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Abstract 

In this article, a new refined beam theory namely one variable first-order shear deformation 

theory has been employed to study the vibration and buckling characteristics of nonlocal beam. 

The beam is exposed to an axial magnetic field and embedded in Winkler-Pasternak 

foundation. The Von Kármán hypothesis along with Hamilton’s principle have been 

implemented to derive the governing equations for both the vibration and buckling studies 

and closed form solutions are obtained for simply supported beam using the Navier’s approach. 

Further, a parametric study has been conducted to explore the impacts of small scale parameter, 

Winkler modulus, shear modulus, and magnetic field intensity on natural frequencies and critical 

buckling loads.   
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1. Introduction 

The nanotubes were one of the first real nanomaterials to be produced at the molecular level by 

engineering methods. The nanotubes can be classified into different kinds of nanostructures, such 

as carbon nanotubes [1] (single-walled, double-walled, etc.), boron-nitride nanotubes [2] and etc. 

Carbon nanotubes (CNTs) made of carbon sheets with the thickness of an atom and in the shape 

of a hollow cylindrical, were discovered by Iijima [3]. The supernatural properties are assigned to 

carbon nanotubes. Among these properties, excellent flexibility, tensile strength, thermal stability 

and magnetic characteristics, are features that dream up predictions of nanotechnology products 

such as: microscopic robots, smooth and high strength bodies for automobiles, artificial arms and 

earthquake-resistant buildings. 

 

Fig. 1. The SWCNT under an axial magnetic field bridged on the Winkler-Pasternak medium 

Regarding the aforementioned amazing features of the CNTs, a lot of research have been reported 

on these nanostructures.  Therefore, it is very essential to analyze and understand the mechanical 

behavior of the manufactured nano parts. Due to different properties of the nanomaterials in a 

nanoscale against macroscale, these materials are important to be analyzed in a size-dependent 

scale. To consider these structures in a size-dependent domain, there are some models. Among 

these models, nonlocal continuum elasticity is most well-known one. Nonlocal theory of Eringen 

tells about nonlocality which considers a large interaction between atoms and leads to softening 

(decreasing stress at increasing strain). This model also is named as second stress gradient one. A 

lot of research have been reported on the CNTs structures based on nonlocal elasticity theory. 
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Murmu et al [4] studied the external magnetic influences on the transverse vibrations of double-

walled carbon nanotubes (DWCNTs) based on the Euler-Bernoulli beam equation and elasticity 

theory of nonlocal. Their results proved that the increase of the magnetic effect increased the 

transverse natural frequencies of the nanotubes. Kiani [5] analyzed a longitudinal magnetic field 

affected the transverse natural frequencies of a DWCNT. The nanotubes system was bridged on a 

polymer foundation. The model was solved on the basis of the higher-order and Timoshenko beam 

approaches. Nonlocal elasticity was also utilized to simulate the interaction between atoms in a 

small scale. The numerical results were computed based on the several edge conditions i.e. pivot-

pivot, clamped-clamped, pivot-clamped and also clamped-free. Further, Kiani [6] examined 

buckling and vibrations of a carbon nanotube with one wall only (SWCNT) subjected a three-

dimensional magnetic field. The nonlocal continuum theory was combined with the Rayleigh beam 

technique to derive the equations of motion. Güven [7] investigated transverse natural frequencies 

of a SWCNT in a magnetic field assuming initial stress. The beam hypothesis was based on the 

Timoshenko one and the size-dependent behavior was modelled based on the gradient elasticity. 

The results were numerically shown about simple-simple edge conditions. Ponnusamy and 

Amuthalakshmi [8] considered the effects of magnetic and temperature of the surrounds on the 

natural frequencies of a nonlocal DWCNT. The Timoshenko beam hypothesis was mixed by the 

nonlocal theory of Eringen in order to formulate the nonlocal equations of motion. The acquired 

equations of motion were analytically calculated on the basis of pivot-pivot edge conditions. Zhang 

and Shen [9] dynamically examined a SWCNT placed into a visco-Pasternak matrix subjected to 

an axial magnetic field. The nanotube was in a horn-shaped model and The Euler-Bernoulli 

hypothesis was base of the achieved equations. The transfer function method and perturbation 

technique were taken to calculate the numeric vibration modes. Hosseini and Sadeghi-Goughari 

