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Abstract 

Design of high-frequency structures, including microwave and antenna 

components, heavily relies on full-wave electromagnetic (EM) simulation models. Their 

reliability comes at a price of a considerable computational cost. This may lead to 

practical issues whenever numerous EM analyses are to be executed, e.g., in the case of 

parametric optimization. The difficulties entailed by massive simulations may be 

mitigated by the use of fast surrogates, among which data-driven models are the most 

popular ones due to their versatility and accessibility. Unfortunately, conventional 

modeling techniques are significantly affected by the curse of dimensionality. It is 

particularly restrictive in the case of high-frequency components, typically exhibiting 

highly nonlinear characteristics. Recently, the concept of performance-driven modeling 

has been proposed where the surrogate model setup is focused on a small subset of the 

parameter space, containing the designs that are optimal or nearly optimal with respect to 

the considered performance figures. Domain confinement allows for a dramatic reduction 

of the number of training data samples needed for rendering reliable surrogates valid over 

wide ranges of the system parameters. In this paper, we review some of the recent 

techniques employing these concepts, discuss their properties, and illustrate them using 

real-world examples of antenna and microwave components. 
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1. Introduction

Over the years, design of modern high-frequency structures has been increasingly 

dependent on full-wave electromagnetic (EM) analysis tools. EM simulation packages 

entered the level of sophistication that permits reliable evaluation of arbitrary geometries 

while taking into account various effects such as cross-coupling between system 

components [1], dielectric anisotropy [2], or the presence of installation fixtures and 

radomes [3]. It is a fact of the matter that the complexity of contemporary high-frequency 

devices leads to making larger and larger portions of the design process EM-driven. This 

is especially pertinent to parameter tuning. At this stage of the process (also referred to as 

design closure [4]), the system performance is to be improved by finding the best 

possible trade-off between conflicting objectives while satisfying the design constraints. 

Adjustment of the parameters is typically carried out using numerical optimization 

procedures, which entails considerable computational expenses being a result of multiple 

EM simulations involved. This is one of the major challenges pertaining to EM-based 

design processes. It can be aggravated by solving tasks such as global optimization [5], 

uncertainty quantification [6] or robust design [7], all of which require massive 

evaluations of the structure at hand. 

Mitigation of the cost issue has been addressed by a number of researchers over 

the last two decades or so [8]-[11]. At the level of numerical algorithms, possible 

remedies rely on the development of more efficient procedures. The two notable 

directions are incorporation of the adjoint sensitivity technology to accelerate gradient-

based search procedures [12], [13], as well as (local) surrogate-assisted methods [14]-

[16]. Among the latter, one of the most recognized techniques is space mapping [17]. 
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Other frameworks include response correction methods [18], [19], feature-based 

optimization [20], or combination of surrogates with machine learning algorithms [21]. 

Majority of the aforementioned approaches shift some (or most) of the computational 

burden into cheaper representations of the structure under design while occasionally 

referring to the original (high-fidelity) EM model for verification and upgrading the 

(usually local) surrogate. 

Replacing the high-fidelity model by its faster surrogate altogether is an attractive 

alternative to the methods mentioned in the previous paragraph, as it permits a rapid 

execution of all types of simulation-based design procedures. Among available modeling 

techniques, the data-driven surrogates belong to the most popular ones due to their 

versatility and availability [22]-[25]. These surrogates are constructed by approximating 

the data from the original (here, EM-simulated) model of the system of interest. No 

physical or engineering insight is required. Some of widely used methods include 

polynomial regression [26], radial basis functions [27], kriging [28], support vector 

regression (SVR) [29], Gausian Process Regression (GPR) [30], or polynomial chaos 

expansion (PCE) [31] (typically in the context of uncertainty quantification); recent 

methods often incorporate combinations of the basic frameworks, e.g., PC kriging [32], 

where PCE is used as a trend function and the residuals are modelled with kriging. 

Unfortunately, approximation models are severely affected by the curse of 

dimensionality [33], i.e., a rapid growth of the number of training samples necessary to 

ensure usable predictive power of the surrogate with the increase of the number of 

independent parameters and their ranges. For high-frequency structures, often 

characterized by nonlinear responses, construction of data-driven surrogates is typically 
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limited to a few parameters within narrow ranges thereof. This is insufficient to handle 

geometrically complex topologies of modern microwave and antenna components. Some 

methods designed to address the issues of conventional modeling methods include high-

dimensional model representation (HDMR) [34], feature-based modeling [35], 

orthogonal matching pursuit (OMP) [36], as well as techniques for blending data of 

various fidelities, e.g., space mapping [37], Bayesian model fusion [38], co-kriging [39], 

or two-stage GPR [40]. 

