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Abstract: Unmanned aerial vehicles (UAVs) have now become very popular in photogrammetric 
and remote-sensing applications. Every day, these vehicles are used in new applications, new 
terrains, and new tasks, facing new problems. One of these problems is connected with flight 
altitude and the determined ground sample distance in a specific area, especially within cities and 
industrial and construction areas. The problem is that a safe flight altitude and camera parameters 
do not meet the required or demanded ground sampling distance or the geometrical and texture 
quality. In the cases where the flight level cannot be reduced and there is no technical ability to 
change the UAV camera or lens, the author proposes the use of a super-resolution algorithm for 
enhancing images acquired by UAVs and, consequently, increase the geometrical and interpretation 
quality of the final photogrammetric product. The main study objective was to utilize super-
resolution (SR) algorithms to improve the geometric and interpretative quality of the final 
photogrammetric product, assess its impact on the accuracy of the photogrammetric processing and 
on the traditional digital photogrammetry workflow. The research concept assumes a comparative 
analysis of photogrammetric products obtained on the basis of data collected from small, 
commercial UAVs and products obtained from the same data but additionally processed by the 
super-resolution algorithm. As the study concludes, the photogrammetric products that are created 
as a result of the algorithms' operation on high-altitude images show a comparable quality to the 
reference products from low altitudes and, in some cases, even improve their quality.  

Keywords: photogrammetry; UAV; super-resolution 
 

1. Introduction 

Unmanned aerial vehicle applications and new methods in photogrammetry [1] and remote 
sensing have increased rapidly in recent years [2–5]. Currently, unmanned aerial vehicles (UAVs) are 
used by a wide community and for cases and applications that could not be performed in the past. 
Small UAVs, as a photogrammetry measurement tool, provide flexibility and reliability, are safe and 
easy to use, can be deployed in minutes, and initial measurements can be delivered on the field. User 
demands are growing both for the quality of the modeling and the final resolution. UAVs are used 
in many areas where visual spectrum images or multi-spectral images, digital surface models 
(DSMs), and orthoimagery are derived and encompass the following fields: geodesy [6–15], 
agriculture [14,16–19] , forestry [20–22], archaeology and architecture [10,23–27], environment and 
technical infrastructure monitoring [6,7,11,17–19,21,28–33], and emergency management and traffic 
monitoring [34–36]. Numerous cases of UAV applications have been realized by the author, during 
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which, some problems have been encountered [37]. One of these problems is connected with the flight 
level (altitude, above ground level (AGL)) and the determined ground sample distance (GSD) in 
specific areas, especially within cities and industrial and construction areas. The terms flight level, 
altitude, and above ground level in this paper are used equivalently and mean a height measured 
with respect to the underlying ground surface at take-off position. 

The problem is that the safe flight level and camera parameters do not meet the required or 
demanded ground sampling distance (GSD) (geometrical quality) and texture quality for 
interpretation (interpretation quality). The safe flight level within an industrial environment can be 
limited by high cranes, high power lines (which are even more dangerous for UAVs), high buildings 
[20,36], etc. If a required GSD demands a flight level lower than the highest objects in the area, then 
the required quality cannot be met. A flight level must consider the safe separation between objects 
and the UAV. This separation (defined by a vertical distance between highest point of the object and 
UAV) varies and depends on the object type and consists of many coefficients, like altimeter accuracy, 
global navigation satellite systems (GNSS) accuracy, local law regulations, and the level of confidence 
in the object’s height as known by the operator.  

In the cases where the flight level cannot be reduced and there is no technical ability to change 
the UAV camera or lens, the author proposes the use of super-resolution (SR) algorithms for 
increasing the geometrical and interpretation quality of the final photogrammetric product. 

In recent years, many techniques to improve the visual quality of images and videos have been 
developed. The main reason that this kind of technology is being developed is to satisfy user 
demands for high-quality multimedia content. People require crystal clear and visually pleasing 
pictures displayed on new, high-quality viewing equipment, such as LCDs (liquid-crystal displays) 
and LEDs (light-emitting displays). Moreover, high resolution and image quality are commercially 
attractive, and producers of display equipment want to increase their dimensions (given in diagonal 
dimension of the screen) and resolution. High-resolution content is not always available due to 
reasons that include down-sampling for the sake of bandwidth limitations, different types of noise, 
different compression techniques, different video standards, etc. [38].  