[10] presented the buckling modes and natural frequencies of a nanotube under an axial magnetic 

field conveying fluid. Differential transformation method was stood for giving the numeric 

outcomes. Their best results proved that the axial magnetic field increased natural frequencies and 

the flow velocity. Nonlinear natural frequencies of a SWCNT subjected to a magnetic field with 

random material features using nonlinear damping was studied by Chang [11]. Kiani [12] with 

assuming the existence of an axial magnetic field dynamically analyzed the periodic arrays of 

SWCNTs in the thermal environment based on the stress nonlocality. Moreover, Zhen et al [13] 

based on the viscoelasticity properties of the SWCNTs, higher-order beam hypothesis and nonlocal 
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strain gradient model, studied the natural frequencies of a nanotube. To the sake of the brevity, the 

other important research done on the carbon nanotubes and nanobeam are found by [14-42]. 

Civalek and Demir [43] studied buckling and bending characteristics of cantilever carbon 

nanotube using Euler-Bernoulli beam theory, and the small scale effects of the CNT was captured 

by Eringen's elasticity theory. Li et al [44] employed analytical approach and finite element 

method to investigate the longitudinal vibration of rods using a nonlocal strain gradient model. 

Barretta et al [45] investigated higher order version of Eringen’s model using Euler-Bernoulli 

beam. Implementation of integral form of nonlocal Euler Bernoulli beam for the dynamic response 

analysis was studied by Eptaimeros et al [46]. Rahmani et al [47] implemented Navier’s approach 

to study bending and buckling of FGM beam using several nonlocal higher order shear 

deformation beam theories. Akgoz and Civalek [48] applied both the hyperbolic shear deformation 

and modified couple stress theories to analyze the effects of thermal and shear deformation on the 

vibrational behavior of functionally graded microbeam. Mercan and Civalek [49] investigated 

buckling behavior of Silicon carbide nanotubes considering the surface effect and small scale 

effect using harmonic differential quadrature method. Demir and Civalek [50] used enhanced 

Eringen differential model to study bending of micro beams under the framework of Euler-

Bernoulli beam theory. Some other pioneering works by different researchers can been seen in 

[51-55].  

Carbon nanotubes and nanobeams with magnetic property can present many applications in 

engineering. As an example, in order to separate pollutants like heavy metals, dangerous organic 

and mineral compounds from water solotions, the tubes have attracted the attention of scientists. 

To this, with making a magnetic field around the nanobeams placed in a polluted environment, all 

of the above-mentioned pollutants can be absorbed to the nanobeams leading to a safe and healthy 

water [56, 57]. Inevitably, the magnetic field can affect the nanobeam and hence results in 

mechanical reaction of the nanobeam. In fact, the CNTs may not give researchers a good 

performance to absorb the pollutants if they do not know about mechanical response of the 

nanobeams in a magnetic surround. There are many other examples that can be mentioned. 

Therefore, in this case, deformation and resistance reaction of nanobeams in a magnetic field was 

as an engineering motivation for this research.  
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As review the crucial and the best research on the CNTs, the authors aim at the reconsidering the 

SWCNTs in both mechanical stability and vibrations under a longitudinal magnetic environment 

on the basis of a new refined beam hypothesis which can be seen in Fig. 1.  The refined beam 

model is based on the one variable resulting in lower number of equations. To include the behavior 

of the nanostructure at its real domain, the continuous nonlocal theory is employed. Furthermore, 

a well-known elastic foundation, namely Winkler-Pasternak, is located under the nanotube in order 

to find the nanotube more stable. The Navier analytical technique is base of the numerical findings 

for a pivot-pivot edge condition. After all, the deeply considerations are shown for key parameters 

such as, magnetic effect, small scale impacts and the foundations influences.  

2. Proposed model 

From Maxwell's Electromagnetic equations, we have [58-60] 
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In which ( )b  is the static charge density, ( )E  is the electric field intensity, ( )H  is the magnetic 

field intensity, ( )J  is the current density vector, ( )B  is the magnetic field density, ( )D  is the 

displacement current density,   and   are the electric and magnetic permeability of the beam, 

respectively. Now, by neglecting the displacement current density and considering the small 

disturbances of the initially applied electromagnetic field as ( )tzyxee ,,,= and ( )tzyxhh ,,,= , 

the electromagnetic fields can be represented as 

hHHeEE +=+= 00 ,                                                                                                                (2)                                                                      