Recently, a performance-driven modeling approach has been proposed, where the 

problem of an excessive cost of training data acquisition is addressed by an appropriate 

definition of the surrogate model domain [41]. The main concept stems from the 

observation that a vast majority of a conventional domain, normally determined by the 

lower and upper bound for the structure parameters, contains designs that are of poor 

quality from the point of view of any set of performance requirement that are of interest 

in a given design context. Confining the model domain to the vicinity of the region that 

accommodates optimum (or nearly optimum) points enables significant computational 

savings because only this region needs to be sampled and accounted for by the surrogate. 

In practice, determination of such a region is based on a set of reference designs pre-

optimized with respect to the figures of interest of choice. The details depend on a 

particular technique. The initial attempts of performance-driven modeling were focused 

on constructing surrogates covering a particular range of operating frequencies. Extended 

versions allowed taking into account additional operating conditions (e.g., relative 

permittivity of the substrate the structure is implemented on [42]) while retaining a 

structured reference design set. Performance-driven modeling with arbitrary allocation of 
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the reference designs has been proposed in [43], further improved in the nested kriging 

framework which allows straightforward uniform domain sampling and surrogate model 

optimization. 

This paper summarizes the recent developments and implementations of 

performance-driven surrogate modeling. We discuss three approaches, modeling with 

structured reference design set [41,42], triangulation-based modeling [43,44], as well as 

the nested kriging framework [45,46]. The presented methods are illustrated using real-

world examples of microwave and antenna structures, and benchmarked against 

conventional surrogate modeling methods. A discussion of their advantages and 

disadvantages is also provided. The exposition of the techniques is preceded by a generic 

formulation of the performance-driven modeling concept. 

 

2. Performance-Driven Surrogate Modeling 

Here, a concept of performance-driven modeling is formulated at a generic level. 

In particular, we explain the distinction between the conventional surrogate model 

domain and the domain confined by the conditions imposed by the design optimality 

w.r.t. the considered performance figures. Practical realization of this concept using 

various methods is then discussed in Sections 3 through 5. 

 
2.1. Parameter Space and Objective Space. Design Optimality 

The parameter space of the high-frequency structure at hand will be denoted as X. 

It is defined in a usual way, i.e., using the lower and upper bounds on design variables l  

x  u, where x = [x1 … xn]T, l = [l1 … ln]T, u = [u1 … un]T, or X = [l1 u1]  …  [ln un]. 

The figures of interest considered throughout the design process will be denoted as fk, k = 
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1, …, N. Examples of such figures include the operating frequencies of a multi-band 

antenna [41], material parameters (e.g., relative permittivity of the dielectric substrate the 

structure is implemented on [42]), or the power split ratio of a coupler [46]. The objective 

space F is defined by the ranges (lower and upper bounds) for the figures fk, fk.min  fk
(j)  

fk.max, k = 1, …, N. In other words we have F = [f1.min  f1.max]  …  [fN.min  fN.max]. The 

design goals for a given target objective vector f = [f1 … fN]T are encoded in a scalar 

objective function U(x,f), whereas the design optimality is understood as a solution to the 

problem 

( ) arg min ( , )fU U
x

f x f                                                     (1) 

Here, Uf(f) denotes the design that is optimum with respect to the objective vector f. For 

example, if f is a vector of operating frequencies of a multi-band antenna, U() may be 

defined as –min{B1,…,BN}, where Bj is the fractional operating bandwidth corresponding 

to the operating frequency fj. In that case, Uf(f) will be a design that maximizes the 

antenna fractional bandwidths while allocating them at the required frequencies f.  

The image Uf(F) of the objective space F is an N-dimensional manifold in the 

parameter space X as shown in Fig. 1. Whenever the figures fk are of concern, Uf(F) is the 

only region of X that is of interest because it contains the designs that are of high quality 

with respect to fk as specified by the objective function U. When constructing a design-

ready surrogate, it is sufficient to focus the model domain in and around Uf(F), which 

allows for considerable computational savings in terms of training data acquisition as 

compared to rendering the model within the entire parameter space X. 

Clearly, several practical problems arise: (i) how to identify Uf(F), (ii) how to 

carry out design of experiments (training data allocation), and, finally, (iii) how to use the 
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surrogate for design purposes (e.g., parametric optimization) given geometrical 

complexity of the domain. These issues will be dealt with in Sections 3 through 5 when 

discussing particular realizations of the performance-driven modeling concept. 

2.2. Performance-Driven Modeling Flow 

Figure 2 shows the surrogate modeling flow according to the performance-driven 

approach. The critical stage is a determination of the surrogate model domain, which 

takes into account the objective space and performance figures therein. The information 

about allocation of high-quality regions of the parameter space is carried by the reference 

designs prepared beforehand. The major differences between various implementations of 

the modeling procedures is in the particulars of how this information is employed. 

