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Structured Abstract 

Purpose 

A computationally efficient framework for multi-objective optimization (MO) of 

antennas involving nested kriging modeling technology is proposed. The technique is 

demonstrated through a two-objective optimization of a planar Yagi antenna and three-

objective design of a compact wideband antenna.  

Design/methodology/approach 

The keystone of the proposed approach is the employment of recently introduced 

nested kriging modeling for identifying the design space region containing the Pareto front 

and constructing fast surrogate model for the MO algorithm. Surrogate-assisted design 

refinement is applied to improve the accuracy of Pareto set determination. Consequently, the 

Pareto set is obtained cost-efficiently, even though the optimization process utilizes solely 

high-fidelity electromagnetic (EM) analysis.  

Findings 

The optimization cost is dramatically reduced for the proposed framework as 

compared to other state-of-the-art frameworks. The initial Pareto set is identified more 
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precisely (its span is wider and of better quality), which is a result of a considerably smaller 

domain of the nested kriging model and better predictive power of the surrogate.  

Research limitations/implications 

The proposed technique can be generalized to accommodate low- and high-fidelity 

EM simulations in a straightforward manner. The future work will incorporate variable-

fidelity simulations in order to further reduce the cost of the training data acquisition. 

Originality/value 

The fast MO optimization procedure with the use of the nested kriging modeling 

technology for approximation of the Pareto set has been proposed and its superiority over 

state-of-the-art surrogate-assisted procedures has been proved. To our knowledge, this 

approach to multi-objective antenna optimization is novel and enables obtaining optimal 

designs cost-effectively even in relatively highly dimensional spaces (considering typical 

antenna design setups) within wide parameter ranges. 
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Abstract 

Ever increasing performance requirements make the design of contemporary antenna 

systems a complex and multi-stage process. One of the challenges, pertinent to the emerging 

application areas but also some of the recent trends (miniaturization, demands for multi-

functionality, etc.), is the necessity of handling several performance figures such as 

impedance matching, gain, or axial ratio, often over multiple frequency bands. The 

fundamental difficulty is that most of the design objectives are at least partially conflicting. 

Hence, an improvement of one generally implies degradation of the others. The knowledge 

of available trade-offs is indispensable and can be acquired through multi-objective 

optimization (MO). Unfortunately, MO is computationally expensive when executed at the 

level of EM simulation models, otherwise necessary from the standpoint of antenna 

evaluation reliability. This paper proposes a computationally efficient framework for MO of 

antennas. Its keystone is the recently introduced nested kriging modeling technology, here 

adopted for identifying the design space region that contains the best design trade-offs, as 

well as for constructing a fast surrogate model to be processed by the MO algorithm. The 

technique is demonstrated through a two-objective optimization of a planar Yagi antenna 

(with respect to the impedance matching and gain enhancement) and three-objective design 

of a compact wideband antenna (with respect to the impedance matching, gain variability, 

and the footprint area). In both cases, the Pareto set is obtained at the low cost of a few 

hundred of antenna simulations, even though the optimization process is exclusively based 

on high-fidelity EM analysis. 
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1. Introduction 

Performance requirements imposed on contemporary antenna systems are multifold 

and pertinent to both electrical and field characteristics (Stutzman and Thiele, 2012), multi-

band and multi-functional operation (Borhani et al., 2016; Soltani et al., 2017), as well as 

geometrical constraints (primarily compact size, Bhattacharya et al., 2016). The need for 

fulfilling stringent specifications necessitates a development of antennas that feature more 

and more complex geometries and are described by a large number of variables 

(Matekovits et al., 2007; Szini et al., 2015; Buckley et al., 2016). Both factors create the 

need for handling/optimizing several design objectives at the same time while operating 

within parameter spaces of ever-increasing number of dimensions. Utilization of full-wave 

electromagnetic (EM) simulation tools, computationally expensive but mandatory to 

ensure sufficient evaluation reliability, is yet another design challenge. Many of the design 

objectives are at least partially conflicting, i.e., improvement of one implies certain 

degradation of others. Perhaps the most recognized example is antenna miniaturization: 

reduction of the size normally leads to problems with ensuring sufficient impedance 

matching as well as affects other characteristics, such as efficiency or pattern stability (Liu 

et al., 2014; Koziel et al., 2018). Consequently, any practical design must be a compromise 

(or trade-off) between the objectives of interest. 

The most reliable way of handling multiple goals (as well as just one objective for 

that matter) is numerical optimization (Deb and Gupta, 2006). Majority of practically 

utilized algorithms are single-objective routines (Tian et al., 2010; Koziel and Ogurtsov, 

2014). These, however, require a scalar cost function. In order to control several design 

goals, some sort of aggregation (e.g., using a weighted sum approach), or constrained 
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optimization with acceptance levels set for all but the primary objective, need to be 

performed. In either case, the outcome is a single design that qualitatively (but not 

necessarily quantitatively) represents the designer’s preferences about the goals. On the 

other hand, genuine multi-objective optimization (MO) procedures are capable of 

identifying the entire set of trade-off designs (the Pareto set, Koziel and Bekasiewicz, 

2016). The most popular class of MO algorithms involve population-based metaheuristics 

(Darvish and Ebrahimzadeh, 2018; Goudos et al., 2011; Bauernfeind et al., 2017; 

Jayaprakasam et al., 2014; Aravanis et al., 2015; Rinaldo et al., 2005), which exhibit global 

search capabilities (important in some cases), but come at the expense of a tremendous 

computational cost (Easum et al., 2018; Nagar and Werner, 2018). The latter is normally 

unmanageable if the antenna performance is evaluated through EM simulation. A new 

approach to expedited global design optimization of antennas with evolutionary algorithm 

by means of small-scale parallelizing computations has been reported recently (Akinsolu 

et al., 2019; Liu et al., 2018), yet the method has been applied to single-objective 

optimization problems only. 