In the present investigation, we have neglected the initially applied electric field which results into 

eE = . Now, the Eq. (1) can be rewritten as [58-60] 
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Here ),0,( wuu =  represents the displacement field vector  of the beam. Considering only axial 

magnetic field as ( )0,0,xHH =  acting on the beam, we obtain 
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The Lorentz force induced by the axial magnetic field is computed as [58-60] 
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Likewise, the resultant Lorentz force can be obtained as [58-60] 
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The displacement fields, as per new refined beam theory can be expressed as [20, 21, 27]  
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In which ( )txu ,  and ),( txw are the displacements of the neutral axis in axial and transverse 

directions, respectively. 
AG

EI
B = , where E  is the Young’s modulus, =

A

dAzI 2
 is the moment 

of area, A  is the area of cross-section, and G  is the shear modulus. Considering Von Kármán 

hypothesis, the strain displacement relations are given as   
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The virtual strain energy ( )U  may be written as  
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where =
A

xxxx dAzM  , =
A

xxxx dAN  , and =
A

xzxz dAQ   are the local stress resultants of the 

beam. The  kinetic energy ( )T  of the beam can be written as 
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Now the virtual kinetic energy ( )T can be computed as 
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In which AI =0  and II =2 , are called mass moments of inertia. 

The virtual work done ( )W  by external loads is defined as  
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where wk  is the Winkler modulus, pk  is the shear modulus,   is the magnetic permeability, and 

xH  is the strength of axial magnetic field. 
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Using Hamilton’s principle ( )( ) ,
0
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The Eq. (14a) is further simplified as 
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The local stress resultants, using Hookean stress-strain elasticity relation can be rewritten as  
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From the Eringen's nonlocal elasticity theory [61], we have  
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In which klij  , and ijklC  are stress tensor, strain tensor and elastic constant, respectively.  

Further, from Eq. (16), we have  

( ) xxxx E
x

ae  =











−

2

2
2

01                                                                                                                                  (17.a) 
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( ) xzxz G
x

ae  21
2

2
2

0 =











−                                                                                                                           (17.b) 

Employing Eq. (17), the nonlocal stress resultants may be given as  

( )
2

2

2

2
2

01
x

w
EIM

x
ae xx




−=












−                                                                                                    (18.a) 

( )
3

3

2

2
2

01
x

w
AGBQ

x
ae xz




=












−                                                                                                                      (18.b)     

Implementing Eq. (18) in Eq. (14), the governing equation of motion is expressed as 
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
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
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
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




−



                           (19) 

For finding the buckling load, the time derivative terms are required to be ignored and the in-plane 

force resultant ( )xxN is replaced by P−  in  Eq. (19) and the governing equation is given as 

 ( )

( )
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
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                            (20) 

For linear free vibration, the in-plane force resultant ( )xxN is neglected from Eq. (19) and the 

governing equation of motion may be stated as    

( )
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    (21) 
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3. Analytical Method 

In this research, Navier’s method has been incorporated to study the buckling characteristics as 

well as vibration characteristics analytically for Simply supported- Simply supported (SS) 

boundary condition. The transverse displacement ( )w , as per Navier’s approach may be expressed 

as [20, 21, 27] 

( ) ti

n

n
nex

L

n
Wtxw





=









=

1

sin,                                                                                                       (22) 

In which ,nW and n  are the displacement and frequency of the beam.  

Plugging Eq. (22) in Eq. (21), the frequency parameter ( )2  may be stated as 
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                                               (23) 

Substituting Eq. (22) in Eq. (20), the buckling load can be obtained as 
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4. Results and discussions 

The natural frequencies ( )n  and critical buckling loads ( )1P  or ( )crP  are calculated from Eq. (23) 

and Eq. (24), respectively implementing the Navier’s  method. In this investigation, we have 

considered Single Walled Carbon Nanotube (SWCNT) for the case study by using the following 

properties or parameters [62]. 

TPaE 1= , Poisson’s ratio ( ) 28.0= , mass density ( ) 3/24.2 cmg= , diameter ( ) nmd 1.1= , 

Effective thickness ( ) nmh 342.0= , Magnetic permeability ( ) H/m7104 −=  , unless mentioned

10=L , and Magnetic field intensity ( ) mAH x /104 8= . 

