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Abstract 

In this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes 

(SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated 

considering the effects of surface energy and surface residual stresses. The nanotubes are 

embedded in the elastic substrate of the Winkler type and are also exposed to low and high-

temperature environments. A new refined beam theory namely, one-variable shear deformation 

beam theory has been combined with Hamilton’s principle to develop the governing equations of 

the proposed model. The size-dependent behavior of the SWCNTs is addressed by Eringen’s 

nonlocal elasticity theory whereas the model is investigated analytically by employing Navier’s 

technique. Also, a parametric study has been conducted to analyze the effects of various scaling 

parameters such as small scale parameter, temperature change, thermal environments, Winkler 

modulus, and length of the beam.  The results are also validated with previously published articles 

in special cases witnessing robust agreement. 

Keywords 

Vibration; SWCNT; Surface Energy; Surface Residual Stresses; Elastic Foundation; Thermal 

Environment. 

1. Introduction 

Carbon nanotubes (CNTs), the masterpiece of engineering materials, are of interest for mechanical, 

chemical, and physical researchers around the world. One of the most significant parameters which 

define the geometrical structure of these nanotubes can be the chiral angle. The angle can classify 

the CNTs into three geometrical shapes. In the first case, the angle equals to zero, and so the CNT 

obeys a zigzag plan in the peripheral direction of the tube. For this reason, this nanotube is so-

called zigzag CNTs. For these tubes, some of the carbon-carbon bonds are parallel to the horizontal 

axis. If the chiral angle equals 30 degrees, the CNT follows an armchair plan in which the CNT is 

well-known as armchair CNT. For these tubes, some of the carbon-carbon bonds are vertical to 

the horizontal axis. In another case, the nanotube is called chiral CNT. These geometrical shapes 

of the nanotubes can be prepared during its producing. Each shape has its own properties and 

characteristics. Various shapes of CNTs will be of great importance when manufactured on a large 

scale with controlled properties (Zhang and Li 2009). 
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The robustness and flexibility of single-walled carbon nanotubes (SWCNTs) give them the 

potential to be used in the control of other nanometer structures. So they will play an essential role 

in nanotechnology engineering. Therefore, there have been comprehensive studies on the 

prediction of their mechanical behavior. Farshi, Assadi, and Alinia-Ziazi (2010) examined the 

effect of surface for a nanotube exposed to vibrational situations. The nanotube was assumed in 

the framework of the Timoshenko beam model. They showed that the impact of surface markedly 

deviates the results of the natural frequency, and such an effect can be significant to embed in the 

analysis of nanostructures. Murmu and Pradhan (2010) took effects of the thermal environment on 

the buckling of nanotubes. The nanotube was connected to a polymer matrix, and the nanoscale 

behavior was simulated by Eringen's nonlocal theory. Lee and Chang (2010) evaluated the effects 

of the surface on the vibrational behavior of a carbon nanotube based on the kinematic 

displacement field of the Timoshenko model. Ghavanloo and Fazelzadeh (2012) based on the 

chirality effect considered free vibrations of SWCNT assuming an anisotropic shell to model the 

nanotube. The complex method and the Flügge shell theory as analytical methods were utilized. 

Zhen (2017) examined nonlocal and surface effects on the wave propagation of the nanotubes by 

considering the Euler-Bernoulli displacement field and internal viscosity impacts into the model. 

Jiang, Wang, and Zhang (2017) proposed a refined Fourier series in order to examine the natural 

frequency of Timoshenko CNTs. The beam was bridged on a silicon channel. The results were 

extracted by using a molecular dynamics simulation method. Hussain et al. (2019) studied the 

vibration characteristics of armchair and zigzag type of single-walled carbon nanotubes for 

clamped-clamped and clamped-free boundary conditions by employing Fourier method and 

nonlocal behavior of the nanotube was addressed by the Eringen’s nonlocal theory. In the 

pioneering work of Semmah et al. (2019), buckling behavior of a zigzag type of single-walled 

boron nitride nanotube was analyzed analytically by the help of nonlocal first-order shear 

deformation theory and the nanotube was placed in Winkler elastic foundation which was 

subjected to the thermal environment. Abualnour et al. (2019), by exploiting a new simple four-

variable trigonometric plate theory, investigated the thermo-mechanical bending behavior of 

antisymmetric cross-ply laminates.  

