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Abstract: The paper describes a novel approach in battery storage system modelling. Different
types of lithium-ion batteries exhibit differences in performance due to the battery anode and
cathode materials being the determining factors in the storage system performance. Because of this,
the influence of model parameters on the model accuracy can be different for different battery types.
These models are used in battery management system development for increasing the accuracy of
SoC and SoH estimation. The model proposed in this work is based on Tremblay model of the
lithium-ion battery. The novelty of the model lies in the approach used for parameter estimation as a
function of battery physical properties. To make the model perform more accurately, the diffusion
resistance dependency on the battery current and the Peukert effect were also included in the
model. The proposed battery model was validated using laboratory measurements with a LG JP 1.5
lithium-ion battery. Additionally, the proposed model incorporates the influence of the battery charge
and discharge current level on battery performance.

Keywords: lithium-ion batteries; battery modelling

1. Introduction

The development of modern distributed power systems is oriented toward environmental issues.
There is a global consensus to reduce, and even eliminate, fossil fuels as an energy source. The tendency
towards more energy-efficient components and the reduction of carbon emissions has set new standards
for system designers and manufacturers. One of the most significant challenges in such systems is
the dependency of energy generation on weather conditions. In order to meet modern standards
of power network reliability, distributed Energy Storage Systems (ESS) have to be incorporated into
the modern power distribution system. For electrical energy storage systems, the most commonly
used are Battery Energy Storage Systems (BESS) [1,2]. In recent years, the number of grid-connected
stationary BESS installations has rapidly increased. The capacity of a single stationary BESS ranges
from 20 kWh up to 1 MWh. Energy storage systems have become a subject of investigation and source
of challenges in smart grid design. For the evaluation of BESS in specific applications, accurate models
and appropriate simulation scenarios are required. These tools can be used for system analysis to reach
expected system performance. For large BESS, charging and discharging efficiency is one of the key
aspects [3]. One of the problems faced by the designers of BESS is how to control and optimise BESS in
grid applications. In addition, it is necessary to answer the question of whether and how other power
system components influence BESS performance.
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Modern BESS are mainly based on ambient temperature operating lithium-ion (Li-ion) charge
carrier cells. They use either liquid electrolyte, in which case they are commonly named Lithium-ion
Batteries (LiB), or polymer electrolyte, in which case they are dubbed Lithium-ion Polymer Batteries
(LiPB). For BESS purposes, the most common shape of LiB or LiPB cells is the pouch shape. This is
because regular electrode shapes are better for high capacity values and increase the maximum charge
and discharge cycle count of the battery [4]. Due to the high demand for LiB BESS systems, a lot of
research in this field is conducted by major manufacturers and tends to be confidential [5,6].

There are several types of LiB and LiPB cells. The most common types of batteries used in industry
are presented in Table 1. Figure 1 shows the cell voltage and energy density of different types of
lithium-ion cells presented in Table 1.

Table 1. Most common LiB cell technologies text near to the first time they are cited.

Cathode Material Short Name of Cathode Material Anode Material

LiCoO2 LCO Graphite
LiNiO2 LNO Graphite

LiNi0.8Co0.15Al0.05O2 NCA Graphite
LiNixMnyCo1–x–yO2 NMC Graphite

LiMn2O4 LMO Graphite
LiNi1/2Mn3/2O4 LNM Graphite

LiFePO4 LFP Li4Ti5O12

Energies 2020, 13, x FOR PEER REVIEW 2 of 15 

 

(LiPB). For BESS purposes, the most common shape of LiB or LiPB cells is the pouch shape. This is 
because regular electrode shapes are better for high capacity values and increase the maximum 
charge and discharge cycle count of the battery [4]. Due to the high demand for LiB BESS systems, a 
lot of research in this field is conducted by major manufacturers and tends to be confidential [5,6]. 

There are several types of LiB and LiPB cells. The most common types of batteries used in 
industry are presented in Table 1. Figure 1 shows the cell voltage and energy density of different 
types of lithium-ion cells presented in Table 1. 

 
Figure 1. Lithium-ion cells’ voltage and energy density [5]. 

Table 1. Most common LiB cell technologies text near to the first time they are cited. 

Cathode Material Short Name 
of Cathode Material  Anode Material 

LiCoO2 LCO Graphite 
LiNiO2 LNO Graphite 

LiNi0.8Co0.15Al0.05O2 NCA Graphite 
LiNixMnyCo1–x–yO2 NMC Graphite 

LiMn2O4 LMO Graphite 
LiNi1/2Mn3/2O4 LNM Graphite 

LiFePO4 LFP Li4Ti5O12 

LiBs are widespread energy storage systems used in tandem with distributed energy sources 
such as photovoltaic (PV) power plants and wind turbines. As with any other BESS, they are capable 
of transforming chemical energy into electric energy via the process called battery discharge. The 
opposite process of converting electrical energy into chemical energy is called battery charging. Both 
discharging and charging processes are possible through an electrochemical process. LiBs are 
complex non-linear electrochemical systems strongly dependent on thermodynamic laws, electrodes, 
chemical reactions and mass transport phenomena [4,5,7–9]. For the power system analysis, the LiB 
models can be divided into two categories: 

• Online models used to extract in real time the parameters that are not directly measurable, such 
as the State of Charge (SoC) or the State of Health (SoH) of the battery. These parameters are 
indirectly determined from measurement data and used in a Battery Management System (BMS); 

• Offline models used for exploratory simulations or system design [10]. 