It seems that utilization of surrogate models is currently the most promising 

approach to render EM-driven MO procedures computationally feasible (Koziel and 

Bekasiewicz, 2016). In relatively simple cases (in terms of the parameter space 

dimensionality), construction of global surrogates may be sufficient (Chen, 2015; de 

Villiers et al., 2017; Easum et al., 2017). For other situations (>10 geometry parameters) 

more needs to be done. Some of the recently proposed techniques (Koziel and Ogurtsov, 

2013; Koziel et al., 2014a), suggest utilization of variable-fidelity EM simulations along 

with the initial design space reduction. The latter aims at identifying the region of the 
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parameter space that contains the Pareto front and at constructing the surrogate therein. 

This has been demonstrated to yield considerable computational savings even though the 

applied space reduction methods only give a very rough estimation of the Pareto front 

geometry. 

In this paper, a novel multi-optimization framework is proposed for a cost-efficient 

EM-driven antenna design. Our methodology adopts a recently reported nested kriging 

surrogate modeling technique (Koziel and Pietrenko-Dabrowska, 2019). The technique 

utilizes two kriging surrogates. The first-level model is employed to define the domain of 

the surrogate, containing the designs that are of high-quality from the point of view of the 

performance figures relevant to the considered system. The second-level model, set up in 

that domain, is the actual surrogate representing the system outputs. The fundamental 

benefit of constraining the surrogate domain is a notable reduction of the required training 

data set as compared to the traditional kriging approach over a box-constrained domain. 

Here, nested kriging methodology is used to identify the parameter space region containing 

the Pareto set (design space reduction) as well as to construct the surrogate that allows us 

to produce the initial approximation of the trade-off designs through metaheuristic 

optimization. Due to a good precision of representing the Pareto front geometry by the 

nested kriging framework, the MO process can be executed in a computationally efficient 

manner in spite of merely utilizing high-fidelity EM simulations of the antenna at hand. 

For the sake of demonstration, two structures are optimized, a planar Yagi antenna (for 

best matching and maximum gain), and a wideband monopole (for best matching, 

minimum gain variability, and minimum size). In both cases, the Pareto set is obtained at 
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the cost of only a few hundred of EM simulations, which is almost 80-percent less than for 

the surrogate-assisted framework involving a simpler design space reduction technique.  

This paper is the first attempt to employ the nested kriging method for multi-

objective optimization.  The major novelty is in adopting the nested kriging technique for 

design space confinement and providing a fast surrogate for low-cost generation of the 

initial Pareto set. For that purpose, a rigorous mathematical formalism is developed in 

Section 2.4, which permits the establishment of the surrogate in an arbitrary subset of the 

objective space instead of the box-constrained space as in Koziel and Pietrenko-

Dabrowska, 2019. The presented methodology is demonstrated to efficiently solve MO of 

real-world antenna design tasks. In addition, its superiority over state-of-the-art surrogate-

assisted procedures is validated. The proposed method is generic in the sense of its 

capability of handling any number of design objectives.  

 
2. Antenna Optimization with Multiple Objectives Aided by Nested Kriging 

Surrogates 

This section provides a necessary background material concerning multi-objective 

optimization by means of surrogate modeling. It also briefly recalls the concept of nested 

kriging, as well as describes how to incorporate it into the multi-objective design 

framework. The main goal is a reduction of the computational overhead of multi-objective 

design beyond what is offered by the existing approaches. 

2.1. Multi-Objective Optimization Using Surrogate Models 

For the purpose of further considerations, the design objectives will be denoted as 

Fk, k = 1, …, Nobj, where Nobj stands for the overall number of the goals. Multi-objective 

optimization (MO) aims at finding a Pareto set of designs that are globally non-dominated 
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(Deb, 2001). A design is globally non-dominated—within the considered parameter 

space— if there is no other design simultaneously better with respect to all objectives. The 

Pareto set represents the best possible trade-offs with respect to [F1  F2  …  FNobj].  

The antenna under design is evaluated using EM analysis and the respective 

computational model is denoted as R(x), where x is a vector of adjustable (typically, 

geometry) parameters. As explained in Section 1, it is impractical or even infeasible to 

carry out MO directly on R when using population-based metaheuristics. According to the 

recent literature (de Villiers et al., 2017; Easum et al., 2017; Koziel and Ogurtsov, 2013; 

Koziel et al., 2014a), the most promising way of speeding up the optimization process is a 

utilization of an auxiliary surrogate model Rs (a faster representation of the antenna at 

hand). In most cases, the surrogate is an approximation model, typically a kriging (An et 

al., 2018) or Gaussian process regression one (Lyu et al., 2018). Other approximation 

methods may also be used, e.g., artificial neural networks (ANNs; Mishra et al., 2015) or 

support vector regression (SVR; Jacobs, 2012). A particular selection of the modeling 

framework is generally of secondary importance, although particular techniques may suffer 

from certain issues. For example, the generalization ability of ANNs, i.e., the predictive 

power over the points outside the training set, may proof deficient (Chauchan et al., 2012). 