4.1 Validation  

The critical buckling loads ( )crP  and  the frequency parameters ( )EIAL  2=  are validated 

by comparing with other published article in special cases. For the validation of critical buckling 

loads ( )crP , Winkler foundation ( )wk , Pasternak foundation ( )pk , and the magnetic field intensity 

)( xH are set to zero and then the results are compared with [21] for different nonlocal parameters 

and different lengths of beam which can be  depicted in Table 1. For the computational purpose 

we have considered TPaE 1= , Poisson’s ratio ( ) 18.0= , and diameter ( ) nmd 1= . Likewise to 

exhibit the exactness of the frequency parameters ( ) , the present results are compared with [63] 

by neglecting Winkler foundation ( )wk , Pasternak foundation ( )pk , shear modulus ( )G , and the 

magnetic field intensity )( xH  which is demonstrated in Fig. 2 as graphical results. From these 

results, an excellent agreement can be witnessed. 
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Fig. 2. Comparison of frequency parameters with [63] 

     

Table 1 Validation of critical buckling load ( )crP  with [21] 

ae0  Present [21] 

12=L  14=L  16=L  18=L  20=L  12=L  14=L  16=L  18=L  20=L  

0 3.3991 2.4905 1.9034 1.5021 1.2156 3.3991 2.4905 1.9034 1.5021 1.2156 

0.5 3.3418 2.4595 1.8852 1.4907 1.2082 3.3418 2.4595 1.8852 1.4907 1.2082 

1 3.1810 2.3711 1.8327 1.4577 1.1864 3.1810 2.3711 1.8327 1.4577 1.1864 

1.5 2.9449 2.2370 1.7515 1.4057 1.1517 2.9449 2.2370 1.7515 1.4057 1.1517 

2 2.6677 2.0729 1.6494 1.3389 1.1064 2.6677 2.0729 1.6494 1.3389 1.1064 

 

Additionally, Table 2 was added to improve the validity of the refined beam model presented in 

this paper. The numerical outcomes of Table 2 were obtained from [64] on the base of nonlocal 

elasticity theory. Beside the model, an inestimable comparison, namely the molecular dynamics 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


13 
 

method (MD) is shown properly. The results of [64] was for first-order of shear deformation model 

in a shell domain for the carbon nanotube also for simply-supported boundary conditions. For the 

computational aims the ( ) TPaE 06.1= , Poisson’s ratio ( ) 19.0= ,and diameter nmd 68.0=  were 

considered. Furthermore, the amounts of small scale factors were selected as 3.30 =ae to nm5.3 . 

Although the numerical outcomes of nanotubes when they are assumed as a shell [64] is in a better 

agreement with molecular mechanics’ results, a good agreement for the present beam model is 

also observed. 

Table 2 Comparison of natural frequencies (THz) for a nanotube  

d
L  

[64] 

(MD) 

Nonlocal elasticity theory 

[64] Present, [20] 

8.47 0.466 0.333 0.354 

13.89 0.190 0.165 0.163 

17.47 0.122 0.121 0.124 

 

 4.2 Effect of small scale parameter 

Influence of nonlocal effect on critical buckling load  ( )crP  and natural frequency ( )  has been 

studied with GPakw 1= , and nNk p 500= . For natural frequency, first four modes are taken into 

consideration where as critical buckling loads are calculated for different lengths of the beam. 

Here, nonlocal parameters ( )ae0  are assumed as 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 for both the dynamic 

characteristics study.  Likewise, lengths of the beam ( )L  are considered as 5, 10, 15 for buckling 

analysis. In this regards, Table 3 and Fig. 3 represent the tabular and graphical results for natural 

frequency while Table 4 and Fig. 4 epitomize for critical buckling loads. Both the natural 

frequencies and critical buckling loads are decreasing with the increase of nonlocal parameters. In 

case of vibration, higher modes are more sensitive towards the nonlocality whereas beam with 

small sizes possess higher critical buckling loads that exhibit remarkable response towards the 

small scale effect. 
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Table 3 Natural frequency ( )  in THz with GPakw 1= , and nNk p 500=   

ae0  in nm 1  2  
3  4  

0 0.9918 2.1787 3.9382 7.5061 

0.5 0.9917 2.1751 3.9130 7.4011 

1 0.9914 2.1674 3.8725 7.2771 

1.5 0.9909 2.1598 3.8449 7.2129 

2 0.9904 2.1541 3.8287 7.1810 

2.5 0.9900 2.1501 3.8192 7.1638 

3 0.9895 2.1473 3.8132 7.1536 

3.5 0.9891 2.1453 3.8094 7.1472 

4 0.9888 2.1439 3.8067 7.1429 

  

