats (8 MB). The error bars are set to �r (68% of the

measurements for the normal distribution)

Table 4 Comparison of BSLS

and LS gather algorithms for

1 Gbps Ethernet and 48

processes/nodes

Max delay ! 0 1 5 10 50 100 500

Size# Mean run time

128 - 0.7 - 0.8 - 4.1 - 4.9 - 4.1 - 3.3 - 2.6

1.13 1.13 1.68 1.52 1.09 1.03 1.01

256 - 1.1 - 0.9 - 4.3 - 5.8 - 4.7 - 4.1 - 3.1

1.17 1.14 1.63 1.61 1.10 1.04 1.01

512 - 0.7 - 0.3 - 3.7 - 4.9 - 4.6 - 3.8 - 3.0

1.12 1.05 1.57 1.51 1.10 1.04 1.01

1024 29.1 - 8.1 16.6 22.2 - 69.6 - 72.2 - 68.1

0.79 1.07 0.86 0.83 2.40 1.74 1.14

2048 - 25.5 46.8 25.9 31.7 - 84.4 - 97.3 - 88.5

1.23 0.69 0.81 0.78 2.52 1.98 1.18

Maximum delay is measured in ms and size in K of floats (4�KB). Each entry consists of two values: a

difference of the run times in ms (rBSLS � rLS) and acceleration: a quotient of the run times (rLS

rBSLS
). The bold

values indicate better performance in comparison with the BSLS algorithm

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

binomial tree solutions, both PAP-aware (BSBN/SBN) and

regular (BNOM), showed the worst results, what could be

expected for the given data vector sizes (binomial trees are

rather designed for shorter messages).

The above results show a clear performance improve-

ment for a real HPC program, which in turn is frequently

used for many scientific applications, e.g. audio analysis,

radio telescope signal correlation. We would like to

emphasize that it is just one example of possible usage of

this approach, which can be introduced for many other

iterative, parallel programs. The achieved acceleration

(3.3% of total application execution time and 16.7% of run

time related to the communication operations), moderate at

the first look, enables significant savings in the used

infrastructure, what is important for current, large invest-

ments in the HPC industry, where every percent of budget

decrease means a huge cost reduction.

7 Conclusions and future works

We presented a collection of PAP-aware scatter/gather

algorithms based on typical, linear and binomial tree

approaches. The performed experiments, based on the

developed benchmark as well as a real case application,

showed a significant improvement of the computation

performance, for a typical HPC environment. Furthermore,

the results proved that the solution is well scalable and can

be used for a wide range of parallel applications.

We expect that the ubiquity of imbalanced PAP occur-

rences in HPC systems [9] will drive more focus for the

research in this area and the following works are going to

be performed in the future:

– introduction of new collective PAP-aware algorithms,

for other collective operations: e.g. all-to-all, all-gather,

– extension of the algorithms to be used for hierarchical

architecture, e.g. when more than one process work on

the same node, or grid of clusters is used,

– the evaluation of the ultra-scale HPC environments for

imbalanced PAPs using typical simulation tools, e.g.

[5, 24],

– improving the existing PAP-aware algorithms by

introduction of hardware related solutions (e.g. specific

Infiniband [26] features like multicast),

– introduction of the proposed algorithms into other

computing environment (besides HPC), like cloud or

specific processing platforms, e.g. for machine learning,

– usage of the PAP evaluation methods for other

purposes, like deadlock and time dependent errors

detection in parallel programs [15],

– a dedicated framework automating PAP-aware algo-

rithm injection into existing parallel applications.

Acknowledgements I would like to thank to my many years’ mentor:

prof. Henryk Krawczyk, especially for his help, advice and guidelines

in the world of science. I would also like to express my gratitude to

prof. Pawel Czarnul from ETI Faculty as well as the whole team of

Centre of Informatics - Tricity Academic Supercomputer & networK

(CI TASK) in Gdansk University of Technology for their help in my

research.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Appendix: Benchmark results for average
elapsed time

In this appendix, we provide the benchmark results pre-

sented in terms of average elapsed times for scatter (Fig. 18

and Fig. 19) and gather (Fig. 20) algorithms. We can

notice, that the measurement values for the tested algo-

rithms behave similarly to the run times presented in

Sect. 5.2, showing the advantage of PAP-aware algorithms.