Handling this issue generally requires appropriate adjustment of the network architecture 

(Na et al., 2017). On the other hand, SVR’s superior generalization capabilities are superior 

over ANNS. Yet, developing effective antenna models using SVM is not a straightforward 

process, and the researchers have to employ their domain expertise in it (Chauchan et al., 

2012). Regardless of the approximation technique utilized, the surrogate can be optimized 

directly using, e.g., a multi-objective evolutionary algorithm (MOEA; Fonseca, 1995).  
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Further acceleration can be achieved by exploiting variable-fidelity EM 

simulations. This sort of approach has been adopted in Koziel and Ogurtsov, 2013 and 

Koziel et al., 2014a, where the surrogate was constructed at the level of coarse-

discretization EM model. Unfortunately, a refinement process is required to accommodate 

the discrepancies between the low- and high-fidelity simulations. In Koziel and Ogurtsov, 

2013, a simple response correction in the form of output space mapping (Koziel et al., 

2008) has been used. The high-fidelity Pareto designs have been obtained through the 

following refinement of the selected low-fidelity Pareto-optimal designs xs
(k) 

 
( )

2 2

( )

( ) ( ) ( )
1

, ( ) ( )

( ) ( )

arg min ( ) [ ( ) ( )]
k

s

k
N N sobj obj

k k k
f s s s s

F F

F F

F




  


x x x

x x

x R x R x R x                                   (1) 

The correction term R(xs
(k)) – Rs(xs

(k)) ensures perfect alignment between the surrogate Rs 

and the high-fidelity model at xs
(k) (Koziel and Ogurtsov, 2013). In Koziel et al., 2014b, an 

alternative refinement procedure based on co-kriging has been proposed. 

2.2. Reduction of Parameter Ranges 

The fundamental difficulty concerning the surrogate-assisted MO, as described in 

Section 2.1, is a construction of the surrogate model itself. Apart from low-dimensional 

cases (up to a few parameters), it is simply not possible to build the model in the entire 

design space. The reasons include the lack of prior knowledge about the Pareto front 

location (which implies wide parameter ranges), and the curse of dimensionality. Both 

issues lead to excessive costs of training data acquisition. 

The design space can be reduced in a reasonable manner by considering the single-

objective optima x*(k) = argmin{x : Fk(R(x))}, i.e., the extreme Pareto-optimal designs that 

determine the span of the Pareto front. Thus, the lower and upper bounds for the antenna 
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parameters can be set as l* = min{x*(1),…, x*(Nobj)} and u* = max{x*(1),…, x*(Nobj)} (Koziel 

and Ogurtsov, 2013). Apart from some “pathological” cases, the interval [l*,u*] contains 

the vast majority of the Pareto front. A better idea about the Pareto front geometry can be 

acquired using more involved methods such as the rotational space reduction (Koziel and 

Bekasiewicz, 2015), which is, however, applicable to two-objective problems only. 

2.3. Surrogate Modeling Using Nested Kriging 

This work aims at the development of an improved surrogate-assisted MO 

procedure, which permits further computational savings over the framework described in 

Sections 2.1 and 2.2. To this end, we adopt a recently reported nested kriging modelling 

(Koziel and Pietrenko-Dabrowska, 2019). It is used to implement a more efficient design 

space reduction scheme and to construct the surrogate model for initial Pareto set 

identification. The term “nested” refers to performing kriging interpolation consecutively 

twice: first to identify the surrogate model domain, then to establish the actual surrogate 

model itself in the constrained domain. The difference between the nested and traditional 

kriging is that the latter operates in an interval-like domain, defined by lower and upper 

parameter bounds. Due to complex interactions between geometry parameters, designs that 

are optimal with respect to the performance figures are focused within small subsets of 

such a domain (Koziel and Sigurdsson, 2017). Thus, constraining the surrogate model 

domain with the nested kriging, leads to significant cost savings. In this section, we briefly 

recall the nested modeling concept, whereas its adaptation for MO purposes is explained 

in Section 2.4. 

The figures of interest selected for the design process (e.g., operating frequency, 

bandwidth, maximum/average in-band gain, etc.) are denoted by fk, k = 1, …, N. These are 
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identical to the MO design goals Fk of Section 2.1. The foundation of the nested kriging 

are the reference designs x(j) = [x1
(j) … xn

(j)]T, j = 1, …, p, optimized with respect to the 

performance vectors f(j) = [f1
(j) … fN

(j)]. The vectors f(j) are allocated within the objective 

space F defined using the ranges fk.min  fk
(j)  fk.max, k = 1, …, N, to be covered by the 

surrogate model (Koziel and Pietrenko-Dabrowska, 2019). Clearly, the coverage of the 

objective space should be possibly uniform. Typically, the number of the reference designs 

is small, e.g., around 10 or so (cf. Koziel and Pietrenko-Dabrowska, 2019) because the 

dimensionality of F is low. 

The modeling procedure involves two surrogates. The first-level model sI(f) maps 

F into the design space X. The model sI interpolates the training data set {f(j),x(j)} using 

kriging (Simpson et al., 2001), see Fig. 1. The image of F through sI,  sI(F)  X, provides 

the first approximation of the surrogate model domain. This is the best information 

available from the reference points about the designs optimal with respect to f  F. Yet, 

this information is limited, and sI(F) needs to be orthogonally extended towards its normal 

vectors to ensure that all of optimum designs are enclosed in the model domain. The normal 

extension vectors are denoted as vn
(k)(f), k = 1, …, n – N, and they are the functions of the 

performance vector f (Koziel and Pietrenko-Dabrowska, 2019). Let us also define: xmax = 

max{x(k), k = 1, …, p}, xmin = min{x(k), k = 1, …, p}, xd = xmax – xmin, as well as the extension 

coefficients 

(1) ( )
1( ) [ ( ) ... ( )] | ( ) | ... | ( ) |

2

TT n N
n N d n d n

D  
     α f f f x v f x v f              (2) 

where D is a user-defined thickness parameter determining the orthogonal extension. It has 

been shown in Koziel and Pietrenko-Dabrowska, 2019, that the value of D affects the 
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model accuracy to certain extent, however, the predictive power dependence on D is not 

significant.  