A group of techniques for estimating a high-resolution (HR) image from its low-resolution (LR) 
counterpart are [39] called super-resolution (SR) techniques [38]. Super-resolution methods try to do 
image upscaling and upsizing without sacrificing the detail and visual appearance of the images. 
Consequently, the main goal of super resolutions is to find the value of the missing pixels in a high-
resolution image. In the context of the presented research, the idea is to find the value of the pixels in 
the images taken from higher altitudes and make them similar to those taken from a lower altitude. 
Recent works have considered super-resolution methods in remote sensing [40–45], satellite imagery 
[41–51] , medicine [52–55], and microscopy [56–59]. 

Generally, super-resolution methods are classified into two classes [60]: multiple-image super-
resolution methods [61–63] and single-image super-resolution methods [39,64–67]. The first group 
enhances the spatial resolution of images based on multiple images presenting the same scene. 
Multiple-image super resolution is based on information fusion, which benefits from the differences 
(mainly subpixel shifts) between low-resolution images [61]. From the practical point of view for 
photogrammetry and remote sensing, multiple images are not always available, or if they are 
available, there are slight changes between the images. For example, earth observation missions allow 
for acquisition of the same scene on a regular basis, but the scenes still change too fast in comparison 
to the revisit time. There are changes including shadows, cloud, snow coverage, moving objects, or 
seasonal changes in vegetation [65]. 

The second group, single-image super-resolution algorithms, are more practical for UAV 
photogrammetry or remote-sensing applications. An interpolation method (like bicubic 
interpolation) is the simplest approach to solve the single-image super-resolution problem. However, 
results from those methods are far from ideal. Developments in the field of machine learning, and 
especially evidence-based learning techniques, are using parameters learned during training to 
enhance the results in the evaluation of unknown data. Deep-learning techniques, particularly 
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convolutional neural networks (CNNs), are actually able to enhance the data in an information-
theoretical sense [65], and due to that fact, those techniques were used in the presented experiment.  

2. Materials and Methods  

This chapter describes the methodology used in the research. The main objective was to study 
super-resolution (SR) algorithms to improve the geometric and interpretative quality of the final 
photogrammetric product and its impact on the accuracy of the photogrammetric processing and on 
the traditional digital photogrammetry workflow. The research concept assumes a comparative 
analysis of photogrammetric products obtained on the basis of data collected from small, commercial 
UAVs and products obtained from the same data but additionally processed by the super-resolution 
algorithm. 

The super-resolution algorithm was applied for image-data calculation before the standard 
postprocessing routine (Figure 1 ) for data collected at 110 meters in altitude, in accordance with the 
main research intention. The data collected at the lower altitude in this research are used as a 
reference data for comparison with the reduced ones. In other words, the intention was to prove that 
data collected at a higher altitude can be enhanced using super-resolution algorithms and, using 
standard photogrammetric processing data, are comparable to those collected at the lower altitude. 
In the practical cases, where flight at a lower altitude cannot be performed and planned data quality 
cannot be reached, that algorithmic enhancement can be the only way, and the simplest one, to reach 
the planned data quality. 

2.1. Photogrammetric process 

The photogrammetry technique encompasses methods of image measurement and 
interpretation in order to derive the shape and location of an object based on photographs. The 
photogrammetric methods can be applied in cases where the object can be photographically 
recorded. The purpose of the photogrammetric measurement is a three-dimensional reconstruction 
in a digital or graphical form. The measurements (images) and a mathematical transformation 
between the image and the object space have the means to model the object.  

Currently, the digital photogrammetry process (Figure 1a ) consists of the data acquisition, 
processing, and exporting. All steps within this process are made based on raw (not modified) 
images. Moreover, the photogrammetric software providers underline the fact that images loaded to 
the processing software are not to be modified [68,69]. Any modification can change the internal or 
external orientation parameters, and the modeling software will not be able to correctly conduct the 
reconstruction process. Here, a new method, enhanced by a super-resolution, photogrammetric 
process, was designed and tested on a typical, state-of-the-art photogrammetric software [70]. In this 
research, Agisoft Metashape v. 1.6.1 software was used.  