3. Performance-Driven Modeling with Structured Reference Design Set

The first implementation of the performance-driven modeling concept were 

characterized by a pre-defined allocation of the reference designs, which limits the 

flexibility of the framework. At the same time, these methods featured relatively 

straightforward formulation. The method outlined in this section was specifically 

developed to model the antenna structures with respect to the operating frequency and 

material parameters (relative permittivity of the dielectric substrate) [42]. 

3.1. Modeling Procedure 

Here, the objective space is two-dimensional with the figures of interest being the 

operating frequency f and relative dielectric permittivity r of the substrate. The surrogate 

model is to be reliable for the range of operating frequencies fmin  f  fmax, and the range 
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of permittivity min  r  max. R(x) represents a response of an EM-simulated antenna 

model, where x is a vector of antenna parameters. The symbol Uf(f,r) will denote the 

design optimized for the operating frequency f and the substrate dielectric permittivity r. 

The surrogate model domain is defined as a vicinity of the manifold spanned by 

nine reference designs covering the aforementioned ranges of f and r. These are 

Uf(f*,r
*), for all combinations of  f* {fmin, f0, fmax} and r

*  {min, r0, max}, cf. Fig. 3. 

f1

f2

f1.maxf1.min

f2.min

f2.max

F

x1

x2

x3

Uf(F)

f
Uf(.)

Uf(f)
X

 (a)  (b) 
Fig. 1. Performance-driven modeling: (a) the objective space F (here shown for N = 2) and (b) the 
design space X (shown for n = 3). The image Uf(F) of F is an N-dimensional manifold in X 
containing the designs that are optimal w.r.t. the figures of interest f1 through fN. From design 
perspective, the surrogate modeling process can be restricted to Uf(F) [45]. 

Objective  
space F

EM solver

Define surrogate model domain XS

Acquire training data within XS

Identify surrogate model

Parameter  
space X

Fig. 2. Performance-driven modeling flow. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


We define vectors v1 = Uf(fmin,min) – Uf(f0,r0), v2 = Uf(fmin,r0) – Uf(f0,r0), v3 = 

Uf(fmin,max) – Uf(f0,r0), v4 = Uf(f0,max) – Uf(f0,r0), v5 = Uf(fmax,max) – Uf(f0,r0), 

v6 = Uf(fmax,r0) – Uf(f0,r0), v7 = Uf(fmax,min) – Uf(f0,r0), and v8 = Uf(f0,min) – Uf(f0,r0), 

see Fig. 3(a). We also define a manifold M, which is spanned by eight pairs of vectors 

[v1,v2], [v2,v3], …, [v8,v1], as [42] 

8 8

0 0 1
1 1

{ ( , ) : , 0, 1}k f r k k
k k

M M U f       
 

       y v v                          (2) 

For the sake of consistency, we define v9 = v1. Figure 4(b) shows a point z and its 

projection Pk(z) onto the hyper-plane containing Mk. It corresponds to the expansion 

coefficients w.r.t. vk and vk+1: 

2
#

0 0 1,
arg min ( , )f r k kU f

 
       z v v                                        (3) 

where vk+1
# = vk+1 – pkvk with pk = vk

Tvk+1(vk
Tvk). Thus, vk+1

# is a component of vk+1 that is 

orthogonal to vk. Consider 

#
1 0 0( , )

T

k k f rU f         v v z                                              (4) 

The least-square solution to (4) (equivalent to the solution of (3)) is given as 

   1

0 0( , )
T T T

k k k f rU f  


     V V V z                                         (5) 

where Vk = [vk vk+1
#]. For practical reasons, we are interested in the expansion coefficients 

with respect to vk and vk+1, which are given as ,kp       . Note that Pk(z)  Mk if 

and only if   0,   0, and  +   1.  

We define xmax = max{Uf(f0,r0) + v1, …, Uf(f0,r0) + v8} and xmin = min{Uf(f0,r0) + 

v1, …, Uf(f0,r0) + v8}. The vector dx = xmax – xmin is the range of variation of antenna 
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geometry parameters within the manifold M. The surrogate model domain XS is defined 

as follows: a vector y  XS if and only if  

1. The set K(y) = {k  {1,…,8} : Pk(y)  Mk} is not empty; 

2. min{||(y – Pk(y))//dx|| : k  K(y)}  dmax, where // denotes component-wise division 

(dmax is a user-defined parameter, typically between 0.1 and 0.2). 

The first condition ensures that y is sufficiently close to M in a “horizontal” sense. In 

the second condition, the normalized distance between y and its projection onto that Mk, to 

which the distance is the shortest, is compared to the user-defined dmax. Due to 

normalization w.r.t. the parameter ranges dx, dmax determines the “perpendicular” size of 

the surrogate model domain (as compared to the “tangential” size given by dx).  

