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Abstract. We prove that second order Hamiltonian systems −ü = Vu(t, u)
with a potential V : R × RN → R of class C1, periodic in time and su-

perquadratic at infinity with respect to the space variable have subharmonic

solutions. Our intention is to generalise a result on subharmonics for Hamil-
tonian systems with a potential satisfying the global Ambrosetti-Rabinowitz

condition from [14]. Indeed, we weaken the latter condition in a neighbour-

hood of 0 ∈ RN . We will also discuss when subharmonics pass to a nontrivial
homoclinic orbit.

1. Introduction. A variational approach to the study of periodic solutions of
Hamiltonian systems was initiated by Poincaré at the end of the XIX century. In the
first half of the XX century, Morse and Lusternik-Shnirelman theories significantly
contributed to the development of research in this direction. In the second half of
the XX century, the mountain pass theorem, Ekeland’s principle, linking theorems
and Conley theory played an important role in the study of periodic orbits. In the
last three decades, variational methods have been intensively developed and applied
in the theory of ordinary and partial differential equations. Let us quote here only
selected books: [1, 2, 4, 13, 15]. These methods rely on many variational principles
in Hamiltonian dynamics, the two most important of which are Lagrangian and
Hamiltonian action functionals.

The present work can be summarised by the following two aims:

• Prove the existence of subharmonics to a class of Hamiltonian systems by
applying a classical approach based on the mountain pass theorem [3].

• Get a nontrivial homoclinic orbit for a slightly smaller class of Hamiltonian
systems by a complementary approach based on the approximative method
[11].
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Namely, in this paper we shall study the existence of subharmonic solutions for
Lagrangian systems of the type

− ü(t) = Vu(t, u(t)) (1)

with a C1-smooth potential V : R× RN → R of the form

V (t, u) = −K(t, u) + F (t, u), (2)

where K,F : R× RN → R are C1-smooth mappings which are T -periodic in t (for
some T > 0) and satisfy the following conditions:

(V 1) there are constants b1, b2 > 0 such that for all (t, u) ∈ R× RN ,

b1|u|2 ≤ K(t, u) ≤ b2|u|2,

(V 2) for all (t, u) ∈ R× RN ,

K(t, u) ≤ (Ku(t, u), u) ≤ 2K(t, u),

(V 3) there exist r > 0, µ > 2 and 0 < ν < b1 such that for all t ∈ R,
(i) 0 < µF (t, u) ≤ (Fu(t, u), u) if |u| ≥ r,
(ii) 2F (t, u) ≤ (Fu(t, u), u) and |F (t, u)| ≤ ν|u|2 if |u| < r.

Here and subsequently, (·, ·) : RN ×RN → R denotes the standard inner product in
RN and | · | : RN → [0,∞) is the induced norm.

Clearly a solution u of (1) over [−T, T ] verifying

u(−T )− u(T ) = u̇(−T )− u̇(T ) = 0 (3)

can be extended by 2T -periodicity over R to give a 2T -periodic solutions of (1). We
shall show that (1) possesses solutions u such that

u(−kT )− u(kT ) = u̇(−kT )− u̇(kT ) = 0 (4)

for some k ≥ 2, where the minimal period is greater than 2T . We will call such
solutions subharmonics.

Let us briefly discuss our assumptions. Condition (V 1) is the pinching condition
due to M. Izydorek and J. Janczewska [9]. The model potential satisfying (V 1) and
(V 2) takes the form

K(t, u) =
1

2
(L(t)u, u),

where L : R → RN2

is a continuous T -periodic matrix valued function such that
L(t) is positive definite and symmetric for every t ∈ R. Condition (V 3)(i) is the
superquadratic growth condition due to A. Ambrosetti and P.H. Rabinowitz [14].
This condition implies that F and V grow faster than |u|2 as |u| → ∞ (compare
(5)). Condition (V 3)(ii) determines the behaviour of F at the neighbourhood of
0 ∈ RN . It follows that Fu(t, 0) = 0 for each t ∈ R.