The model domain XS is defined by the coefficients k, and it is located between 

the surfaces (or manifolds) M+ and M– (see Fig. 1(b)) 

  ( )

1
: ( ) ( )

n N k
I k nk

M X 

 
   x x s f f v f                                  (3) 

The surrogate model domain is then given as 

( )

1
( ) ( ) ( ) : ,

1 1, 1,...,

n N k
I k k nk

S

k

F
X

k n N

 






      

      

x s f f v f f
                              (4) 

The final (second-level) kriging surrogate is subsequently established within XS with the 

training data set {xB
(k),R(xB

(k))}k = 1, …, NB. 

It should be noted that the above definition of the model domain permits 

straightforward realization of uniform sampling within XS. This is of fundamental 

importance for ensuring the best possible predictive power of the surrogate.  

f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (k)

x1

v1
(k)

M+

XS

x3

x2

sI(F)

sI(f
(k))

M-

 

Fig. 1. Graphical illustration of the main components of the nested kriging modeling, here, 
explained for a two-dimensional objective space and three dimensional parameter space: (a) 
reference designs and objective space F; (b) the image sI(F) of the first-level surrogate model and 
the normal vector v1

(k) at f(k); the manifolds M– and M+ as well as the surrogate model domain XS 
defined as the orthogonal extension of sI(F). 
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The exposition of the nested kriging modeling provided in this section is necessarily 

brief and only covers the aspects relevant to this work. More details can be found in Koziel 

and Pietrenko-Dabrowska, 2019. 

2.4. Nested Kriging for Multi-Objective Design Framework 

The major contributor to the computational cost of the surrogate-assisted 

framework of Section 2.1 is the acquisition of the training data for surrogate model 

construction (Koziel et al., 2014a). It might be responsible for as much as 80 percent of the 

overall cost, which creates a room for improvements. In this work, we use the nested 

kriging approach outlined in Section 2.3 to implement a more efficient design space 

reduction (as compared to that of Section 2.2), but also to construct the surrogate model 

itself. The primary challenge of applying the nested kriging technique for MO is that the 

objective space constitutes merely a small part of an interval, e.g., a one-dimensional object 

(curve) in the case of Nobj = 2, or a fragment of a 2D surface in the case of Nobj = 3. This 

section explains how the technique can be adopted for our purposes while retaining its 

fundamental advantages mentioned in Section 2.3. 

In the context of MO, the figures of interest fk of the nested model are identical with 

the design objectives Fk of Section 2.1, and, consequently, N = Nobj. For “general” 

modeling, the reference designs were to be uniformly distributed within the interval-like 

objective space F. For the purpose of MO, they need to account for the Pareto front 

geometry (include the extreme designs x*(k) = argmin{x : Fk(R(x))} and additional designs 

if more detailed information is desired, e.g., the front curvature). Let us define 

Fk = [F1(x*(k)) … FN(x*(k))]T, k = 1, …, N. The generic way of obtaining the reference 

designs is to solve  
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 1arg min ( )Fw

x
x R x                                                     (5) 

under the constraints 

*( )

1

( ) ( ), 2,...,
N

l
j l j

l

F w F j N


 x x                                         (6) 

where w = [w1 … wN]T is a vector of weights representing a convex combination, i.e.,  

1
0 1 and 1

N

j jj
w w


                                                  (7) 

Note that the extreme Pareto-optimal designs x*(k) correspond to the weighting vectors w = 

[0 … 1 … 0]T with 1 on the kth position. Other arrangements would distribute the reference 

designs along the Pareto front; for example w = [1/N 1/N … 1/N]T corresponds to the front 

center. Below, F(w) refers to the objective vector corresponding to the reference design xw.  

Let us now establish a mapping between the weighting vectors w (specifically, 

those satisfying (7)) and the part of the objective space corresponding to the Pareto front. 

First, for constructing the surrogate model and allocation of the training data, it is 

convenient to use an auxiliary transformation from a unit N–1 simplex SN–1 onto the space 

of the weights w, defined as 

0

1 1 1
1

1 0 0
0

( ) 0 1 0

0
0 0 1

h

   
   
   
     
   
   
    






   



z z                                                (8) 

where 

 11
1 1 1

[ ... ] : 0 1 and 1
NN T

N k kk
S z z z z


 

    z                           (9) 

Figure 2 shows some illustrative examples of these concepts for the two- and three-

objective cases. The thick dotted lines indicate the parts of the objective spaces where the 
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nested kriging model is to be established. A certain extension is necessary to accommodate 

the fact that only a rough approximation of the Pareto front geometry is given by the 

available reference designs, the number of which is very limited in practice. The extended 

region O (the actual domain of the first-level surrogate) is defined as the set of all points 

of the form  

1
0 ( ) (1 ) with andN

w wh d S d d d      w z z                           (10) 

where dw is the extension factor (here, we use dw = 0.05). 

The first-level surrogate for MO is established using the reference designs. It is a 

composition of two transformations: (i) the mapping from the Cartesian product of SN–1  

[–dw, dw] onto the objective space region O, and (ii) the “conventional” first-level model sI 

of Section 2.3 from O into X. The former transformation is merely used for the sake of 

convenience: it is easier to implement uniform data sampling on SN–1  [–dw, dw] rather 

than directly within O. 