The main purpose of augmentation is to increase the resolution of images obtained from the 
flight at a higher altitude, which will result in a higher geometric and interpretation quality of the 
final products. This approach is close to reducing the flight level of unmanned aerial vehicles or, in 
other words, reducing the effective distance to the object. Moreover, the research verified if, despite 
the guidelines of the software developers, it is possible to modify the resolution of the images and to 
process them on the commercial software without sacrificing the reconstruction possibilities. 
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Figure 1. Traditional unmanned aerial vehicle (UAV) photogrammetric process (a) and augmented 
by a super-resolution algorithm (b). GCP: ground-control points and RTK: real-time kinematic. 

2.2. UAV flights 

The commercial drone market is now dominated by the Chinese DJI (Da Jiang Innovations 
Science & Technology Co., Ltd., Shenzhen, China) company [71,72], and products of this company 
are used in almost every company which uses UAVs for measurements. For this research, the author 
used the currently most popular representatives on the commercial market for UAVs: DJI Phantom 
4 Pro (PH) and DJI Mavic Pro (MP). Both represent the same class: small, commercial UAVs. Apart 
from different flight capabilities, both UAVs also have different cameras, and in this regard, only 13-
Mpix (megapixel) and 20-Mpix sensors sizes are available. Higher-resolution cameras require a 
different, larger aerial platform typically mounted on custom constructions and, due to their minority 
share within the market, were not used for this research.  

In the presented research, the single-grid flight path (Figure 2) was used for both UAVs, with 
parameters presented in Table 1  The single flight path is usually used for cases where a main interest 
is 2D map outputs (orthophotomaps, digital surface models, or digital terrain models) for relatively 
flat surfaces, such as fields. Typically, an effective area that can be covered during one flight of small 
commercial UAVs at an altitude of 100 m using a single-grid path is limited to an area of around 
600x600 m with a calculated flight time of around 19 minutes. The maximum flight time is calculated 
for no-wind conditions and, due to that fact, real coverage in windy conditions will be reduced.  

Data acquisition:
- Flight plan
- Camera parameters
- Ground Control Points
- RTK Measurements

Data processing:
- Photo alignment
- GCP localization
- Camera alignment optimization
- Dense point cloud building
- Mesh building
- Texture building
- DEM building
- Orthomosaic building

Exporting results

Images enhancement:
- Super resolution algorithms

Data acquisition:
- Flight plan
- Camera parameters
- Ground Control Points
- RTK Measurements

Data processing:
- Photo alignment
- GCP localization
- Camera alignment optimization
- Dense point cloud building
- Mesh building
- Texture building
- DEM building
- Orthomosaic building

Exporting results

a) b)
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Figure 2. Single-grid flight path—scheme and parameters. 

During the study, 4 different UAV flights were conducted. Detailed data of the flight patterns 
(Figure 2) are presented in Table 1, where: 𝐷௒ – width of the area of interest, 𝐷௑ - length of the area 
of interest, 𝐵௬ – distance between two stripes, 𝐵௫ – distance between the perspective centers of two 
consecutive photos, 𝐿ௐ – image footprint across flight line, 𝐿ு – image footprint along flight line. 

Table 1. Flight plan parameters. AGL: above ground level and GSD: ground sample distance. 

Flight AGL 
(m) 

GSD 
(cm/pix) 

𝐃𝐘(m) 𝐃𝐗(m) 𝐁𝐲(m) 𝐁𝐱(m) 𝐋𝐖(m) 𝐋𝐇(m) 

Mavic Pro 55 m 55 1,67 450 300 27 20 89,3 67 
Mavic Pro 110 m 110 3,4  450 300 54 40 178,6 134 
Phantom 4 Pro 55 

m 55 1,4 450 300 17 11 82,5 55 

Phantom 4 Pro 
110 m 110 2,83 450 300 33 22 165 110 

2.3. Super resolution 

As it was mentioned, super-resolution methods try to do image upscaling and upsizing without 
sacrificing the detail and visual appearance of the images. This super-resolution property, embedded 
in the classic digital photogrammetry process, should theoretically increase the accuracy of the 
location of ground-control points and the photogrammetric reconstruction itself. Based on recent 
super-resolution methods, review papers [73–76], and the latest available implementations [60,64,77–
85], the method based on the super-resolution generative adversarial network (SRGAN) [39] was 
chosen. The method belongs to the group of single-image super resolution (SISR). 