Our intention is to generalise the Rabinowitz result on subharmonic solutions
[14], where the author assumes that F satisfies the superquadratic growth condition
(V 3)(i) also for |u| ≤ r. Let us remark that (V 3)(ii) instead of (V 3)(i) for |u| < r
allows F to be negative in the neighbourhood of 0 ∈ RN (compare Example 2).

Our result is as follows.

Theorem 1.1. We assume that V satisfies the conditions (V 1)− (V 3). Then the
Hamiltonian system (1) possesses a sequence of subharmonic solutions, i.e. for each
k ∈ N\{0} there is a 2kT -periodic solution uk of (1) such that along a subsequence
of {uk}k∈N the minimal period of uk tends to +∞ when k →∞.
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SUBHARMONIC SOLUTIONS 1843

We prove Theorem 1.1 in the next two sections. In Section 3 we show the
existence of a nontrivial homoclinic orbit of (1) by some stronger assumptions on
F . Finally, we discuss some examples.

2. Preliminaries. Let us start with some preliminary facts, notions and notation.

Lemma 2.1. Under the condition (V 3)(i), the following inequality holds:

rµF (t, u) ≥ |u|µ inf
t∈R,|x|=r

F (t, x) if |u| ≥ r. (5)

Proof. It is readily seen by (V 3)(i) that for all t ∈ R and |u| ≥ r the map

[1,∞) 3 ξ −→ ξ−µF (t, ξu)

is non-decreasing. Set v = r u
|u| . For all t ∈ R we obtain(
|u|
r

)−µ
F (t, u) ≥ F (t, v),

which yields (5).

Clearly, (5) implies that

F (t, u)

|u|2
→ +∞

as |u| → ∞ uniformly in t ∈ R.

For each k ∈ N, we let Ek be the Sobolev space W 1,2
2kT (R,RN ) of 2kT -periodic

W 1,2-functions on R with values in RN equipped with the norm

‖u‖Ek
=

(∫ kT

−kT

(
|u(t)|2 + |u̇(t)|2

)
dt

) 1
2

.

For 1 ≤ q < +∞, let Lq2kT (R,RN ) be the space of 2kT -periodic Lq-functions with
the norm

‖u‖Lq
2kT

=

(∫ kT

−kT
|u(t)|qdt

) 1
q

.

Let L∞2kT (R,RN ) be the space 2kT -periodic, essentially bounded and measurable
functions from R into RN with the norm

‖u‖L∞
2kT

= ess sup{|u(t)| : t ∈ [−kT, kT ]}.
We note for later reference that there is a positive constant C > 0 such that for
each k ∈ N,

‖u‖L∞
2kT
≤ C‖u‖Ek

. (6)

Furthermore, if u : R → RN is a continuous function and u̇ is locally square inte-
grable, then for every t ∈ R,

|u(t)| ≤
√

2

(∫ t+1/2

t−1/2

(
|u(s)|2 + |u̇(s)|2

)
ds

) 1
2

. (7)

Both (6) and (7) are proved in [14, 9].
We now define for k ∈ N a functional Ik : Ek → R by

Ik(u) =

∫ kT

−kT

(
1

2
|u̇(t)|2 +K(t, u(t))− F (t, u(t))

)
dt. (8)
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1844 ANOUAR BAHROUNI, MAREK IZYDOREK AND JOANNA JANCZEWSKA

Then Ik ∈ C1(Ek,R) and, moreover,

I ′k(u)v =

∫ kT

−kT
((u̇(t), v̇(t)) + (Ku(t, u(t)), v(t))− (Fu(t, u(t)), v(t))) dt. (9)

Clearly, critical points of Ik are classical 2kT -periodic solutions of (1).
In the next section we will show the existence of a critical point of Ik by using

the mountain pass theorem (see [1, 3, 13]). This theorem provides the minimax
characterisation for a critical value which is important for our argument. Let us
recall its statement for the convenience of the reader.