The second-level surrogate is subsequently set up in the domain constructed as in 

Section 2.3 but with sI(O) being orthogonally extended instead of sI(F). It should be 

emphasized that the Pareto front geometry is accurately identified through the variation of 

the nested modeling technique introduced in this section. The number of reference designs 

required for obtaining a reasonable Pareto front representation is up to three or four for Nobj 

= 2 (cf. Fig. 2(a)), and up to six or seven for Nobj = 3 (cf. Fig. 2(b)). Clearly, identification 

of the reference designs incurs certain computational expenses. However, the cost of 

finding additional reference designs (other than the extreme ones) is usually low because 

good initial points for finding xw can be established as 
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(0) *( )

1

N
l

l
l

w


wx x                                                       (11) 

where x*(l), l = 1, …, N, are, as before, the extreme design corresponding to w = [0 … 1 … 

0]T with 1 on the lth position. 

F1

F2

S1 F1 = F([1 0]T)

1

0

F2 = F([0 1]T)

F([0.7 0.3]T)

F([0.3 0.7]T)

F

h0

1

1

F2

F1

F3
F1 = F([1 0 0]T)

F3 = F([0 0 1]T)

F2 = F([0 1 0]T)

F([0.5 0.5 0]T)

F([0 0.5 0.5]T)

F([0.5 0 0.5]T)S2

0

F

h0

 

Fig. 2. Conceptual illustration of the objective space and the objective vectors corresponding to 
selected reference designs as well as the objective space regions (marked using dotted lines) where 
the nested kriging model is to be constructed. The mapping h0 from the unity simplex onto the 
objective space region is also shown: (a) two-objective case, (b) three-objective case. 
 

EM solver

Generate reference 
designs

Define first-level 
surrogate domain

Identify first-level 
surrogate

Define second-level 
surrogate domain

Design of Experiments

Acquire training data

Identify second-level 
surrogate

 

Fig. 3. Flow diagram of the nested surrogate modeling process for multi-objective optimization. 
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Figure 3 shows the flow diagram of the nested surrogate modeling process for MO. 

According to the surrogate-assisted procedure of Section 2.1, the second-level model is 

optimized using MOEA to yield the initial Pareto set, further refined using (1). Here, only 

high-fidelity EM simulations are used to proof the computational efficiency of the 

proposed methodology even without the usage of variable-fidelity simulations. 

A few comments should be made about the surrogate model optimization. 

Formally, the surrogate is optimized in the original domain of the first-level surrogate, that 

is, SN–1  [–dw, dw]. For the sake of antenna evaluation, the designs y  SN–1  [–dw, dw] are 

transformed into the weight vectors w using (10), and then into x  X using the sI. This 

permits us to operate within a geometrically simple domain defined by the lower/upper 

bounds 0  yk  1, k = 1, …, N – 1, –dw  yN  dw, and a linear constraint k = 1,…,N–1 yk  1, 

despite the actual shape of the Pareto front. The process of surrogate model evaluation has 

been shown in Fig. 4. 

y SN-1  [-dw,dw]

Mapping to weighting 
vector (eqn. (10))

Evaluate first-level 
surrogate

Evaluate second-level 
surrogate

Rs(x)

w

x = sI(w)

 

Fig. 4. Evaluation of the nested kriging surrogate for MO process. The model is operated from the 
domain SN–1  [–dw, dw], and the argument y is first mapped  into the space of the weighting vectors 
using (10), then into the surrogate model domain XS (part of the antenna geometry parameter space), 
where the second-level surrogate is finally evaluated to yield the antenna responses. 
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3. Application Case Studies 

The multi-objective optimization framework proposed in this paper is demonstrated 

here using two examples, a planar Yagi antenna and an ultra-wideband monopole antenna. 

For the first example, there are two objectives considered: improvement of the in-band 

matching and gain maximization. For the second example, we have three goals: 

improvement of the impedance matching, reduction of the in-band gain variability, and 

reduction of the antenna size. Our framework is compared to the benchmark surrogate-

assisted MO algorithm of Section 2.1/2.2.  

It should be noted that only high-fidelity EM simulations are utilized, therefore a 

direct comparison with variable-fidelity frameworks is not possible, although the proposed 

technique can be generalized to accommodate low- and high-fidelity EM simulations in a 

straightforward manner. 

3.1. Case 1: Planar Yagi Antenna 

The first demonstration example is a planar Yagi antenna shown in Fig. 5 (Kaneda 

et al., 2002). The structure is implemented on RT6010 substrate (r = 10.2, h = 0.635 mm) 

and comprises a driven element fed by a coplanar strip-line, director, and a microstrip 

balun. The antenna is fed with a 50 ohm microstrip. Design variables are x = [s1 s2 v1 v2 u1 

u2 u3 u4]T. Other parameters are fixed as follows: w1 = w3 = w4 = 0.6, w2 = 1.2, u5 = 1.5, s3 = 

3.0 and v3 = 17.5, all in mm. The computational model R is simulated in CST Microwave 

Studio (~600,000 mesh cells, simulation time 4 minutes) using its time domain solver. 

The antenna is supposed to operate within the frequency range 10 GHz to 11 GHz. 

The figures of interest are minimization of in-band reflection (F1) and maximization of the 

average end-fire gain (F2), both within the operating bandwidth. 
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Fig. 5. Geometry of the planar Yagi antenna. 
 