By definition, all the reference designs and the manifold M belong to XS. The size of 

XS is dramatically smaller (volume-wise) than the size of the hypercube containing the 

reference designs (i.e., x such that xmin  x  xmax). 

 

f



min

max

r0

fmin fmaxf0        x1

x2

x3

Uf(fmin,min)

Uf(fmax,max)

Uf(fmax,min)

Uf(fmin,max)

Uf(f0,r0)

 
                                        (a)                            (b) 
Fig. 3. Reference designs: (a) distribution on the f/ plane, and (b) designs allocated in a three-
dimensional space. The shaded area is a manifold that determines the region of interest for 
surrogate model construction [42]. D
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vk

vk+1

z

Pk(z)

Uf(f0,r0)  
                                             (a)                                                     (b) 
Fig. 4. Surrogate model domain defining components: (a) the manifold of Fig. 3(b) with the 
spanning vectors vk marked; (b) manifold Mk with its spanning vectors and a point z and its 
projection onto the hyper-plane containing Mk [42]. 
 

 
The presented concept can be generalized in a straightforward manner; however, as 

the number of reference designs grow very quickly with the number of operating conditions 

considered (here, two), a practical application of the approach is limited to a few 

conditions.  

The surrogate model is constructed using kriging interpolation of the EM model 

response R based on the training data sampled within XS [42]. The design of experiments 

is based on random sampling within the interval [xmin, xmax] assuming uniform probability 

distribution. The samples allocated outside [xmin, xmax] are rejected. 

 
3.2. Case Study: Ring Slot Antenna 

A ring slot antenna shown of Fig. 5 [47] is used for demonstration purposes. The 

structure comprises a microstrip line that feeds a circular ground plane slot with defected 

ground structure (DGS). The thickness of the substrate is 0.762 mm. The parameter set is: 

x = [lf ld wd r s sd o g εr]T; εr represents relative permittivity of the substrate. The feed line 

width wf is computed for each εr to ensure 50 ohm input impedance. The computational 

model of the antenna is implemented in CST (~300,000 cells, simulation 90 s). 
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The antenna is supposed to be modeled within wide ranges of operating 

conditions: fmin = 2.5 GHz to fmax = 6.5 GHz (operating frequency), and min = 2.0 to max 

= 5.0 (substrate permittivity). The reference designs have been obtained by optimizing 

the structure of Fig. 5 for all combinations of f  {2.5, 4.5, 6.5} GHz and r  {2.0, 3.5, 

5.0} using feature-based optimization (FBO) [48]. Optimization is understood as 

minimizing the antenna reflection at f0.  

The model has been set up for dmax = 0.2 using 100, 200, 500 and 1000 random 

samples. The test set contained 100 random points. For benchmarking, the kriging model 

was also constructed using 1000 training points allocated in a conventional domain X = 

[xmin, xmax]. Table 1 shows the average RMS errors for all considered models. Selected 

two-dimensional projections of the training sets for uniform and constrained sampling are 

shown in Fig. 6. The performance-driven surrogate allows for 3.5-fold improvement of 

the predictive power. At the same time, comparable modeling error is achieved with ten-

fold reduction of the number of training samples. Figure 7 shows the surrogate and EM 

model responses at the selected test designs. 

 

lf

wf

ld

r

s

sd

o

g
wd

 
Fig. 5. Geometry of the ring slot antenna [47]. 
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                                                 (c)                                                          (d) 
Fig. 6. Uniform versus constrained sampling for selected two-dimensional projections onto (a) lf -wd 
plane, (b) lf -sd plane, (c) s-o plane, and (d) o-r plane [42]. 
 

|S
11

| [
dB

]

 

Fig. 7. Responses of the antenna of Fig. 5 at the selected test designs for N = 1000: high-fidelity 
EM model (—), performance-driven surrogate model (o) [42]. 
 
 

Table 1. Ring slot antenna: modeling results 

Design Space Sampling and Surrogate Modeling Technique* Average Relative RMS Error 

Uniform sampling in the original space, N = 1000 7.3 % 

Constrained sampling, N = 100 7.8 % 

Constrained sampling, N = 200 5.5 % 

Constrained sampling, N = 500 3.3 % 

Constrained sampling, N = 1000 2.1 % 
* In all cases, the surrogate model constructed using kriging interpolation [28]. 
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4. Triangulation-Based Modeling 

Triangulation-based performance-driven modeling [43] can be considered as a 

generalization of the method of Section 3. It permits arbitrary allocation of the reference 

designs and it is formulated to handle (at least in principle) an arbitrary number of 

operating conditions. 