Theorem 2.2. Let E be a real Banach space and I : E → R a C1-smooth functional.
If I satisfies the following conditions:

(i) I(0) = 0,
(ii) every sequence {un}n∈N ⊂ E such that {I(un)}n∈N is bounded in R and

I ′(un)→ 0 in E∗ as n→∞ contains a convergent subsequence (Palais-Smale
condition),

(iii) there exist constants %, α > 0 such that I|∂B%(0) ≥ α,

(iv) there is some e ∈ E \B%(0) such that I(e) < 0,

where B%(0) denotes the open ball in E of radius % about 0, then I has a critical
value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

3. Periodic solutions. Now we will prove that (1) possesses subharmonic solu-
tions.

Lemma 3.1. For each k ∈ N, the functional Ik given by (8) has the mountain pass
geometry, i.e. it satisfies the conditions (i)− (iv) in Theorem 2.2.

Proof. Fix k ∈ N. Clearly, Ik(0) = 0, which is (i). To prove the Palais-Smale
condition (ii), we consider a sequence {un}n∈N ⊂ Ek such that {Ik(un)}n∈N ⊂ R is
bounded, and I ′k(un) → 0 in E∗k as n → ∞. Thus there is a constant dk > 0 such
that for each n ∈ N,

|Ik(un)− 1

µ
I ′k(un)un| ≤ dk(1 + ‖un‖Ek

).

Applying (8), (9), (V 1)− (V 3) we get

Ik(un)− 1

µ
I ′k(un)un ≥

(
1

2
− 1

µ

)
min{1, 2b1}‖un‖2Ek

+
1

µ

∫ kT

−kT
((Fu(t, un(t)), un(t))− µF (t, un(t))) dt,

Ik(un)− 1

µ
I ′k(un)un ≥

(
1

2
− 1

µ

)
min{1, 2b1}‖un‖2Ek

+
1

µ

∫
{t∈[−kT,kT ] : |un(t)|<r}

((Fu(t, un(t)), un(t))− µF (t, un(t))) dt,

Ik(un)− 1

µ
I ′k(un)un ≥

(
1

2
− 1

µ

)
min{1, 2b1}‖un‖2Ek

−mk.
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SUBHARMONIC SOLUTIONS 1845

Consequently, (
1

2
− 1

µ

)
min{1, 2b1}‖un‖2Ek

≤ dk(1 + ‖un‖Ek
) +mk,

which yields that {un}n∈N is bounded in Ek. Going to a subsequence if necessary,
we can assume that there is u ∈ Ek such that un ⇀ u in Ek as n → ∞, and so
un → u uniformly on [−kT, kT ], which implies in particular that ‖un−u‖L2

2kT
→ 0

as n→∞.
Using (9) we have

‖u̇n − u̇‖2L2
2kT

= (I ′k(un)− I ′k(u), un − u)

+

∫ kT

−kT
(Vu(t, un(t))− Vu(t, u(t)), un(t)− u(t)) dt

for each n ∈ N. As I ′k(un) → 0 in E∗k , {un}n∈N is bounded in Ek and un →
u uniformly on [−kT, kT ], we conclude that ‖u̇n − u̇‖L2

2kT
→ 0 as n → ∞. In

consequence, ‖un − u‖Ek
→ 0 as n→∞ and the Palais-Smale condition is shown.

We will prove now that there exist % > 0 and α > 0 independent of k such that
Ik|∂B%(0) > α, which is (iii).

Set
% =

r

2C
,

where C > 0 and r > 0 are defined by (6) and (V 3), respectively. We assume that
‖u‖Ek

≤ %. From (6) it follows that ‖u‖L∞
2kT

< r. Applying (8), (V 1) and (V 3)(ii)
we get

Ik(u) ≥
∫ kT

−kT

(
1

2
|u̇(t)|2 + b1|u(t)|2 − ν|u(t)|2

)
dt

≥ min

{
1

2
, b1 − ν

}
‖u‖2Ek

,

and hence, if ‖u‖Ek
= %,

Ik(u) ≥ min

{
1

2
, b1 − ν

}
%2 ≡ α.

It remains to show (iv). To this aim, we assume that Q ∈ E1, Q(±T ) = 0 and
min|t|≤T |Q(t)| > r. Combining (8), (V 1) and (5) we have for every s > 1,

I1(sQ) ≤ s2

2
max{1, 2b2}‖Q‖2E1

− sµ

rµ
inf

t∈R,|x|=r
F (t, x)

∫ T

−T
|Q(t)|µdt. (10)

As µ > 2 and inft∈R,|x|=r F (t, x) > 0, there is s > 1 such that ‖sQ‖E1 > % and
I1(sQ) < 0.