The SRGAN network uses high-resolution images and their low-resolution equivalents in the 
training process. The low-resolution images are obtained by using a Gaussian filter and a down-
sampling factor. In the training process, the generator network outputs high-resolution images. The 
generator network employs a deep-residual network (ResNet) [86]. The result is evaluated by the 
critic network with perceptual loss using high-level feature maps of the VGG (visual geometry group) 
network [87] and then optimized. VGG is a pretrained convolutional neural network model that is 
trained on images from the ImageNet database [88]. The VGG network is combined here with a 
discriminator that encourages solutions perceptually hard to distinguish from the high-resolution 
(reference) images. 

The aim of optimizing supervised SR algorithms is usually to minimize the mean squared error 
(MSE) between the recovered high-resolution image and the reference image. MSE minimization also 
maximizes the peak signal-to-noise ratio (PSNR), which is commonly used to evaluate and compare 
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super-resolution algorithms [87]. The use of MSE as a critique, especially for real-world images, may 
result in an insufficient result for the generator [39]. Therefore, the SRGAN method ignores MSE and 
replaces the MSE-based content loss with a loss calculated on feature maps of the VGG network [89]. 
Since small shifts in the contents of images leads to very poor MSE and PSNR results even when the 
contents are identical [90], the change to the VGG network makes it more invariant to changes in the 
pixel space. In this approach, the generator can learn to create solutions that are highly similar to real 
images, and that was the main reason of choosing the SRGAN method to enhance photogrammetric 
images. 

The photogrammetric images enhancement was realized using a TensorLayer framework [60]. 
Firstly, the pretrained VGG 19-layer model was downloaded, and high-resolution images for the 
generator network training were obtained from [91]. This dataset was designed for the New Trends 
in Image Restoration and Enhancement (NTIRE) challenge on image super resolution. Based on the 
implementation [60] and trained networks, the final image enhancement was conducted. 

UAV images taken at higher flight levels (110 m) were enhanced using a SRGAN method with 
a 2𝑥 scaling factor. The lower flight level (55 m) was used as a reference image for further modeling 
and model comparison. Additionally, original images were resized using bicubic interpolation with 
a scaling factor of 2𝑥 (the output pixel value is a weighted average of pixels in the nearest 4-by-4 
neighborhood). The assessment of image qualities and the evaluation of the SRGAN method in 
comparison with the bipolar interpolation was conducted on the basis of three different image quality 
metrics (IQM): blind referenceless image spatial quality evaluator (BRISQUE) [92], natural image 
quality evaluator (NIQE) [93], and perception-based image quality evaluator (PIQE) [94]. Chosen no-
reference image quality scores generally return a non-negative scalar.  

The BRISQUE score is in the range from 0 to 100. Lower values of scores reflect better perceptual 
qualities of images. The NIQE model is trained on a database of pristine images and can measure the 
quality of images with arbitrary distortion. NIQE is opinion-unaware and does not use subjective 
quality scores. The tradeoff is that the NIQE score of an image might not correlate as well as the 
BRISQUE score with human perceptions of quality. Lower values of scores reflect better perceptual 
qualities of images with respect to the input model. The PIQE score is the no-reference image quality 
score, and it is inversely correlated to the perceptual quality of an image. A low score value indicates 
high perceptual quality, and high-score values indicate low perceptual quality. The image scores are 
presented in Table 2. 

Table 2. Image quality metrics (IQM). BRISQUE: blind referenceless image spatial quality evaluator, 
NIQE: natural image quality evaluator, and PIQE: perception-based image quality evaluator. 