Karami, Janghorban and Tounsi (2019a) studied wave characteristics of nanosize  

plates  composed of anisotropic material using three-dimensional bi-Helmholtz nonlocal strain 

gradient theory. In the pioneering work of Karami, Janghorban and Tounsi (2019b), nonlocal strain 
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gradient model was combined with refined plate model to investigate the wave propagation of FG 

anisotropic nanoplate. Some other important investigation related to functionally graded nanoplate 

can be found in Karami, Janghorban and Tounsi (2019c) and Karami et al. (2019). Bensattalah et 

al. (2019) studied buckling characteristics of triple-walled carbon nanotubes embedded in an 

elastic medium subjected to axial compression. Timoshenko beam theory in conjunction with 

nonlocal elasticity theory was used to model the governing equation. Bensattalah, Zidour, and 

Daouadji (2018) investigated free and forced vibration of carbon nanotubes which was placed on 

an elastic foundation and exposed to the thermal environment. The carbon nanotubes were 

modeled with nonlocal Euler-Bernoulli beam theory and subjected to dynamical loads. Adim et al. 

(2016) analyzed the dynamical characteristics of laminated composite plates with the help of an 

efficient refined shear deformation theory.  As per this beam theory, the transverse displacements 

comprise bending and shear components and the bending components do not add to shear forces 

whereas the shear components do not contribute to bending moments. Adim and Daouadji (2016) 

implemented higher-order and normal shear deformation theories to study the effect of thickness 

of plates made up of functionally graded material.  

Belbachir et al. (2019) studied bending response of anti-symmetric cross-ply laminated plates 

exposing to nonlinear themo-mechanical loading with the help of refined plate theory. Zarga et al. 

(2019) investigated the bending response of a functionally graded sandwich plate, implementing a 

quasi-3D shear deformation theory subjected to thermos-mechanical loads. In another work of 

Mahmoudi et al. (2019), a refined quasi-3D shear deformation theory is used to study thermos-

mechanical behavior of a sandwich plate made of functionally graded materials embedded in the 

elastic foundation. Tlidji et al. (2019) analyzed the free vibration of functionally graded microbeam 

using a quasi-3D beam theory and by assuming different material distribution function. Some 

important works related to various nanostructures can be seen in Boutaleb et al. (2019), Alimirzaei 

et al. (2019), Berghouti et al. (2019) and Medani et al. (2019).  The studies on the mechanical 

analysis of carbon nanotubes are not limited to the mentioned ones and there can be found other 

important works ( Larbi et al. 2013; Malikan 2019; Arefi and Arani 2018; Jena and Chakraverty 

2019; Jena, Chakraverty, and Tornabene 2019a, 2019b, 2019c; Jena, Chakraverty, and Jena 2019; 

Jena, Chakraverty, and Malikan 2019; Jena et al. 2019; Dastjerdi and Tadi Beni 2019; Fattahi, 

Sahmani, and Ahmed 2019; Bedia et al. 2019; Draoui et al. 2019; Malikan, Krasheninnikov, and 
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Eremeyev 2020; Malikan and Eremeyev 2020; Jena, Chakraverty, and Malikan 2020a; Jena, 

Chakraverty, and Malikan 2020b ). 

As stated in the aforementioned studies and research on the statics and dynamics of the carbon 

nanotubes, this research seeks to investigate the vibration characteristics of the SWCNTs taking 

into account three different frameworks, that is, chiral, armchair and zigzag carbon nanotubes 

subjected to a thermal environment to elucidate the difference between their mechanical response. 