Set e1(t) = sQ(t). For each k ∈ N, let ek(t) = e1(t) if |t| ≤ T , and ek(t) = 0 if
T < |t| ≤ kT . Then ek ∈ Ek, ‖ek‖Ek

= ‖e1‖E1
> % and Ik(ek) = I1(e1) < 0, which

completes the proof.

Consequently, by Theorem 2.2 and Lemma 3.1, for each k ∈ N the action func-
tional Ik has a critical value ck ≥ α given by

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)), (11)

where
Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek}.
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Hence for each k ∈ N there is uk ∈ Ek such that

Ik(uk) = ck, I ′k(uk) = 0. (12)

Proof of Theorem 1.1. In order to prove Theorem 1.1, it suffices to show that the
sequence of norms {‖uk‖Ek

}k∈N is bounded in R. Then there is a subsequence of
{uk}k∈N of subharmonic solutions of (1).

For this purpose, let us define

M = max
s∈[0,1]

I1(se1).

Since Ik(sek) = I1(se1) for all k ∈ N and s ∈ [0, 1], and sek ∈ Γk, we have

ck ≤ max
s∈[0,1]

Ik(sek) = max
s∈[0,1]

I1(se1) = M. (13)

Applying (8) and (9) we get

ck = Ik(uk)− 1

2
I ′k(uk)uk

≥
∫ kT

−kT

(
1

2
(Fu(t, uk(t)), uk(t))− F (t, uk(t))

)
dt

for each k ∈ N, and by (V 3),

ck ≥
(µ

2
− 1
)∫
{t∈[−kT,kT ] : |uk(t)|≥r}

F (t, uk(t))dt.

Combining this with (8), (V 1) and (V 3), for each k ∈ N, we have

ck ≥
∫ kT

−kT

(
1

2
|u̇k(t)|2 + b1|uk(t)|2

)
dt− 2ck

µ− 2
−
∫ kT

−kT
ν|uk(t)|2dt,

and, finally by (13),

M +
2M

µ− 2
≥ min

{
1

2
, b1 − ν

}
‖uk‖2Ek

.

4. Homoclinic orbits. We recall first that u : R→ RN is called a homoclinic (to
0) orbit of (1) if u(t)→ 0, u̇(t)→ 0 as t→ ±∞.

Theorem 4.1. We assume that V : R × RN → R is of the form (2), where K
satisfies (V 1)− (V 2), and F satisfies the following two conditions:

(V 3′) there exist r > 0, µ > 2 and 0 < ν < b1 such that for all t ∈ R,
(i) 0 < µF (t, u) ≤ (Fu(t, u), u) if |u| ≥ r,
(ii) 0 < 2F (t, u) ≤ (Fu(t, u), u) and F (t, u) ≤ ν|u|2 if 0 < |u| < r.

(V 4) Fu(t, u) = o(|u|) as |u| → 0 uniformly in t ∈ R.

Then (1) possesses a nontrivial homoclinic orbit.

Of course, (V 3′) implies (V 3). Furthermore, it is easily seen that combining (V 4)
with (V 3′)(ii) we get F (t, u) = o(|u|2) as |u| → 0 uniformly in t ∈ R.

Since homoclinics are important objects in the understanding of the global be-
haviour of Hamiltonian systems, it is desirable to study their existence. See for
example in [5, 12, 16, 17]. The technical difficulties encountered in looking for
homoclinics go beyond those of the periodic setting in at least two ways:

• An action functional associated with a given problem may be infinite on the
natural class of functions, and so one has to find a renormalized functional.
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• There is a loss of compactness due to the fact that solutions are defined on R,
and this fact complicates the study of Palais-Smale sequences.

To overcome these difficulties, one can apply approximation methods, Lions’ princi-
ple on concentration-compactness, and the LS-index introduced in [6] and developed
in [7, 8]. Moreover, the shadowing chain lemma of [10] often allows to prove the
existence of homoclinics for planar Lagrangian systems.