 
4.1. Modeling Framework 

 We use the same notation concerning the parameter and objective space as 

introduced in Section 2. In particular, the surrogate model is constructed in the region 

spanned by the reference designs x(j) = [x1
(j) … xn

(j)]T, j = 1, …, p, optimized for selected 

objective vectors f(j) = [f1
(j) … fN

(j)]T. The reference designs are assigned to a set of 

simplexes using Delaunay triangulation [49]. The sets of vertices of the simplex S(k), k = 

1, …, NS, is denoted as S(k) = {x(k.1),…, x(k.N+1)}, where x(k.j)  {x(1), …, x(N)}, j = 1, …, N 

+ 1, are individual vertices. The triangulation process is illustrated in Fig. 8. 

 

f1

f2

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

f(8)

S(1) = [x(1) x(2) x(4)] S(4) = [x(2) x(5) x(7)] S(7) = [x(5) x(6) x(8)]
S(2) = [x(1) x(3) x(4)] S(5) = [x(2) x(4) x(6)] S(8) = [x(6) x(7) x(8)]
S(3) = [x(2) x(5) x(6)] S(6) = [x(4) x(6) x(7)] S(9) = [x(5) x(8) x(9)]

S(1)

S(2)
S(3)

S(4)

S(5)

S(6)

S(7)

S(8)

f(9)

S(9)

x(2)

x(1)

x1

x2

x3

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

  

Fig. 8. Triangulation-based modeling: reference designs and their triangulation (left plot) and 
objective vectors corresponding to the reference designs (right plot). In the example shown, we 
have N = 2 (two figures of interest), p = 9 (nine reference designs), and NS = 9 (nine simplexes). 
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The surrogate model domain XS is determined as a vicinity of the manifold M 

being the union of the simplexes S(k), i.e., 

1 1( . )

1 1
{ :0 1, 1}

N Nk j
j j jj j

k

M    

 
      y x                                   (6) 

The vicinity is determined by the distance from M in the orthogonal complements 

of the subspaces containing S(k). To determine whether a given point z belongs to the 

domain, the distance between z and the manifold M must be found. For that, consider a 

projection Pk(z) of a point z onto the hyper-plane Hk containing S(k). For further use, we 

define the simplex anchor x(0) = x(k.1), and its spanning vectors v(j) = x(k.j+1) – x(0), j = 1, …, 

N (cf. Fig. 9(a)). The projection corresponds to the expansion coefficients w.r.t. v(j) [43] 

(1) ( )

2
(0) ( ) ( )

1[ ,..., ]
arg min

N

N j j

j 



   z x v                                         (7) 

where the vectors ( )jv  are obtained from v(j) by orthogonalization (i.e., (1) (1)v v , 

(2) (2) (1)
12a v v v  where a12 = v(1)Tv(2)(v(1)Tv(1), etc.). In general 

(1) (2) ( ) (1) (2) ( )... ...N N       V v v v v v v A                                       (8) 

Here, A is an upper-triangular matrix of coefficients obtained from the above 

orthogonalization procedure. The problem (7) is equivalent to  

(1)

(1) (2) ( ) (0)

( )

... N

N





 
      
  

v v v z x                                               (9) 

As the dimension of the simplex is normally lower than the dimension of the design 

space, the expansion coefficients can be found as follows 

(1)

1 (0)

( )

( ) ( )T T

N







 
    
  

V V V z x                                              (10) 
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To determine whether Pk(z) is within the convex hull of the simplex S(k), one 

needs the expansion coefficients (j) of z with respect to the original vectors v(j), which 

can be found as (1) ( ) (1) ( )[ ... ] [ ... ]N T N T    A . Further, Pk(z)  S(k) if and only if it is a 

convex combination of the vectors v(j), i.e., if the following two conditions are satisfied: 

1. (j)  0 for j = 1, …, N, and 

2. (1) + … + (N)  1. 

In the next step we define xmax = max{x(k), k = 1, …, p} and xmin = min{x(k), k = 1, 

…, p}. The vector dx = xmax – xmin determines the range of variation of geometry 

parameters of a device at hand within M. The domain XS of the surrogate is defined 

similarly as in [42], by the following two conditions: a vector y  XS if and only if  

1. The set K(y) = {k  {1,…,NS} : Pk(y)  S(k)} is not empty; 

2. min{||(y – Pk(y))//dx|| : k  K(y)}  dmax (// denotes component-wise division; dmax 

is a user-defined parameter. 