Image BRISQUE Diff NIQE PIQE PIQE Scale 
Mavic Pro—original 25,6103  2,0092 21,5645 Good 

Mavic Pro—super resolution 38,3286 -12,72% 2,3865 22,3731 Good 
Mavic Pro—bicubic 43,2879 -17,68% 3,6959 57,0822 Poor 
Phantom 4—original 24,8537  3,6971 15,0224 Excellent 

Phantom 4—super resolution 34,8079 -9,95% 3,5549 29,6032 Good 
Phantom 4—bicubic 47,0685 -22,21% 5,437 66,4054 Poor 

The PIQE scale of the image is based on its PIQE score given in Table 3. The quality scale and 
respective score range are assigned through experimental analysis on the dataset in the database [95]. 

Table 3. PIQE scale. 

Quality Scale Score Range 
Excellent 0-20 

Good 21-35 
Fair 36-50 
Poor 51-80 
Bad 81-100 
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2.4. Georeferencing accuracy 

Ground-control points (GCPs) can be defined as a feature with known real-world coordinates 
that can be clearly identified in an image. These points used during the photogrammetric process are 
required to achieve results of the highest quality, both in terms of the geometrical precision and 
georeferencing accuracy; therefore, it is very important to correctly locate and point them out during 
the photo-processing process. 

Figure 3 and Figure 4 present a visual evaluation of two different types of GCPs marked in the 
area. Typically, GCPs are to be precisely identified at the resolution of the raw image and marked in 
the processing software. GCPs can be marked in the terrain, as in this case, with a white spray (GCPs 
no. 1-4) and some kind of pattern, e.g., a chessboard pattern (GCP no. 5). 

 

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 3. Images of ground-control points from the Mavic Pro: a) GCP-2 at 55m, b) GCP-2 at 110m, 
and c) GCP-2 at SR and from the Phantom 4 Pro: d) GCP-2 at 55m, e) GCP-2 at 110m, and f) GCP-2 at 
SR. SR: super resolution. 

 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 4. Images of ground-control points from the Mavic Pro: a) GCP-5 at 55m, b) GCP-5 at 110m, 
and c) GCP-5 at SR and from the Phantom 4 Pro: d) GCP-5 at 55m, e) GCP-5 at 110m, and f) GCP-5 at 
SR. 

The GCPs position was measured using a GNSS RTK (real-time kinematic) geodetic receiver 
(Trimble R8 by Trimble Inc., Sunnyvale, California, USA) with the maximum available precision for 
this system 8 mm at the horizontal and 15-mm vertical axes. After initial photo alignment, GCPs were 
marked in the software, and then camera alignment optimization was performed. Figure 5 presents 
GCP locations and error estimates after camera alignment optimization. 

 

(a) (b) 

(c) (d)  
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(e) (f) 

Figure 5. GCP locations and error estimates for the Mavic Pro: a) at 55m, b) at 110m, and c) SR and 
for the Phantom 4 Pro: d) at 55m, e) at 110m, and f) SR. Z error is represented by the ellipse color. X,Y 
errors are represented by the ellipse shape. 

Table 4 and Table 5 present detailed values of GCP error estimates and calculated percentage 
changes between error values calculated for the traditional photogrammetric process with relation to 
values calculated for the enhanced photogrammetric process. The percentage change is calculated in 
accordance with following formula: 𝐷𝐼𝐹𝐹ௌோ௧௢ாௌ் ൌ 100𝐸ୗୖ െ 𝐸்|𝐸்|  (1) 

where 𝐸் —calculated error value for the traditional process and 𝐸ௌோ represents the calculated error 
value for the enhanced process. 

Table 4. GCP locations, error estimates, and percentage difference calculations for the Mavic Pro. 

GCP 55 m 110 m SR SR to 55 m SR to 110 m 
X error (mm) 26,3232 18,6667 24,0629 -9% 29% 
Y error (mm) 61,8786 35,9062 43,0071 -30% 20% 
Z error (mm) 1,0370 0,6880 0,65627 -37% -5% 

XY error (mm) 67,2449 40,4685 49,2812 -27% 22% 
Total error (mm) 67,2529 40,4744 49,2856 -27% 22% 

Table 5. GCP locations, error estimates, and percentage difference calculations for the Phantom 4 
Pro. 