 

Fig. 3. Natural frequency Vs. Small scale parameter 
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Table 4 Critical buckling load ( )crP  in nN with GPakw 1= , and nNk p 500=   

ae0 in nm crP  with 5=L  crP  with 10=L  crP  with 15=L  

0 830.4534 711.4611 703.2364 

0.5 827.7178 711.2901 703.2025 

1 821.8339 710.8230 703.1053 

1.5 816.1280 710.1704 702.9563 

2 811.8080 709.4506 702.7709 

2.5 808.7832 708.7511 702.5654 

3 806.6891 708.1197 702.3538 

3.5 805.2186 707.5734 702.1464 

4 804.1628 707.1120 701.9504 

 

 

 

Fig. 4. Critical buckling load Vs. Small scale parameter 
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4.3 Effect of Winkler modulus 

This subsection deals with the response of Winkler modulus ( )wk  on  dynamic characteristics of 

the nonlocal beam. In order to analyze the impact of wk  on natural frequency ( ) , nmL 10= , 

nmae 5.00 = , and nNk p 500=  are considered.  Also, wk  is taken from 0 to 5 GPa with an 

increment of 0.5 GPa which can be seen in Table 5 and Fig. 5 as tabular and graphical results, 

respectively. To study the effect of wk  on critical buckling load ( )crP , Winkler modulus is 

considered as 0, 1, 2, 3, 4, 5GPa and  nNk p 500=  for different values of  small scale parameters 

which are depicted in Table 6 and Fig. 6. From this study, we may observe that natural frequencies 

and critical buckling loads are increasing with increase of wk  but this increase is more sharper in 

case of critical buckling load. Further, beam with lower value of nonlocal parameter possesses less 

value of critical buckling load. 

 

Table 5 Natural frequency ( )  in THz with nmL 10= , nmae 5.00 = , and nNk p 500=   

wk in GPa 1  2  
3  4  

0 0.9843 2.1711 3.9098 7.3978 

0.5 0.9880 2.1731 3.9114 7.3995 

1 0.9917 2.1751 3.9130 7.4011 

1.5 0.9954 2.1771 3.9145 7.4027 

2 0.9991 2.1791 3.9161 7.4044 

2.5 1.0027 2.1811 3.9176 7.4060 

3 1.0064 2.1831 3.9192 7.4076 

3.5 1.0100 2.1851 3.9207 7.4093 

4 1.0136 2.1871 3.9223 7.4109 

4.5 1.0172 2.1890 3.9239 7.4125 

5 1.0208 2.1910 3.9254 7.4142 
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Table 6 Critical buckling load ( )crP  in nN with nmL 10= , and nNk p 500=   

wk in GPa crP  with 5.0 =ae  crP  with 10 =ae  crP  with 5.10 =ae  crP  with 20 =ae  

0 700.7004 700.2334 699.5807 698.8610 

1 711.2901 710.8230 710.1704 709.4506 

2 721.8797 721.4127 720.7600 720.0402 

3 732.4693 732.0023 731.3496 730.6299 

4 743.0590 742.5919 741.9393 741.2195 

5 753.6486 753.1816 752.5289 751.8091 

 

 

 

Fig. 5. Natural frequency Vs. Winkler modulus 
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Fig. 6. Critical buckling load Vs. Winkler modulus 

 

4.4 Effect of shear modulus 

The impacts of shear modulus ( )pk  are investigated through this subsection. The natural 

frequencies ( )  are noted for different values of shear modulus (0, 100, 200, 300, 400, 500nN) 

with  nmL 10= , nmae 10 = , and GPakw 1= . In this regard, Table 7 and Fig. 7 are presented to 

exhibit the response of ( )pk  on  . From this results, it is witnessed that the natural frequencies 

are increasing rapidly with the increase of pk . Likewise, the response of  shear modulus ( )pk  is 

noted on critical buckling load for different values of shear modulus as well as different values of 

nonlocal parameters which are displayed in  Table 8 and Fig. 8. This results reveals that the critical 

buckling loads increase very sharply with the rise of shear modulus ( )pk . 
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Table 7 Natural frequency ( )  in THz with nmL 10= , nmae 10 = , and GPakw 1=   

pk in nN 
1  2  

3  4  

0 0.5102 1.1253 2.0380 3.8365 

100 0.6362 1.3973 2.5144 4.7293 

200 0.7412 1.6244 2.9139 5.4785 

300 0.8330 1.8234 3.2649 6.1368 

400 0.9156 2.0028 3.5816 6.7311 

500 0.9914 2.1674 3.8725 7.2771 

 