The geometric interpretation of these conditions can be found in [43]. The size of 

the model domain can be controlled by dmax (see Fig. 9(b) for graphical illustration). 

v(1)

z

Pk(z)

x(0)

v(2)

     

x2

x3

x1

 
                                            (a)                                                          (b) 

Fig. 9. (a) An example simplex S(k) with its anchor and the spanning vectors. Also shown are a point 
z and its projection onto the hyper-plane Hk containing S(k); (b) The meaning of thickness parameter 
dmax for a three-dimensional design space: reference designs (black squares), simplexes (—), along 
with two surrogate model domains, corresponding to the smaller (- - -) and larger () dmax.  
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Note that M  XS by definition. For typical values of dmax of 0.05 to 0.2, the size 

of XS is significantly smaller than the size of the parameter space X (i.e., here, the interval 

[xmin, xmax]). This allows for a considerable reduction of the number of samples necessary 

for surrogate model construction. At the same time, XS contains the designs that are 

optimum w.r.t. the selected figures of interest, and, assuming sufficient regularity of the 

device responses w.r.t. its geometry parameters, the optimum designs for all 

combinations of the same figures of interest within the convex hull of f(j), j = 1, …, N. 

Consequently, using a fraction of samples required by the conventional model, one can 

render a surrogate valid over a wide range of geometry/material parameters of the structure 

as demonstrated in the next section. 

 
4.2. Verification Case Study: Dual-Band Uniplanar Dipole Antenna 

Consider a dual-band uniplanar dipole antenna shown in Fig. 10(a) [50], 

implemented on RF-35 substrate (εr = 3.5, h = 0.762 mm) and fed by a 50 Ohm coplanar 

waveguide (CPW). The design parameters are: x = [l1 l2 l3 w1 w2 w3]T, whereas l0 = 30, w0 

= 3, s0 = 0.15 and o = 5 are fixed (all dimensions in mm). The EM antenna model R 

(~100,000 cells; simulation time 60 seconds) is implemented in CST Microwave Studio. 

The goal is to build the surrogate for the following ranges of operating 

frequencies 2.0 GHz ≤ f1 ≤ 4.0 GHz (lower band), and 4.5 GHz ≤ f2 ≤ 6.5 GHz (upper 

band). Figure 10(b) shows the allocation of the reference designs selected for this 

example. The lower and upper bounds for design variables were set using the reference 

designs as l = [25.0 6.0 14.0 0.2 1.6 0.5]T, and u = [35.0 15.0 21.0 0.55 4.0 2.0]T. The 

reference design were obtained using feature-based optimization framework with 

variable-fidelity EM models [48]. 
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The surrogate model has been constructed for dmax = 0.05 using kriging 

interpolation surrogate and training sets of various sizes: 100, 200, 400, 800, and 1600 

random samples. Figure 11 shows selected two-dimensional projections of the 

constrained sampling. The model accuracy has been verified using 100 independent test 

points. Table 2 reports the average RMS errors for the triangulation-based model and 

conventional kriging surrogate. Computational benefits of performance-driven approach 

are evident. Figure 12 shows the surrogate and EM model responses at the selected test 

designs.  
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                                        (a)                                                                           (b) 

Fig. 10. Uniplanar dipole antenna: (a) geometry [50], (b) allocation of the reference designs and 
their triangulation [43]. 
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Fig. 11. Constrained sampling for selected two-dimensional projections onto l1-l2 plane, l1 –w1 
plane, l1-w3 plane, and l3-w2 plane [43]. 
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Fig. 12. Responses of the uniplanar dipole antenna of Fig. 10(1) at the selected test designs for 
N = 1600: high-fidelity EM model (—), triangulation-based surrogate (o). 

Table 2: Uniplanar dipole antenna: modeling results 

Number of training samples# 
Relative RMS Error* 

Conventional surrogate$ Triangulation-based surrogate 

100 17.2 % 4.6 % 

200 12.7 % 3.5 % 

400 9.3 % 2.8 % 

800 6.9 % 2.6 % 

1600 5.7 % 2.3 % 
* In all cases, the surrogate model constructed using kriging interpolation. 
# The cost of finding the reference designs for constrained modeling is about 400 evaluations of the EM antenna model.
$ Conventional surrogate established in the parameter space X = [xmin, xmax].

5. Nested Kriging Modeling

The last technique discussed in this paper is nested kriging modeling [45] in 

which the surrogate model domain is defined using a separate kriging interpolation 

model. It is established using the reference designs and maps the objective space into the 

parameter space to provide the first approximation of the region of interest (i.e., 

containing high-quality designs). One of the major advantages of this approach is that 

design of experiments as well as surrogate model optimization can be realized in a 

convenient and straightforward manner. 
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5.1. Nested Kriging Modeling Procedure 

 The objective and parameter spaces are defined as in Section 2.1. Similarly as for 

the previously discussed techniques, the existence of reference designs 

x(j) = [x1
(j) … xn

(j)]T, j = 1, …, p, is assumed. These are optimized with respect to the 

performance vectors f(j) = [f1
(j) … fN

(j)] according to (1).  

 The nested kriging method utilized two surrogates. The first-level model sI(f) 

maps the objective space F into the design space X. It is constructed using {f(j),x(j)}j = 1,…,p 

as the training set (see also Fig. 13).  