Table 5 Parallel FFT execution results for 1 Gbps Ethernet and 8

processes/nodes

Algorithm Total time Run time Elapsed time

LS 64.854 0.012 0.004

BNOM 69.632 0.017 0.005

SLS 62.728 0.010 0.002

SBN 69.845 0.017 0.005

BSLS 62.813 0.010 0.002

BSBN 67.402 0.015 0.003

MPI 64.815 0.012 0.004

The row labeled MPI indicates default (LS) OpenMPI gather imple-

mentation. The measured times are presented in seconds

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://mostwiedzy.pl

References

1. Arap, O., Swany, M., Brown, G., Himebaugh, B.: Adaptive

recursive doubling algorithm for collective communication. In:

2015 IEEE International Parallel and Distributed Processing

Symposium Workshop, pp. 121–128. IEEE (2015)

2. Bailey, D.H.: NAS parallel benchmarks. In: Padua, D. (ed.)

Encyclopedia of Parallel Computing, pp. 1254–1259. Springer,

Boston (2011)

3. Balducci, M., Choudary, A., Hamaker, J.: Comparative analysis

of FFT algorithms in sequential and parallel form. In: Mississippi

State University Conference on Digital Signal Processing,

pp. 5–16 (1996)

4. Butenhof, D.R.: Programming with POSIX Threads. Addison-

Wesley Professional, Boston (1997)

5. Czarnul, P., Kuchta, J., Matuszek, M., Proficz, J., Rościszewski,

P., Wójcik, M., Szymański, J.: MERPSYS: an environment for

simulation of parallel application execution on large scale HPC

systems. Simul. Model. Pract. Theory 77, 124–140 (2017)

6. Dagum, L., Menon, R.: OpenMP: an industry standard API for

shared-memory programming. IEEE Comput. Sci. Eng. 5(1),
46–55 (1998)

7. Dichev, K., Rychkov, V., Lastovetsky, A.: Two algorithms of

irregular scatter/gather operations for heterogeneous platforms.

In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) Recent

Advances in the Message Passing Interface, pp. 289–293.

Springer, Berlin (2010)

8. Faraj, A., Yuan, X., Lowenthal, D.: STAR-MPI: self tuned

adaptive routines for MPI collective operations. In: Proceedings

of the 20th Annual International Conference on Supercomputing,

pp. 199–208 (2006)

9. Faraj, A., Patarasuk, P., Yuan, X.: A study of process arrival

patterns for MPI collective operations. Int. J. Parallel Program.

36(6), 543–570 (2008)

10. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J.,

Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine,

A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.:

Open MPI: goals, concept, and design of a next generation MPI

implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.

(eds.) Recent Advances in Parallel Virtual Machine and Message

Passing Interface, pp. 97–104. Springer, Berlin (2004)

11. Gropp, W., Lusk, E.: User’s guide for MPICH, a portable im-

plementation of MPI. Technical Report ANL-96/6, Argonne

National Laboratory (1994)

12. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel

Programming with the Message-Passing Interface. The MIT

Press, Cambridge (1996)

13. Hockney, R.W.: The communication challenge for MPP: Intel

Paragon and Meiko CS-2. Parallel Comput. 20(3), 389–398

(1994)

0 0.02 0.04 0.06 0.08 0.1 0.12
Max. delay [s]

0

0.02

0.04

0.06

0.08

0.1

0.12
A

ve
ra

ge
 e

la
ps

ed
 ti

m
e

[s
]

LIN
BNOM
SLIN
SBN
BSLN
BSBN

Fig. 18 Benchmark results of the scatter algorithms’ average elapsed

times for increasing maximum delay. The experiments were per-

formed on 48 nodes connected by 1 Gbps Ethernet network, the

processes were delayed randomly (uniform distribution), and the total

data size: 2 M of floats (8 MB). The error bars are set to �r (68% of

the measurements for the normal distribution)

0 5 10 15 20 25 30 35 40 45 50
Process/node number

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
[s

]

LIN
BNOM
SLIN
SBN
BSLN
BSBN

Fig. 19 Benchmark scalability results of the scatter algorithms in

terms of average elapsed time. The experiments were performed on

up to 48 nodes connected by 1 Gbps Ethernet network, the processes

were delayed randomly (uniform distribution), the maximum delay:

50 ms, and the total data size: 2 M of floats (8 MB). The error bars

are set to �r (68% of the measurements for the normal distribution)

0 0.05 0.1 0.15
Max. delay [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
[s

]

LS
BNom
SLS
SBN
BSLS
BSBN

Fig. 20 Benchmark results of the gather algorithms’ average elapsed

times for increasing maximum delay. The experiments were per-

formed on 48 nodes connected by 1 Gbps Ethernet network, the

processes were delayed randomly (uniform distribution), and the total

data size: 2 M of floats (8 MB). The error bars are set to �r (68% of

the measurements for the normal distribution)

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

14. Kandalla, K., Subramoni, H., Vishnu, A., Panda, D.K.: Designing

topology-aware collective communication algorithms for large

scale InfiniBand clusters: Case studies with Scatter and Gather.