In addition, the surface effects as a major impact among the nanostructures are here taken into 

investigation. On the other hand, the nanotubes are embedded in a polymer substrate, namely the 

Winkler foundation. To predict the motion of the model’s nodes, the field of displacements along 

two axes is utilized as a new refined beam theory, namely, one variable shear deformation beam 

theory. After formulation, the required vibration equations have been obtained to analyze the pivot-

pivot nanotube with numerical results. 

2. Proposed model 

In this model, a SWCNT having a length L , outer diameter od , inner diameter id , and wall 

thickness t  are considered. The mechanical properties of the SWCNT are ,E , and   which 

denote Young’s modulus, mass density, and Poisson’s ratio, respectively. iE , and it  denote 

Young’s modulus and thickness of the inner surface layer whereas oE , and ot  designate Young’s 

modulus and thickness of the outer surface layer.  

In order to study the effects of both the layers, we have assumed that ooii tEtE  , which is equal 

to 0tEs  as a material property of the SWCNT. Surface effects which include surface energy and 

surface residual stresses, influence the dynamical behaviors of nanostructures considerably. 

Moreover, the surface energy aids in the increase of the flexural rigidity whereas the surface 

residual stresses act as distributed transverse load. The flexural rigidity or bending rigidity due to 

surface energy may be stated as (Farshi, Assadi, and Alinia-Ziazi 2010, Zhen 2017, Jena et al. 

2019b) 

   ,
8

33

0 ios

se
ddtEEI 


                                                                                                                     (1) 
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Now, the effective flexural rigidity of the nanotube is obtained as (Farshi, Assadi, and Alinia-Ziazi 

2010, Zhen 2017, Jena et al. 2019b) 

         33

0
8

ios

seeff
ddtEEIEIEIEI 


                                                                            (2) 

The distributed transverse load due to surface residual stresses as per the Laplace-Young equation 

is presented as (Farshi, Assadi, and Alinia-Ziazi 2010, Zhen 2017, Jena et al. 2019b) 

 
2

2

2)(
x

w
ddxq io




                                                                                                                       (3) 

Here  is surface tension due to residual stresses. 

The displacement fields, as per new refined beam theory can be expressed as (Malikan, Nguyen, 

and Tornabene 2018a, Malikan, Dimitri, and Tornabene 2019, Jena et al. 2019b, Jena, Chakraverty, 

and Malikan 2020) 
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In which  txu ,  and ),( txw are the displacements of the neutral axis in axial and transverse 

directions, respectively. 
AG

EI
B  , where E  is Young’s modulus, 

A

dAzI 2
 is the moment of 

area, A  is the area of cross-section, and G  is the shear modulus. Considering the Von Kármán 

hypothesis, the strain displacement relations are given as   
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Here Tx  is the thermal axial strain along the x-axis and x  is the coefficient of thermal 

expansion. 

The virtual strain energy  U  may be written as  
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where 
A

xxxx dAzM  , 
A

xxxx dAN  , and 
A

xzxz dAQ   are the local stress resultants of the 

beam. 

The  virtual kinetic energy  T  of the nanotube can be written as 
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In which AI 0  and II 2 , are called mass moments of inertia. 

The virtual work done  W  by external loads is defined as  
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where wk  is the Winkler modulus, x  is the coefficient of thermal expansion, T  is the change 

in temperature, and    is the Poisson’s ratio of the nanotube. 
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Substituting Eqs. (6-8) in Hamilton’s principle    ,
0

dtWUT

t

    and neglecting the in-

plane force resultant  xxN  (linear free vibration) we obtain the equations of motion as 
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The local stress resultants, using Hookean stress-strain elasticity relation can be rewritten as  
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From the Eringen's nonlocal elasticity theory, we have (Malikan 2019) 
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In which klij  , and ijklC  are stress tensor, strain tensor and elastic modulus constant, respectively.  