The surrogate model is to be established within the region XS that contains the 

designs which are optimum with respect to fk, k = 1, …, N. As the first-level model is 

constructed using a discrete set of points optimal in the sense of (1), the image sI(F)  X 

only provides an approximation of Uf(f). In order to ensure that the domain XS contains 

the entire manifold Uf(f) (or a vast majority of it), sI(F) must be enlarged. This, within the 

nested kriging framework is realized by an orthogonal extension of sI(F) towards its 

normal vectors. We denote by {vn
(k)(f)}, k = 1, …, n – N, an orthonormal basis of vectors 

normal to sI(F) at f, and define xmax = [xmax.1 … xmax.n]T, xmin = [xmin.1 … xmin.n]T, with 

xmax.k = max{xk
(j), j = 1, …, p}, and xmin.k = min{xk

(j), j = 1, …, p}. We also define xd = 

xmax – xmin (parameter variations within sI(F)). Further, extension coefficients are defined 

as follows: 

(1) ( )
1 max( ) [ ( ) ... ( )] 0.5 | ( ) | ... | ( ) |

TT n N
n N d n d nd  
     α f f f x v f x v f                     (11) 

where dmax is a thickness parameter. The coefficients k determine the boundaries of XS, 

located between the two manifolds (cf. Fig. 13(b)):  

  ( )

1
: ( ) ( )

n N k
I k nk

M X 

 
   x x s f f v f                               (12) 
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f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (k)

       x1

v1
(k)

M+

XS

x3

x2

sI(F)

sI(f
(k))

M-

 
                              (a)                                                                         (b) 
Fig. 13. The basic components of the nested kriging method: (a) reference designs and objective 
space F; (b) the image sI(F) of the first-level surrogate model, and the normal vector v1

(k) at f(k); 
the manifolds M– and M+ as well as the surrogate model domain XS defined as orthogonal 
extension of sI(F) [46]. 
 

This can be formally written as 

( )

1

( ) ( ) ( ) : ,

1 1, 1,...,

n N
k

I k k n
kS

k

F
X

k n N

 







      
      

x s f f v f f
                               (13) 

The ultimate (or second-level) surrogate is a kriging model rendered in XS based 

on a set of training points {xB
(k),R(xB

(k))}k = 1, …, NB. Here, as usual, R denotes the EM-

simulation model of the structure of interest.  

It should be noted that the very definition of the set XS facilitates design of 

experiments which was a problem for both [41] and [43]. It is implemented using (13) 

and the appropriate mappings from the unit interval [0,1]n onto XS. Let {z(k)}, k = 1, …, 

NB, where z(k) = [z1
(k) … zn

(k)]T, denote the set of uniformly distributed data points in [0,1]n 

(here, using LHS [51]). The mapping is realized in two stages. First, the function h1 

1 1 1 1.min 1 1.max 1.min .min .max .min

1

( ) ([ ... ] ) [ ( ) ... ( )]

[ 1 2 ... 1 2 ]

T
n N N N N

N n

h h z z f z f f f z f f

z z

       

    

y z
      (14) 
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transforms the unit hypercube onto a F  [–1,1]n–N ( is a Cartesian product). The first N 

components of y correspond to original samples z uniformly distributed in the objective 

space, whereas the remaining n – N components will be used to uniformly spread the 

samples in orthogonal directions defining XS. Subsequently, a function h2 is defined as  

2 2 1 1

( )
1 1

1

( ) ([ ... ] ) ([ ... ] )

([ ... ] ) ([ ... ] )

T T
n I N

n N
T k T

N k k N n N
k

h h y y y y

y y y y y





   



x y s

v
                                  (15) 

which maps F  [–1,1]n–N onto XS. Uniformly distributed samples xB
(k) in XS are obtained 

as  

( ) ( ) ( )
2 1( ) ( ( ))k k k

B H h h x z z                                                 (16) 

Note that the first component of mapping h2, i.e., sI(y), places the sample on the manifold 

sI(F), whereas the second component shifts the sample in orthogonal directions vn
(k) so 

that the samples fill the entire domain XS. The function H can also be used for other 

purposes, in particular, parametric optimization of the surrogate within XS. As H is 

surjective, it is sufficient to operate within F  [–1,1]n–N regardless of XS geometry and to 

only apply (16) to perform evaluation of the structure under design.  