To set up the surrogate model we use four reference designs, corresponding to the 

two extreme designs x*(1) = [4.43 3.85 8.77 4.28 4.09 4.76 2.08 1.63]T, x*(2) = [5.19 6.90 

7.10 5.08 3.54 4.78 2.23 0.93]T, and two more, corresponding to z = 0.33 and z = 0.66 (cf. 

(6)): x*(3) = [4.56 4.38 8.56 4.50 3.89 4.93 2.01 1.57]T, x*(4) = [4.84 5.00 8.09 4.64 3.98 

4.89 2.00 1.50]T. 

The thickness parameter was set to D = 0.05, which allows for achieving good 

predictive power of the surrogate while using a small number of training data points. The 

in-depth analysis of the dependence of the modeling error on the parameter D can be found 

in Koziel and Pietrenko-Dabrowska, 2019.  

The nested kriging model was set up as outlined in Sections 2.3 and 2.4 using only 

100 data samples. The relative RMS error of the surrogate (determined through cross 

validation) is 5% for the reflection response and 1% for the gain. The relative error is defined 

as ||R(x) – Rs(x)||/||R(x)||, where Rs stands for the surrogate. The 10-fold cross-validation has 

been utilized (Queipo et al., 2005) 

In order to emphasize the benefits of the proposed approach, the surrogate was also 

constructed within the initially reduced space, i.e., the interval l* = min{x*(1), x*(2)} and u* = 
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max{x*(1), x*(2)}. Despite of using 1600 training samples, the model error levels were much 

higher: 9% and 3% for reflection and gain characteristics, respectively. 

The initial Pareto set found by optimizing the surrogate using MOEA is shown in 

Fig. 6 along with the selected designs evaluated through EM simulation, before and after 

the refinement process. The corresponding numerical data has been gathered in Table 1. 

Figure 7 shows the reflection and realized gain characteristics for the selected designs. 

Table 2 summarizes the optimization cost which includes finding the reference designs. 

 
Fig. 6. Pareto-optimal solutions found for the Yagi antenna of Fig. 5 using the proposed 
methodology: (o) initial Pareto set identified using MOEA executed on the nested kriging 
surrogate, () EM-evaluated selected designs from the initial Pareto set, (O) EM-simulated refined 
Pareto designs.  

 
Fig. 7. Reflection (left) and realized gain (right) characteristics of the selected Pareto-optimal designs 
of Table 1: x(1) (—), , x(4) (), x(7) (- - -), and x(10) (-o-). 
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Note that the major contributor is the training data acquisition for setting up the 

surrogate model which is dramatically reduced for the proposed framework (from 1600 to 

only 100 samples). This leads to lowering the total expenses by 80 percent. Also, the overall 

cost is just around 400 EM simulations despite the fact that single-fidelity models are 

utilized. Another advantage of our approach is a more precise identification of the initial 

Pareto set, which is due to a considerably smaller domain of the nested kriging model and 

better predictive power of the surrogate. This is illustrated in Fig. 8 that shows the initial 

Pareto set found using the surrogate established in the initially reduced design space. It can 

be observed that the span of the front obtained using the proposed methodology is 

considerably wider and of better quality (in terms of the objective function values) than the 

one yielded by the benchmark method. Even more importantly, significant discrepancies 

between the initial front, the EM-simulated objectives and the refined designs can be 

noticed, demonstrating the lack of surrogate model accuracy. 

Table 1. Planar Yagi Antenna: Pareto-Optimal Designs 

Design # 
Design Variables [mm] 

max |S11| [dB] 
Gain* 
[dB] s1 s2 v1 v2 u1 u2 u3 u4 

1 4.41 3.88 8.78 4.25 4.05 4.78 2.07 1.60 –26.1 5.6 

2 4.46 4.08 8.71 4.34 3.98 4.86 2.03 1.60 –24.0 5.7 

3 4.52 4.25 8.64 4.44 3.91 4.90 2.03 1.58 –22.6 5.9 

4 4.62 4.52 8.48 4.49 3.92 4.94 2.00 1.57 –20.7 6.0 

5 4.76 4.74 8.26 4.56 4.00 4.91 2.00 1.56 –19.0 6.2 

6 4.86 5.11 8.05 4.59 3.99 4.89 2.01 1.48 –18.0 6.4 

7 4.93 5.50 7.86 4.66 3.92 4.88 2.05 1.38 –16.4 6.6 

8 4.99 5.82 7.66 4.75 3.84 4.86 2.09 1.27 –15.0 6.7 

9 5.08 6.30 7.41 4.86 3.72 4.83 2.16 1.13 –13.8 6.9 

10 5.17 6.83 7.12 5.01 3.58 4.81 2.23 0.95 –12.7 7.0 
* End-fire gain averaged over the 10-to-11 GHz bandwidth. 
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The selected designs have been fabricated and measured for additional verification. 

Figure 9 shows the photographs of the antenna prototypes, whereas Fig. 10 provides a 

comparison of the simulated and measured reflection and realized gain characteristics 

(these being design objectives considered in the optimization process). It can be observed 

that the agreement between the two sets of data is satisfactory. 