In: 2010 IEEE International Symposium on Parallel & Dis-

tributed Processing, Workshops and PhD Forum (IPDPSW),

pp. 1–8. IEEE (2010)

15. Krawczyk, H., Krysztop, B., Proficz, J.: Suitability of the time

controlled environment for race detection in distributed applica-

tions. Future Gener. Comput. Syst. 16(6), 625–635 (2000)

16. Krawczyk, H., Nykiel, M., Proficz, J.: Tryton supercomputer

capabilities for analysis of massive data streams. Polish Maritime

Res. 22(3), 99–104 (2015)

17. LAMMPS benchmarks. URL: https://lammps.sandia.gov/bench.

html. Accessed 09 Dec 2018

18. Lockwood, J.W., McKeown, N., Watson, G., Gibb, G., Hartke,

P., Naous, J., Raghuraman, R., Luo, J.: NetFPGA—an open

platform for gigabit-rate network switching and routing. In: 2007

IEEE International Conference on Microelectronic Systems

Education (MSE’07), pp. 160–161. IEEE (2007)

19. Marendic, P., Lemeire, J., Vucinic, D., Schelkens, P.: A novel

MPI reduction algorithm resilient to imbalances in process arrival

times. J. Supercomput. 72, 1973–2013 (2016)

20. Marendić, P., Lemeire, J., Haber, T., Vučinić, D., Schelkens, P.:

An investigation into the performance of reduction algorithms

under load imbalance. Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). LNCS, vol. 7484, pp. 439–450.

Springer, Berlin (2012)

21. Patarasuk, P., Yuan, X.: Efficient MPI Bcast across different

process arrival patterns. In: 2008 IEEE International Symposium

on Parallel and Distributed Processing, pp. 1–11. IEEE (2008)

22. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing

supercomputer performance. Proceedings of the 2003 ACM/IEEE

Conference on Supercomputing—SC‘03, vol. 836, p. 55. ACM

Press, New York (2003)

23. Proficz, J.: Improving all-reduce collective operations for

imbalanced process arrival patterns. J. Supercomput. 74(7),
3071–3092 (2018)

24. Proficz, J., Czarnul, P.: Performance and power-aware modeling

of MPI applications for cluster computing. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 9574,

pp. 199–209. Springer, Berlin (2016)

25. Qian, Y., Afsahi, A.: Process arrival pattern aware alltoall and

allgather on infiniband clusters. Int. J. Parallel Program. 39(4),
473–493 (2011)

26. Shanley, T.: Infiniband Network Architecture. Addison-Wesley

Professional, Boston (2003)

27. Träff, J.L.: Practical, distributed, low overhead algorithms for

irregular gather and scatter collectives. Parallel Comput. 75,
100–117 (2018)

28. Traff, JL: Hierarchical gather/scatter algorithms with graceful

degradation. In: 18th International Proceedings on Parallel and

Distributed Processing Symposium, 2004, pp. 80–89. IEEE

(2004)

29. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux

utility for resource management. In: Feitelson, D., Rudolph, L.,

Schwiegelshohn, U. (eds.) Job Scheduling Strategies for Parallel

Processing, pp. 44–60. Springer, Berlin (2003)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Jerzy Proficz Ph.D. is the Deputy
Director of the Centre of Infor-

matics - Tricity Academic

Supercomputer & networK (CI

TASK) at Gdansk University of

Technology, Poland. He earned

his Ph.D. (2012) in High Per-

formance Computing (HPC) in

the subject of supercomputer

resource provisioning and man-

agement for on-line data pro-

cessing. Author and coauthor of

over 40 scientific journal and

conference publications related

to the HPC technologies, espe-

cially to parallel and distributed computing. He has 10 years’ expe-

rience in the business environment, as a team leader and manager, as

well as a software developer and designer, working for a variety of

Polish and international companies. He participated in several Polish

and international/European R&D projects. Taught courses on com-

puter science, including: system software, parallel and distributed

processing, Java programming, etc.

Cluster Computing

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://lammps.sandia.gov/bench.html
https://lammps.sandia.gov/bench.html
http://mostwiedzy.pl

	Process arrival pattern aware algorithms for acceleration of scatter and gather operations
	Abstract
	Introduction
	Related works
	Scatter/gather algorithms
	Optimization of collectives with imbalanced PAPs

	Background
	The proposed algorithms
	Scatter algorithms
	Gather algorithms

	Experimental evaluation
	Test environment and configuration
	The results

	Practical use case: parallel FFT
	Conclusions and future works
	Acknowledgements
	Appendix: Benchmark results for average elapsed time
	References