 
5.2. Illustration Example: Miniaturized Impedance Matching Transformer 

 The nested kriging method is demonstrated using a miniaturized 50-to-100 Ohm 

impedance matching transformer [52] shown in Fig. 14(b). The circuit is implemented on 

RF-35 substrate (εr = 3.5, h = 0.762 mm, tan δ = 0.0018) and utilizes compact microstrip 

resonant cells (CMRCs) of Fig. 14(a). The transformer geometry parameters are x = [l1.1 

l1.2 w1.1 w1.2 w1.0 l2.1 l2.2 w2.1 w2.2 w2.0 l3.1 l3.2 w3.1 w3.2 w3.0]T. 
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The objective space is defined by the range of operating bands [f1 f2] with 1.5 GHz 

≤ f1 ≤ 3.5 GHz, and 4.5 GHz ≤ f2 ≤ 6.5 GHz. Here, the optimum design is understood by 

minimization of the maximum reflection |S11| within [f1 f2] (which is a minimax problem). 

The allocation of the reference designs has been shown in Fig. 14(c). The lower and upper 

bounds for geometry parameters are l = [2.0 0.15 0.65 0.35 0.30 2.70 0.15 0.44 0.15 0.30 

3.2 0.15 0.30 0.15 0.30]T, and u = [3.4 0.50 0.80 0.55 1.90 4.00 0.50 0.67 0.50 1.55 4.5 

0.26 0.46 0.27 1.75]T. 

For the sake of numerical verification, the nested kriging surrogate has been 

constructed for several training data sets of sizes 50, 100, 200, 400, and 800 samples. The 

thickness parameter has been set to dmax = 0.05. The predictive power of the model has 

been estimated using a set of 100 independent random test points. The numerical results are 

provided in Table 3 which shows the average RMS errors defined as ||R(x) – Rs(x)||/||R(x)||, 

where R(x) and Rs(x) stand for the high-fidelity EM model and the surrogate, respectively. 

Conventional kriging and radial basis function surrogates (i.e., set up within the parameter 

space X = [l, u]) were included for comparison as well. Figure 15 shows the responses of 

the nested kriging surrogate and the EM model at selected test designs. A visual agreement 

between the two data sets is good.  

 

 
(a) 

 

 

(b) 

  

  
(c) 

Fig. 14. Miniaturized impedance matching transformer: (a) compact cell (CMRC), (b) three-
section transformer circuit [52], (c) allocation of the reference designs for the transformer [46]. 
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|S
11

| [
dB

]

Fig. 15. Responses of the impedance transformer of Fig. 14(b) at the selected test designs for 
N = 800: EM model (—), proposed nested kriging surrogate (o) [46]. 

Table 3. Modeling Results and Benchmarking for RRC and Transformer 

Number of training 
samples 

Relative RMS Error 

Conventional Models 
Nested Kriging Model 

Kriging RBF 

50 49.1 % 56.2 % 17.3 % 

100 31.1 % 33.0 % 13.9 % 

200 25.9 % 27.5 % 10.3 % 

400 20.4 % 23.1 % 7.4 % 

800 15.7 % 16.8 % 6.1 % 
$ Conventional surrogate established in the parameter space X = [xmin, xmax]. 

The results of Table 1 indicate significant improvement of the predictive power 

(by a factor between two and three) of the nested kriging surrogate over that of the 

conventional one when the training data sets of the same sizes are compared. At the same 

time, conventional models require much larger data sets (by a factor of ten or higher) to 

reach the accuracy of the nested kriging model. Note that the accuracy of the 

conventional models is poor even for the largest data set consisting of 800 samples.  
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6. Discussion and Conclusion 

This paper discussed the concept and recent developments of performance-driven 

surrogate modeling of high-frequency structures. As demonstrated using several 

examples of microwave and antenna components, confinement of the model domain to a 

region containing designs that are close-to-optimal with respect to performance figures of 

choice plays a crucial role in reducing the computational overhead related to acquisition 

of the training data. At the same time, it permits construction of reliable surrogates over 

wide ranges of geometry parameters and operating conditions. We discussed three 

particular implementations of this concept, different in how the model domain definition 

is formalized. The technique of Section 3 is the simplest in terms of formulation and 

implementation but it is limited in terms of allocation of the reference designs. 

Triangulation-based modeling of Section 4 is more flexible as it permits arbitrary 

placement of the reference set. It is also formulated to directly handle arbitrary number of 

operating conditions. The downside is a non-trivial design of experiments, although this 

issue has been addressed to a certain extent in follow-up works. The nested kriging 

framework is the most comprehensive of the three methods outlined in this paper, also in 

the sense that the mechanisms permitting uniform sampling and convenient surrogate 

model optimization are built into the model formulation. At the same time, this method is 

more complex implementation-wise than the techniques of Sections 3 and 4. Overall, the 

performance-driven concept can be viewed as an attractive alternative to conventional 

modeling methods, especially in cases where the latter fail due to dimensionality issues, 

nonlinearity of system outputs or wide ranges of parameters. In particular, the initial 

investment required to prepare the reference designs (if not already available) will pay off 
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if the surrogate is to be re-used on multiple occasions, e.g., to re-design a particular 

structure for various operating conditions, or when other techniques simply do not work. 
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