 

 
(a) 

 
(b) 

Fig. 8. (a) Pareto-optimal solutions found using the surrogate-assisted algorithm working with initial 
design space reduction (surrogate constructed within the interval [l*,u*]). (o) initial Pareto set identified 
using MOEA executed on the nested kriging surrogate, () EM-evaluated selected designs from the 
initial Pareto set, (O) EM-simulated refined Pareto designs. For comparison, the initial Pareto set found 
using the proposed methodology is shown using gray circles. Note considerably larger span of the Pareto 
set found using the nested kriging surrogate as well as better consistency between the initial and refined 
Pareto-optimal designs (cf. Fig. 6); (b) the approximate image of the initially reduced parameter 
space (large circles), i.e., the interval [l* u*], obtained by randomly generating 10,000 points. It can 
be observed that the considered design objectives are indeed partially conflicting and the 
optimization process is required in order to identify the Pareto-optimal designs (small circles). Vast 
majority of the designs in the interval [l* u*] are far from being optimal. 
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                               (a)                                        (b)                                          (c) 
Fig. 9. Photographs of the fabricated prototypes of the Yagi antenna: (a) Design 1, (b) Design 5, 
(c) Design 10.  
 

 

 
                   (a)                                      (b)                                    (c) 

Fig. 10. Simulated (gray) and measured (black) reflection and realized gain characteristics of the 
fabricated Yagi antenna prototypes: (a) Design 1, (b) Design 5, (c) Design 10. 
 
 
 

3.2. Case 2: Wideband Monopole Antenna 

Our second example is the ultrawideband monopole antenna (Alsath and 

Kanagasabai, 2015) implemented on Taconic RF-35 substrate (εr = 3.5, h = 0.762 mm) and 

shown in Fig. 11. The independent geometry parameters for this structure are x = [L0 dR R 

rrel dL dw Lg L1 R1 dr crel]T. The computational model is implemented in CST Microwave 
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Studio and evaluated using its transient solver (~840,000 mesh cells, simulation time 

5 minutes). The EM model incorporates the SMA connector. 

The antenna is to operate within the UWB band of 3.1 GHz to 10.6 GHz. Three 

figures of interest are considered: minimization of in-band reflection (F1), reduction of the 

realized gain variability within the operating band (F2), and reduction of the antenna size 

(F3). As before, the thickness parameter was set to D = 0.05. 

The surrogate model is set up using seven reference designs. These include three 

extreme designs (best matching, minimum gain variation, and minimum size): x*(1) = 

[10.64 0.0 6.00 0.10 1.46 6.20 10.46 4.26 2.00 0.73 0.49]T, x*(2) = [8.74 1.55 5.81 0.51 

0.016 5.65 8.95 5.47 2.60 0.99 0.84]T, x*(3) = [9.51 0.19 4.46 0.27 4.33 1.17 10.05 6.00 

2.94 0.99 0.90]T, and four more, corresponding to z = [0.0 0.5]T, z = [0.5 0.0]T, z = [0.5 

0.5]T, and z = [0.333 0.333]T (cf. (6)): x*(4) = [10.04 0.43 5.85 0.26 0.0 6.46 10.01 5.49 2.14 

1.00 0.83]T, x*(5) = [9.58 0.0 5.05 0.28 3.37 4.14 9.68 5.26 2.37 0.85 0.89]T, x*(6) = [8.76 

0.0 5.62 0.69 2.24 2.92 8.93 5.94 2.58 0.99 0.27]T, x*(7) = [9.52 0 .37 5.08  0.16 2.61 4.85 

9.55 5.39 2.25 0.91 0.88]T. 

 

 

Table 2. Yagi Antenna: Optimization Cost Breakdown 

Cost item 
Surrogate model domain 

XS (this work) Hypercube [l*,u*] 

Extreme points 280  R 160  R 

Data acquisition for kriging surrogate 100  R 1600  R 

MOEA optimization* N/A N/A 

Refinement 30  R 30  R 

Total cost# 410  R (27 h) 1790  R (118 h) 
* The cost of MOEA optimization is negligible compared to other stages of the process. 
# The total cost is expressed in terms of the equivalent number of EM simulations. 
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The nested kriging model was set up using 200 data samples. The RMS error of the 

surrogate is 7.5% for the reflection response and 4% for the gain. For the sake of comparison, 

the surrogate was also constructed within the initially reduced space, i.e., the interval l* = 

min{x*(1), x*(2)} and u* = max{x*(1), x*(2)}, using 1600 training samples. The obtained error 

values are much higher: 15% and 11% for reflection and gain characteristics, respectively. It 

should be noted that this case is considerably more difficult from the standpoint of surrogate 

model construction due to higher dimensionality of the parameter space (eleven variables vs. 

eight for the Yagi antenna) as well as wider parameter ranges. 

L0

R

2R

dR

rrelR

dL

dw

Lg

L1

R1

dr
R1 crelR1

 

Fig. 11. Geometry of the ultrawideband monopole antenna (Alsath and Kanagasabai, 2015). The 
ground plane marked using the light gray shade. 

 

Fig. 12. Pareto-optimal solutions found for the UWB monopole antenna of Fig. 11 using the proposed 
methodology: (o) initial Pareto set identified using MOEA executed on the nested kriging surrogate, () 
EM-evaluated selected designs from the initial Pareto set, (O) EM-simulated refined Pareto designs. 
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Figure 12 shows the initial Pareto set found through MOEA-optimization of the 

nested kriging surrogate as well as the selected designs evaluated using EM simulation 

(before and after the refinement). Table 3 provides the numerical data, whereas Fig. 13 shows 

the reflection and realized gain characteristics for the selected designs. The optimization 

process cost breakdown has been given in Table 4. Similarly as for the first example, 

acquisition of the training data plays the major role and the proposed methodology allows us 

to reduce the overall expenses by over 50 percent. For this example, the nested kriging 

surrogate and the surrogate constructed in the initially reduced space lead to similar initial 

Pareto fronts as illustrated in Fig. 14 with the slightly wider span of the front for the latter 

model (this being a consequence of a larger model domain). 