From Eq. (10) and Eq. (11), the nonlocal stress resultants may be expressed as  
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Implementing Eq. (12) in Eq. (9), the governing equation of motion is expressed as 
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Considering the surface energy, i.e. Eq. (2) in the Eq. (13), we obtain the governing equation of 

motion as    
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In which 
 

AG

EI
B

eff

*  and      seeff
EIEIEI  , where  se

EI   is the flexural rigidity due to 

surface energy. 

 

3. Analytical Method 

The Navier’s method has been used to solve the governing equation analytically for Simply 

Supported boundary condition. According to  Navier’s approach, the transverse displacement  w

may be expressed as (Malikan, Nguyen, and Tornabene 2018, Malikan, Dimitri, and Tornabene 

2019, Jena et al. 2019b, Jena, Chakraverty, and Malikan 2020) 

  ti

n

n
nex

L

n
Wtxw

















1

sin,                                                                                                       (15) 

In which ,nW and n  are the displacement and frequency of the beam.  

Plugging Eq. (15) in Eq. (14), the frequency parameter  2  may be stated as 
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         (16)           

4. Results and discussion 

Three different types of SWCNTs have been considered in this study which include zigzag, chiral 

and armchair nanotubes. The diameters of the nanotubes with chirality indices  mn,  are given by 

Zhen (2017)  mnmn
a

d  223


, where ''a  is the internal characteristics length or C-C bond 

length which is equal to nm142.0 . In this regard, we have considered zigzag nanotube with 

chirality indices  0,21  and the corresponding diameter is nmd 64.1 , the chiral nanotube is 

having chirality indices  9,18  with diameter nmd 86.1  whereas the chirality indices of the 

armchair nanotube are assumed as  16,16  with diameter nmd 17.2 . The natural frequencies 

   and critical buckling loads  crP  for the above-mentioned SWCNTs have calculated by 

implementing Navier’s methods for Hinged-Hinged (H-H) boundary condition. Further, for the 

parametric study, we have been considered (Zhen 2017) Young’s modulus TPaE 1 , the wall 

thickness of the nanotube nmt 34.0 , the mass density 3/1370 mKg , surface tension due to 

residual stresses mN /31.0 , Poisson’s ratio 19.0  and mNtEs /3.350    

4.1 Validation 

For validation purpose of the present model, surface effects which includes surface energy and 

surface tension due to residual stresses, thermal environment, elastic foundation, and *B  are 

neglected and the results for fundamental frequencies of Pined-Pined (P-P) boundary condition are 

compared with Reddy (2007), Jena and Chakraverty (2018) which is demonstrated in Table 1, 

witnessing robust agreement. 
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Table 1 Validation of non-dimensional frequency parameters with Reddy (2007), Jena and 

Chakraverty (2018). 

 2

0ae  0 1 2 3 4 

Present 9.8696 9.4159 9.0195 8.6693 8.3569 

Reddy (2007) 9.8696 9.4159 9.0195 8.6693 8.3569 

Jena and Chakraverty (2018) 9.8696 9.4159 9.0195 8.6693 8.3569 

4.2 Influence of small scale parameter 

This subsection is devoted to studying the impacts of small scale parameter  ae0  on frequency 

parameters 
  















effnn
EI

A
L


 2 which are presented in Figs. 1-2. For this purpose, GPakw 1 , 

nmL 10 , and KT 100  are taken into consideration along with other parameters mentioned 

in results and discussion subsection. First and second mode frequency parameters of armchair, 

chiral, and zigzag CNTs are taken into study considering both the low and high-temperature 

environments. It may also be noted that for a low or room temperature environment, the coefficient 

of thermal expansion 16106.1  Kx  (Murmu and Pradhan 2010) and for the high-

temperature environment, the coefficient of thermal expansion is considered as 16101.1  Kx  