 55 m 110 m SR SR to 55 m SR to 110 m 
X error (mm) 1,40237 4,13 7,6927 449% 86% 
Y error (mm) 2,03867 2,0452 17,8583 776% 773% 
Z error (mm) 0,08618 1,1428 0,9549 1008% -16% 

XY error (mm) 2,47444 4,6092 19,4447 686% 322% 
Total error (mm) 2,2475 4,7488 19,4682 766% 310% 

3. Results 

The images collected at 110 meters were enhanced using the described super-resolution 
algorithm. As a result, new double-sized images were processed (Table 6 ). The autocalibration 
algorithm used in the processing software used an enhanced image resolution and sensor size (in 
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accordance with the provided camera model) to calculate the pixel size. Double-sized images resulted 
in double-reduced calculated pixel sizes for both UAVs. 

Table 6. The camera digital sensor parameters calculated in processing software from the super-
resolution (SR) images. 

 Camera Model Resolution Focal Length Pixel Size 
Mavic Pro SR FC220 (4.73mm) 8000 x 6000  4.73 mm 0.787 x 0.787 μm 

Phantom 4 Pro SR FC6310 (8.8mm) 10944 x 7296  8.8 mm 1.21 x 1.21 μm 
 
The processing report summary and calculated percentage differences for all cases for the photo 

alignment process are presented in Table 7 And Table 8. 

Table 7. Image alignment results for the Mavic Pro. 

 55 m 110 m SR SR to 55 
m 

SR to 110 
m 

Number of images 464 170 170 -63% 0% 
Flying altitude (m) 54,3 112 115 112% 3% 

Ground resolution (cm/pix) 1,87 3,76 1,88 1% -50% 
Coverage area (km²) 0,184 0,261 0,244 33% -7% 

Camera stations  464 170 170 -63% 0% 
Tie points 423 069 161 698 196 262 -54% 21% 
Projections 1 278 009 531 674 522 934 -59% -2% 

Reprojection error (pix) 1,36 1,5 1,85 36% 23% 
Camera pixel size (μm) 1,57 1,57 0,787 -50% -50% 

Table 8. Image alignment results for the Phantom 4 Pro. 

 55 m 110 m SR SR to 55 
m 

SR to 110 
m 

Number of images 374 206 206 -45% 0% 
Flying altitude (m) 58,1 121 120 107% -1% 

Ground resolution (cm/pix) 1,49 3,12 1,56 5% -50% 
Coverage area (km²) 0,167 0,218 0,215 29% -1% 

Camera stations  374 206 206 -45% 0% 
Tie points 386 953 181 734 254 686 -34% 40% 
Projections 1 118 423 755 904 710 762 -36% -6% 

Reprojection error (pix) 1,15 1,3 1,1 -4% -15% 
Camera pixel size (μm) 2,41 2,41 1,21 -50% -50% 

 
The analysis of the results presented in Table 7 showed that the enhanced process resulted in a 

50% decrease in ground resolution (Mavic Pro—SR to 110 m), which is the expected result, as the 
pixel size of the image was reduced by 50%. The number of tie points increased by 21% for the Mavic 
Pro (Table 7) and 40% for the Phantom 4 (Table 8). The reprojection error in the case of the Mavic Pro 
has been increased by 23%, but in the case of the Phantom 4 Pro, the reprojection error has been 
decreased by 15%. A reprojection error is the distance between a point detected in an image and a 
corresponding world point projected into the same image given in pixels. This error depends on the 
quality of the camera calibration, as well as on the quality of the detected tie points on the images. In 
the context of images taken by the Phantom 4 Pro camera, it can be assumed that its overall initial 
original image quality is better than the Mavic Pro’s images (Table 2 ) (excellent on the PIQE scale). 
The number of tie points detected on the Phantom 4 Pro super resolution is 19% percent higher than 
that detected on the Mavic Pro’s super-resolution images; therefore, super-resolution enhancement 
provides a reprojection error reduction for the Phantom 4 Pro. The SR algorithm increases the number 
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of tie points on the processed images for both UAVs at 21% and 40%, respectively. The increased 
number of tie points in extreme cases like forest-mapping presented in [96] may result in an 
increasement in the number of tie points over the minimum number required to carry out the 
modeling process successfully. 

The processing report summary and calculated percentage differences for all cases for the final 
photogrammetric products are presented in Table 9.  and Table 10.  

Table 9. Photogrammetric products data summary for the Mavic Pro. 