 
 

Table 3. UWB Antenna: Pareto-Optimal Designs 

Design 1 2 3 4 5 6 7 8 9 10 11 12 

max |S11|   
[dB] 

–14.9 –10.5 –9.8 –12.2 –11.1 –12.9 –13.6 –12.5 –11.2 –11.3 –10.7 –10.1 

Gain 
variability 

[dB] 
4.8 3.1 4.4 3.5 2.8 3.7 4.3 4.3 4.9 3.6 3.7 4.3 

Footprint 
area [mm2] 

564 487 292 497 441 508 508 453 373 418 387 308 

D
es

ig
n 

va
ri

ab
le

s 

L0 10.5 9.18 9.19 9.55 9.21 9.79 10.1 9.76 9.00 9.19 8.81 9.23 

dR 0.06 1.10 0.00 0.79 0.72 0.61 0.05 0.16 0.10 0.39 0.14 0.01 

R 5.88 5.52 4.91 5.52 5.26 5.51 5.61 5.29 5.19 5.20 5.51 4.95 

rrel 0.16 0.33 0.43 0.38 0.31 0.21 0.27 0.32 0.51 0.30 0.69 0.38 

dL 1.49 0.55 3.88 0.37 1.44 0.41 1.66 2.63 3.30 2.48 2.35 4.04 

Dw 6.12 5.78 1.55 6.06 4.95 6.29 5.56 4.69 3.09 4.24 3.30 1.79 

Lg 10.3 9.18 9.77 9.58 9.33 9.75 10.0 9.78 9.35 9.31 9.08 9.74 

L1 4.57 5.53 6.00 5.46 5.51 5.53 5.02 5.19 5.86 5.51 5.95 6.00 

R1 2.05 2.42 2.81 2.30 2.32 2.24 2.12 2.27 2.59 2.34 2.59 2.78 

dr 0.81 1.00 1.00 1.00 0.97 0.99 0.91 0.85 0.96 0.98 1.00 0.99 

crel 0.58 0.90 0.67 0.85 0.74 0.78 0.69 0.84 0.55 0.70 0.29 0.71 
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Fig. 13. Reflection (left) and realized gain (right) characteristics of the selected Pareto-optimal 
designs of Table 3: x(1) (—), , x(3) (), x(5) (- - -), and x(10) (-o-). 

 

(a) 

 
(b) 

Fig. 14. (a) Initial Pareto sets obtained using the proposed methodology (black) and the surrogate model 
established in the initially reduced design space (the interval [l*,u*]) (gray). It can be observed that the 
Pareto front span is similar in both cases (slightly larger for the initially reduced space due to its 
considerably larger volume); ); (b) the approximate image of the initially reduced parameter space 
(large circles), i.e., the interval [l* u*], obtained by randomly generating 10,000 points. Similarly 
as for the previous example, it can be observed that the considered design objectives are indeed 
partially conflicting and the optimization process is required in order to identify the Pareto-optimal 
designs (small circles). Vast majority of the designs in the interval [l* u*] are far from being optimal. 
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                                   (a)                                     (b)                                    (c) 
Fig. 15. Photographs of the fabricated prototypes of the UWB monopole: (a) Design 3, (b) Design 
5, (c) Design 10. 
 

Table 4. UWB Antenna: Optimization Cost Breakdown  

Cost item 
Surrogate model domain 

XS (this work) Hypercube [l*,u*] 

Extreme points 750  R 440  R 

Data acquisition for kriging surrogate 200  R 1600  R 

MOEA optimization* N/A N/A 

Refinement 36  R 36  R 

Total cost# 986  R (82 h) 2076  R (173 h) 
* The cost of MOEA optimization is negligible compared to other stages of the process. 
# The total cost is expressed in terms of the equivalent number of EM simulations. 

 

Selected Pareto-optimal designs of the antenna of Fig. 11 have been fabricated and 

measured. Figure 15 shows the photographs of the antenna prototypes. The relevant 

antenna characteristics, i.e., reflection and realized gain, are shown in Fig. 16. The 

agreement between simulations and measurements is satisfactory. 

 

4. Conclusion 

In the paper, a technique for computationally efficient multi-objective design 

optimization of antenna structures has been proposed. Our methodology adopts a nested 

kriging modeling approach to identify a region of the design space that contains the best 

trade-off designs, and to set up—within that region—a fast surrogate model utilized to 

yield an initial approximation of the Pareto set. A rigorous formalism has been introduced 
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to generalize the nested kriging framework and apply it over an arbitrary subset of the 

objective space instead of the interval (as in the original formulation of the method). 

The resulting framework has been comprehensively validated using two antenna 

examples, a planar Yagi and a UWB monopole, optimized for two and three objectives, 

respectively. It has been demonstrated that the proposed framework offers significant 

reduction of the computational cost of up to 80 percent as compared to the state-of-the-art 

surrogate-assisted approach while retaining or even improving the quality of Pareto front 

representation.  

 

 

 
                                 (a)                                         (b)                                         (c) 
Fig. 16. Simulated (gray) and measured (black) reflection and realized gain characteristics of the 
fabricated UWB monopole prototypes: (a) Design 3, (b) Design 5, (c) Design 10. 
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In this work, the entire optimization process was intentionally carried out using 

exclusively high-fidelity EM simulation models. This was to demonstrate that even within 

this setup, the computational overhead of the multi-objective optimization process can be 

manageable. The future work will include generalizations of the proposed methodology 

incorporating variable-fidelity simulations. 
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