(Murmu and Pradhan 2010). Fig. 1 depicts the variation of ae0
 , which is the ratio of frequency 

parameters using nonlocal theory and frequency parameters with local model, with small scale 

parameter ae0  whereas Fig. 2 represents the variations of first two frequency parameters with ae0  

for different types of CNTs. It may be also noted that the frequency parameters for all types of 

CNTs for all modes are decreasing with the increase of small scale parameter. Another interesting 

observation is that fundamental frequency parameters for both the thermal environment follow the 

order as      
armchair1chiral1zigzag1     whereas for second mode frequency, 

     
Zigzag1chiral1armchair1   . 
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Fig. 1. ae0
  Vs. ae0  (Low-Temperature Environment) 

 

Fig. 2.   Vs. ae0  (High-Temperature Environment) 
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4.3 Influence of change in temperature and thermal environment 

The thermal environment and temperature changes  T  influence the frequency parameters of 

CNTs significantly. In this regard, a parametric study has been carried out to investigate the 

impacts of temperature change and thermal environment on the first two-mode frequency 

parameters of armchair, chiral, and zigzag CNTs which are illustrated in Table 2 and Figs. 3-4. 

For this study, GPakw 1 , nmL 10 , and nmae 10   have been taken along whereas  T  is 

varying from 0 to 200 K with an increment of 50 K. Fig. 3 represents the variation of T , which 

is defined as the ratio of frequency parameters with temperature change and frequency parameters 

without any temperature changes, with T for low-temperature environment whereas Fig. 4 

depicts the variation for the high-temperature environment. From these results, it can be concluded 

that frequency parameters for all modes and all types of CNTs increase with the rise of T for 

low-temperature environments and this trend is just opposite in the case of high-temperature 

environments. Another observation is that CNTs possess higher frequency parameters at room 

temperature than the high temperature environment. 

Table 2 Non-dimensional frequency parameters 
 effnn
EI

A
L


 2 with GPakw 1 , nmL 10

, and nmae 10   

(a) Low-temperature Environment  16106.1  Kx  

T  Zigzag Chiral Armchair 

1  2  1  2  1  2  

0 11.5133 43.6137 11.1902 49.9225 11.1157 84.1215 

50 11.5249 43.6367 11.1997 49.9451 11.1232 84.1564 

100 11.5366 43.6596 11.2092 49.9677 11.1306 84.1912 

150 11.5482 43.6826 11.2187 49.9903 11.1381 84.2261 

200 11.5598 43.7056 11.2282 50.0128 11.1456 84.2609 
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(b) High-temperature Environment  16101.1  Kx  

ae0  Zigzag Chiral Armchair 

1  2  1  2  1  2  

0 11.5133 43.6137 11.1902 49.9225 11.1157 84.1215 

50 11.5052 43.5979 11.1836 49.9069 11.1106 84.0975 

100 11.4972 43.5821 11.1771 49.8914 11.1054 84.0735 

150 11.4892 43.5662 11.1705 49.8758 11.1003 84.0495 

200 11.4811 43.5504 11.1640 49.8603 11.0951 84.0255 

 

 

Fig. 3. T  Vs. T  (Low-Temperature Environment) 
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Fig. 4. T  Vs. T  (High-Temperature Environment) 

 

4.4 Influence of elastic substrate 

The influence of the Winkler modulus is investigated through this subsection which is illustrated 

in Table 3 and Figs. 5-6 with KT 100 , nmL 10 , and nmae 10  . Here the Winkler modulus 

 kw  is taken as 0 to 4 GPa. The study is carried out for the first two-mode frequency parameters 

of armchair, chiral, and zigzag nanotubes. Table 3 represents the variation of frequency parameters 

with Winkler modulus  kw , whereas Figs. 5-6 depict the variation of 
wk , which is defined as the 

ratio of frequency parameters with the elastic substrate and frequency parameters without an elastic 

substrate, with wk . Frequency parameters for both the modes increase with the increase in Winkler 

modulus in both the environments.  