 55 m 110 m SR 
SR to 55 

m 
SR to 110 

m 
Dense Cloud (points) 53 224 184 18 586 628 81 307 688 53% 337% 

3D model (faces)  10 534 892 3 668 167 6 163 657 53% 341% 
DEM x size (pix) 13259 6753 13243 0% 96% 
DEM y size (pix)  10072 5206 10829 8% 108% 

DEM resolution (cm/pix) 6,73 13,7 6,83 1% -50% 
Orthophoto x size (pix) 36684 20500 40956 12% 100% 
Orthophoto y size (pix)  29450 16785 33753 15% 101% 

Orthophoto resolution (cm/pix)  1,68 3,42 1,71 2% -50% 

Table 10. Photogrammetric products data summary for the Phantom 4 Pro. 

 55 m 110 m SR 
SR to 55 

m 
SR to 110 

m 

Dense Cloud (points) 
78 393 

616 
24 147 

651 
101 512 

148 29% 320% 

3D model (faces)  15 559 
357 

4 773 512 20 169 847 30% 323% 

DEM x size (pix) 13891 7601 12058 -13% 59% 
DEM y size (pix)  11924 7003 10887 -9% 55% 

DEM resolution (cm/pix) 5,39 11,3 5,67 5% -50% 
Orthophoto x size (pix) 44773 23311 45853 2% 97% 
Orthophoto y size (pix)  34708 19613 39232 13% 100% 
Orthophoto resolution 

(cm/pix)  
1,35 2,83 1,42 5% -50% 

 
The SR significantly increased the number of points in the point clouds (Table 9.  and Table 10). 

The number is even higher than in the referenced model. The number of points in the dense point 
clouds for both cases was increased up to 337 % (Mavic Pro—SR to 110m). The visual examination of 
the dense point clouds for the same example object is presented in Figure 6. This significant 
improvement resulted in further modeling quality. It can be expected that DEM and 3D models will 
be generated with higher resolution and with higher levels of details.  
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(a) (b) 

Figure 6. Point-cloud details visual comparison (cars in a parking place) for a) Mavic Pro 100 m and 
b) Mavic Pro SR. 

Figure 7 presents the results of point cloud comparations. Point clouds generated from the 55-m 
images were compared to point clouds generated from the SR images using a cloud-to-cloud (C2C) 
comparison technique [97]. Based on the C2C distance visualization and histograms, we can prove 
that the SR point clouds are similar to the referenced one, and that super-resolution enhancement can 
be applied to the traditional photogrammetric software with no additional modification required. 
The differences presented on this comparison are visible, particularly in the areas where lower 
altitude products (referenced) suffered from the modeling problem or reality was modeled missing 
some objects (trees or bushes). Some objects, like trees or bushes, were modeled on the 110-m images, 
while the 55-m images, theoretically with smaller GSD, were not reconstructed at all (Figure 8 ). This 
situation appears on both cases, for images taken by the Mavic Pro and Phantom 4 Pro. 

 

(a) (b) 

(c) (d) 
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Figure 7. Point-to-point cloud comparison of the Mavic Pro: a) scalar field 55 m to SR and b) histogram 
55 m to SR and Phantom 4 Pro: c) scalar field 55 m to SR and d) histogram 55 m to SR [97]. C2C: cloud-
to-cloud. 

 
(a) (b) 

 
(c) 

 
(d) (e) 

Figure 8. Bushes problem a) point cloud from 55 m, b) point cloud from 110 m, c) C2C comparison 
(55 m to SR), d) matches between images (55 m), and e) point cloud and respective image overlaid (55 
m). 

A more detailed analysis of the problem reveals that, in the area where bushes and trees are 
present, the algorithm does not find any tie points. That can result from many aspects, most of all, 
small but noticeable dynamics of the object (bushes and trees moved in the wind). Particularly 
noticeable from the low altitude flights are the small dimensions of the object elements (branches), 
multiple times smaller than the GSD. During the flight at a higher altitude, the size of the GSD allows 
for some generalization of the object, especially with such small elements as branches and tiny leaves, 
and also, the dynamics of the object are not so noticeable. 
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As far as the orthophotomap and DEM are concerned, a close-up of the parts of the products are 
shown in Figure 9 The presented part of the products was selected deliberately. The image presents 
buildings that exceed the average ground level. The flight altitude was determined relative to the 
mean terrain level. In the pictures presented in Figure 9, the artifact that was formed on one of the 
structures appears. There were a series of such artifacts in the entire project, and they occurred at the 
edges of the higher structures. 