To prove Theorem 4.1 we use the approximative scheme by J. Janczewska [11].
Let E be the Sobolev space W 1,2(R,RN ) with the standard norm

‖u‖E =

(∫ ∞
−∞

(
|u(t)|2 + |u̇(t)|2

)
dt

) 1
2

.

Let us denote by C2
loc(R,RN ) the space of C2-smooth functions on R with values

in RN under the topology of almost uniformly convergence of functions and all
derivatives up to the order 2.

Theorem 4.2. Let V : R × RN → R and f : R → RN satisfy the following condi-
tions:

(C1) V is C1-smooth with respect to all variables and T -periodic with respect to t,
T > 0,

(C2) f is bounded, continuous and square integrable.

Assume also that for each k ∈ N, the Newtonian system

ü(t) + Vu(t, u(t)) = fk(t) (14)

has a 2kT -periodic solution uk ∈ Ek, where fk : R→ RN is a 2kT -periodic extension
of f restricted to the interval [−kT, kT ) over R.

Then, if the sequence of real numbers {‖uk‖Ek
}k∈N is bounded, there exist a

subsequence {ukj}j∈N and a function u ∈ E such that

ukj → u, as j →∞,

in the topology of C2
loc(R,RN ) and u is an almost homoclinic solution of the New-

tonian system
ü(t) + Vu(t, u(t)) = f(t), (15)

i.e. u(t)→ 0 as t→ ±∞.

The approximative method was formulated and proved by J. Janczewska [11] for
inhomogenous second order Hamiltonian systems (f 6= 0). The proof for f ≡ 0 is
similar. However, in our case a homoclinic solution obtained by applying Theorem
4.2 may be trivial and we have to prove that it is not. To this aim, by the use of
(V 3′)(ii) we will introduce a certain auxiliary real function Y . A similar auxiliary
function was applied by Rabinowitz [14] based on the global condition (V 3′)(i).

Proof of Theorem 4.1. From Theorem 1.1 and its proof it follows that (1) possesses
a sequence {uk}k∈N ⊂ Ek of subharmonic solutions defined by (12) and there is

M̃ > 0 such that for every k ∈ N,

‖uk‖Ek
≤ M̃.

By Theorem 4.2 we conclude that there is u ∈ E such that going to a subsequence if
necessary uk → u as k →∞ in C2

loc(R,RN ) and u is an almost homoclinic solution
of (1).

To finish the proof it remains to show that u is nontrivial and u̇(t) → 0 as
t→ ±∞.
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Assume that u ≡ 0. Then uk → 0 uniformly on each compact subset of R. As
V is T -periodic in t ∈ R, without loss of generality we can assume that for each
k ∈ N, uk achieves its maximum at the interval [−T, T ]. Hence

‖uk‖L∞
2kT

= max
|t|≤kT

|uk(t)| = max
|t|≤T

|uk(t)| → 0 (16)

as k →∞. It follows that for k ∈ N sufficiently large, ‖uk‖L∞
2kT
≤ r.

Let Y be a real function from [0, r] into R given by Y (0) = 0, and

Y (s) = max
t∈[0,T ],0<|ξ|≤s

f(t, ξ) if 0 < s ≤ r,

where

f(t, ξ) =
(ξ, Fu(t, ξ))

|ξ|2
.

Let us remark that Y is non-negative. Indeed. By (V 3′)(ii), for 0 < s ≤ r,
t ∈ [0, T ] and 0 < |ξ| ≤ s, we have

Y (s) ≥ (ξ, Fu(t, ξ))

|ξ|2
≥ 2F (t, ξ)

|ξ|2
> 0.

Moreover, Y is non-decreasing. Fix 0 < s1 < s2 ≤ r. As

{f(t, ξ) : t ∈ [0, T ], 0 < |ξ| ≤ s1} ⊂ {f(t, ξ) : t ∈ [0, T ], 0 < |ξ| ≤ s2} ,
we obtain Y (s1) ≤ Y (s2).