Table 3 Frequency parameters 
 effnn
EI

A
L


 2 with KT 100 , nmL 10 , and nmae 10   

 

(a) Low-temperature Environment  16106.1  Kx  
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wk  Zigzag Chiral Armchair 

1  2  1  2  1  2  

0 10.1350 43.0054 10.2487 49.4184 10.5137 83.4880 

1 11.5366 43.6596 11.2092 49.9677 11.1306 84.1912 

2 12.7854 44.3043 12.0937 50.5110 11.7152 84.8887 

3 13.9226 44.9396 12.9177 51.0485 12.2719 85.5804 

4 14.9738 45.5661 13.6923 51.5804 12.8045 86.2666 

 

(b) High-temperature Environment  16101.1  Kx  

wk  Zigzag Chiral Armchair 

1  2  1  2  1  2  

0 10.0902 42.9266 10.2135 49.3413 10.4869 83.3692 

1 11.4972 43.5821 11.1771 49.8914 11.1054 84.0735 

2 12.7499 44.2278 12.0639 50.4355 11.6912 84.7719 

3 13.8901 44.8643 12.8899 50.9738 12.2491 85.4646 

4 14.9435 45.4918 13.6660 51.5065 12.7826 86.1517 

 

Fig. 5. 
wk  Vs. wk (Low-Temperature Environment) 
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Fig. 6. 
wk  Vs. wk (High-Temperature Environment) 

4.5 Influence of length of the CNTs 

Investigation on the impact of length is very crucial as frequency parameters are affected by the 

size of the nanotubes. In order to analyze the response of the length parameter, we have considered 

KT 100 , nmae 10   and GPakw 1 . Here the length of the nanotubes is assumed to vary from 

10 nm to 30 nm with an increase of 5 nm. The first two modes of all the nanotubes which include 

armchair, zigzag, and chiral are considered for investigation in both the low and high-temperature 

environments which are displayed in Figs. 9-10 as graphical results. It is noticed that with the 

increase of length parameters, the fundamental frequency for all the CNTs and in both the 

environment increases whereas a random behavior has been observed in the case of second mode 

frequency. 
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Fig. 7.   Vs. L (Low-Temperature Environment) 

 

Fig. 8.   Vs. L (High-Temperature Environment) 

5 Conclusion 

As this paper analyzes three geometric shapes of carbon nanotubes, and also as carbon nanotubes 

have been extensively studied in continuum models, this paper reveals that the study of all three 
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shapes is notable even in continuum conditions. In fact, most papers that considered carbon 

nanotubes by nonlocal continuum models used an averaged diameter to analyze the problem. The 

tendency to analyze all three shapes can be seen in molecular dynamic simulation only. In this 

regard, vibration characteristics of three different types of SWCNTs including armchair, chiral and 

zigzag have been explored, taking into account the impact of surface energy and surface residual 

stresses. The carbon nanotubes are also positioned in the elastic substrates of the Winkler type and 

subjected to both the low and high-temperature conditions. An analytical method, namely the 

Navier method, has been used to determine the analytical results for Pined-Pined (P-P) boundary 

conditions. Following are the main findings of the investigation;  

 The frequency parameters of Armchair, chiral, and zigzag nanotubes are decreasing with the 

increase of small scale parameter. The fundamental frequencies for both the low and high-

temperature environments follow the order as      
armchair1chiral1zigzag1     whereas for 

second mode frequency, the trend is changed as      
Zigzag1chiral1armchair1   . 

 The frequency parameters of first and second modes increase with the rise of T for low-

temperature environment and this trend is just opposite in case of high-temperature 

environment. Another observation is that CNTs possess higher frequency parameters at room 

or low temperature than the high-temperature environment. 

 Frequency parameters increase with the increase in Winkler modulus in both the environments 

for both the modes.  

 It is noticed that with the increase in length parameters, fundamental frequencies of all the 

CNTs increase in both the environments whereas a random behavior has been observed in the 

case of second mode frequency. 
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