 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 9. Results for the Mavic Pro orthophotomap at a) 55 m, b) 110 m, c) SR and DEM at d) 55m, e) 
110 m, and f) SR. 

The artefacts presented above are revealed on the products created as a result of processing the 
images from flight at the level of 55 m. They do not occur on the products created from the 110-m 
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altitude flight, and the same fragments are much better reproduced on the products resulting from 
the images processed by the super-resolution algorithms. The analysis has found that the resulting 
artifacts are the result of too-low overlap, which was created as a result of low UAV flight (55 m), but 
only for the higher structures exceeding the average ground level. A building fragment visible on 
Figure 9a at a 55-m flight height was imaged only on four photographs (Figure 10a), while the points 
on the ground surface were visualized on more than six photographs (Figure 10b).  

 

(a) (b) 
Figure 10. Camera location and image overlap for the Mavic Pro at a) 55 m and b) SR. 

The situation described above proves that, in some circumstances, it might not be practical to 
reduce the flight level to achieve the desired GSD. Naturally, in a comparable scenario, it is possible 
to increase coverage, which will eliminate similar errors, but it will extend the flight time and reduce 
the area that will be covered during one flight. The orthophotomap and DEM, which are the result of 
super-resolution algorithms, do not have similar artifacts, and the GSD is comparable to a flight 
conducted at an altitude twice that. 

4. Conclusions 

This study presents the results of increasing the resolution of photogrammetric aerial images, as 
well as the effect of super-resolution algorithm operations, on the resulting product. As the study has 
shown, there are photogrammetric products that are created as a result of the algorithmic operation 
that show a very similar quality to the reference products and, in some cases, even improve their 
quality. Super-resolution enhancement can be applied to the traditional photogrammetric software, 
with no additional software modification required. 

The typical procedure of photogrammetry image-processing can be extended by the application 
of super-resolution algorithms in cases where UAV flight altitude reduction is not feasible. Therefore, 
this provides the capability to preserve the desired quality of the processing. As has been calculated, 
the ground resolution in cm/pixel can remain unaffected for images acquired at double-height if 
super-resolution algorithms are applied. 

Super-resolution algorithms in the photogrammetric process significantly increased the number 
of points in the point cloud. The number of points has been increased by 337% as compared to the 
point clouds generated from images not super-resolutioned, resulting in a significant increase in 
output quality. These algorithms also do not affect the process itself or the standard functionality of 
the image-processing software. These applications correctly solve tasks and model objects from 
photos that have been treated with the super-resolution technique.  

The number of tie-points was increased (21% for the Mavic Pro and 40% for the Phantom 4 Pro). 
In the extreme cases, this feature may result in an increase in the number of tie-points over the 
minimum number required to carry out the modeling process successfully. 

The precision of the position of ground-control points was reduced. This reduction is the higher 
the better for the original quality of the UAV images. In the case of the Phantom 4 Pro, this reduction 
was 310%; however, if this result is reported in the total error in millimeters, it drops from 4,7 mm to 
19,46 mm. 
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The study also observes that, for the product development obtained from the images of a lower 
altitude, in addition to the obvious reduced GSD, there may be some issues in the processing, such 
as artefacts, deficiencies in the structure, and deficiencies in some reality elements. The use of super-
resolution algorithms and flight at a slightly higher altitude resulted in a remarkable elimination of 
these shortcomings, and, as a result, the resulting product was complete, without spaces or artefacts. 

To summarize, it can be considered that super-resolution methods in modern photogrammetry 
and remote sensing will be applied with increasing frequency. Their potential enables their 
implementation on the basis of already known photogrammetry software and well-known workflow. 
Photogrammetric products can be created, as shown in the paper, based on low-cost cameras installed 
on common UAVs, and at the same time, the geometrical and interpretation quality of the work can 
be improved by super-resolution algorithms. 
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