Table 8 Critical buckling load ( )crP  in nN with nmL 10= , and GPakw 1=  

pk in nN 
crP  with 5.0 =ae  crP  with 10 =ae  crP  with 5.10 =ae  crP  with 20 =ae  

0 188.7128 188.2458 187.5931 186.8733 

100 293.2283 292.7612 292.1086 291.3888 

200 397.7437 397.2767 396.6240 395.9042 

300 502.2592 501.7921 501.1395 500.4197 

400 606.7746 606.3076 605.6549 604.9351 

500 711.2901 710.8230 710.1704 709.4506 
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Fig. 7. Natural frequency Vs. Shear modulus 

 

 

Fig. 8. Critical buckling load Vs. Shear modulus 
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4.5 Effect of Magnetic field intensity 

A parametric study has been carried out to investigate the behaviors of natural frequencies ( )   

and critical buckling load ( )crP with respect to axial magnetic field intensity ( )xH . For vibration, 

nmL 10= , nmae 10 = , GPakw 1= , and nNk p 500=  are considered by varying xH  from 0 to 

1e+9 A/m with an increase of  2e+8 A/m. For this purpose, Table 9 and Fig. 9 are illustrated as 

numerical and graphical results, respectively. This study reveals that natural frequencies increase 

with the rise of magnetic field intensity. Likewise, similar study has been conducted for the 

buckling load. The responses of magnetic field intensity on critical buckling loads are illustrated 

in Table 10 and Fig. 10 for different values of xH  and wk . Both the tabular and graphical results 

show that the critical buckling loads are increasing very rapidly in response to xH . 

Table 9 Natural frequency ( )  in THz with nmL 10= , nmae 10 = , GPakw 1= , and nNk p 500=  

xH in A/m 1  2  
3  4  

0 0.8638 1.8903 3.3830 6.3584 

2e+8 0.8974 1.9633 3.5118 6.6001 

4e+8 0.9914 2.1674 3.8725 7.2771 

6e+8 1.1308 2.4703 4.4087 8.2833 

8e+8 1.3012 2.8407 5.0649 9.5149 

1e+9 1.4918 3.2555 5.8004 10.8957 

 

Table 10 Critical buckling load ( )crP  in nN with with nmL 10= , 5.0 =ae , and nNk p 500=  

xH in A/m crP  with 1=wk  crP  with 2=wk  crP  with 3=wk  crP  with 4=wk  

0 540.0991 550.6887 561.2783 571.8680 

2e+8 582.8968 593.4864 604.0761 614.6657 

4e+8 711.2901 721.8797 732.4693 743.0590 

6e+8 925.2788 935.8685 946.4581 957.0477 

8e+8 1224.8631 1235.4527 1246.0423 1256.6319 

1e+9 1610.0428 1620.6325 1631.2221 1641.8117 
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Fig. 9. Natural frequency Vs. Magnetic field intensity 

 

 

Fig. 10. Critical buckling load Vs. Magnetic field intensity 
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5. Concluding remarks 

A new first-order shear deformation beam theory has been utilized to investigate the vibration and 

buckling characteristics of nonlocal beam exposed to an axial magnetic field and embedded in 

Winkler-Pasternak foundation. Von Kármán hypothesis along with Hamilton’s principle have 

been used to develop the governing equations which is solved analytically by implementing 

Navier’s method. Further, natural frequencies and critical buckling loads for Simply Supported 

(SS) boundary condition are obtained and a parametric study has been carried out to discover the 

response of various scaling parameters such as small scale parameter, Winkler modulus, shear 

modulus, and magnetic field intensity on natural frequencies and critical buckling loads. The 

natural frequencies and critical buckling loads decrease with the increase of nonlocal parameters. 

Natural frequencies of higher modes are more sensitive towards the nonlocal parameter whereas 

beam with small sizes possess higher critical buckling loads that exhibit remarkable response 

towards the small scale effect. Both the natural frequencies and critical buckling loads follow an 

increasing pattern with the rise of Winkler modulus but this increase is more significant in case of 

critical buckling load. Likewise, the natural frequencies and buckling loads follow same patters 

with respect to shear modulus and magnetic field intensity.  
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