Finally, Y is continuous. Fix 0 < s0 ≤ r and ε > 0. There is δ > 0 such that for
all t ∈ [0, T ] and 0 < s ≤ r, |f(t, s)− f(t, s0)| < ε if |s− s0| < δ.

If s0 < s < s0 + δ, then Y (s) ≥ Y (s0) and

Y (s) = max

{
Y (s0), max

t∈[0,T ],s0≤|ξ|≤s
f(t, ξ)

}
≤ max

{
Y (s0), max

t∈[0,T ]
f(t, s0) + ε

}
≤ Y (s0) + ε,

and hence Y (s)− Y (s0) ≤ ε.
If s0 − δ < s < s0, then Y (s) ≤ Y (s0) and

Y (s0) = max

{
Y (s), max

t∈[0,T ],s≤|ξ|≤s0
f(t, ξ)

}
≤ max

{
Y (s), max

t∈[0,T ]
f(t, s) + 2ε

}
≤ Y (s) + 2ε,

and so Y (s0)− Y (s) ≤ 2ε.
In order to prove the continuity of Y at 0, it is sufficient to show that f(t, ξ)→ 0

as |ξ| → 0 uniformly in t ∈ [0, T ], which follows from (V 4) and the estimation below:

f(t, ξ) =

(
ξ

|ξ|
,
Fu(t, ξ)

|ξ|

)
≤ |Fu(t, ξ)|

|ξ|
.

By definition of Y , for k ∈ N sufficiently large,

Y (‖uk‖L∞
2kT

)|uk(t)|2 ≥ (uk(t), Fu(t, uk(t))) .

Integrating both sides we have(∫ kT

−kT
|uk(t)|2dt

)
Y (‖uk‖L∞

2kT
) ≥

∫ kT

−kT
(uk(t), Fu(t, uk(t)))dt.

From this and (V 1)− (V 2) we get

Y (‖uk‖L∞
2kT

) · ‖uk‖2Ek
≥ min{1, b1}‖uk‖2Ek

,
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and so Y (‖uk‖L∞
2kT

) ≥ min{1, b1} > 0, which contradicts (16).
Now, by (7), for each t ∈ R,

|u̇(t)| ≤
√

2

(∫ t+1/2

t−1/2

(
|u̇(s)|2 + |ü(s)|2

)
ds

) 1
2

. (17)

Since u(t) → 0 as t → ±∞, combining (17) with (1) we conclude that u̇(t) → 0 as
t→ ±∞, which completes the proof.

5. One-dimensional examples. Finally, we illustrate our results by the following
one-dimensional examples.

Example 1. Let K : R×R→ R be given by K(t, x) = (1+cos2 t)x2 and F : R→ R
be defined as follows:

F (x) =


1
2e
−2(x+1) if x ≤ −1,

1
2x

2 if |x| ≤ 1,

1
2e

2(x−1) if x ≥ 1.

One can easily check that (V 1) − (V 3) are satisfied with b1 = 1, b2 = 2, r = 3
2 ,

ν = 1
2 and µ = 3.

Example 2. Take K(t, x) = (2 + cos2 t)x2, x, t ∈ R, and set

F (x) =



1
16

(
x+ π

2 − π
2
3

)4

− 1
16π

8
3 if x ≤ −π2 ,

−x2 cosx if |x| ≤ π
2 ,

1
16

(
x− π

2 + π
2
3

)4

− 1
16π

8
3 if x ≥ π

2 .

A trivial verification shows that (V 1)− (V 3) hold with b1 = 2, b2 = 3, r = π
2 , ν = 1

and µ = 2π
1
3 .

Example 3. Let K(t, x) = (1 + sin2 t)x2 for all t, x ∈ R and F : R → R be given
by

F (x) =


1
4e
−4(x+1) if x ≤ −1,

1
4x

4 if |x| ≤ 1,

1
4e

4(x−1) if x ≥ 1.

One can immediately check that (V 1) − (V 2), (V 3′) and (V 4) are fulfilled with
b1 = 1, b2 = 2, r = 1, ν = 1

4 and µ = 4.

Acknowledgments. We wish to dedicate this paper to Professor Norman Dancer
on the occasion of his 70th birthday.
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