Both offline and the online models can be described using a variety of approaches. There are 
four main types of battery models differing in complexity, typical accuracy and number of 
parameters used for their description [7,11]. The physical model uses a multi-physical approach in 

LCO
LNONCA

NMCLMO

LNM

LFP2

2.5

3

3.5

4

4.5

5

80 100 120 140 160 180

Ce
ll 

vo
lta

ge
 (V

)

Energy density (Wh/kg)

Figure 1. Lithium-ion cells’ voltage and energy density [5].

LiBs are widespread energy storage systems used in tandem with distributed energy sources such
as photovoltaic (PV) power plants and wind turbines. As with any other BESS, they are capable of
transforming chemical energy into electric energy via the process called battery discharge. The opposite
process of converting electrical energy into chemical energy is called battery charging. Both discharging
and charging processes are possible through an electrochemical process. LiBs are complex non-linear
electrochemical systems strongly dependent on thermodynamic laws, electrodes, chemical reactions
and mass transport phenomena [4,5,7–9]. For the power system analysis, the LiB models can be divided
into two categories:

• Online models used to extract in real time the parameters that are not directly measurable, such
as the State of Charge (SoC) or the State of Health (SoH) of the battery. These parameters are
indirectly determined from measurement data and used in a Battery Management System (BMS);

• Offline models used for exploratory simulations or system design [10].
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Both offline and the online models can be described using a variety of approaches. There are four
main types of battery models differing in complexity, typical accuracy and number of parameters used
for their description [7,11]. The physical model uses a multi-physical approach in the description of
the battery behaviour. It is based on principles of intercalation at the multidimensional scale and takes
into account all thermodynamic phenomena. Although the physical model offers very high accuracy,
it requires detailed information on the materials used in the battery. Physical models can be used
for battery design and performance validation purposes [4,5,7,11]. The second type of model is the
empirical model. This type of model is based on the terminal behaviour of the battery and is also
known as a black box model [9,11]. The third type of model is the abstract model. In this type of model,
the battery is described using parameters dependent on certain physical properties of the battery,
like, for example, the battery SoC. This model offers high accuracy with medium complexity [7,11].
The main disadvantage of this type of model is the requirement for parameter estimation by means of
Electrochemical Impedance Spectroscopy (EIS) in which expensive spectrometry instrumentation has
to be used. According to the literature [7], all described modelling methods can be mixed.

The most common methods of SoC estimation are look-up table methods, which can be divided
into the Open Circuit Voltage (OCV) method and/or the Coulomb Counting (C-C) method. The OCV
method is very accurate if the OCV is measured correctly in transient states. In this work, the general
approach of the C-C method was used. This method allows accurate calculation of the changes in the
battery SoC if the maximum battery capacity is well known. Thanks to this, it yields better estimations
of the electrical power that can be delivered by the battery. The weakness of this method is the need
to incorporate the influence of the Peukert effect on the battery maximum capacity in the model.
In addition, the initial SoC has to be well known and this may require the use of the OCV method
with an Extended Kalman Filter (EKF). The use of an EKF increases the accuracy of SoC estimation;
however, the error can still be as high as 2% [12]. An alternative to the abovementioned methods of
SoC estimation can be a data-driven estimation method. This method is based on battery performance
mapping using acquired data and such tools as the fuzzy controller, the neural network, the support
vector machine and a combination of these algorithms. The weakness of this method is the potential
error accumulation when the battery is operating in unforeseen states in the mapping process [6,13,14].
Because of this, the battery system model of the LiPB battery with LiNi0.5Mn1.5O4 electrodes proposed
in this paper uses a combination of OCV and C-C methods.

In this context, the aim of this paper was to propose a behavioural model of a lithium battery
for a stationary BESS. A review of the literature on battery technology in the area of modelling of
electrochemical cells was carried out. The model base of this research was proposed by [15,16] and
developed by [13]; however, according to [12] this model was not accurate enough. In order to enhance
the accuracy, the abstract level model should incorporate specific physical properties of the battery
and represent them through selected parameters. Open challenges also include increasing model
accuracy and the ability to process more complex battery simulations in a wide variety of domains and
industry applications. Because of this, the authors decided to develop a model incorporating such
physical phenomena as diffusion resistance (Rd) dependency on the battery current and the Peukert
effect. The key aspect of accurate system modelling is model parameter estimation. For this estimation,
the terminal behaviour of the battery was used instead of the EIS approach. The main contribution
of the model presented in this work is the approach to the estimation of parameters as functions of
battery physical properties. This approach has been validated by laboratory measurements in a LiPB
battery with LiNi0.5Mn1.5O4, commercialized as the LG JP 1.5 battery.

2. Model Development

As stated above, the developed model is based on the model proposed in [15,16]. In this model,
a semi-empirical approach was used. Two voltage equations for charge and discharge performance
of the battery were proposed. This model was further developed in [9,13,17] where parameter
scaling was used for multicell battery system modelling. In addition, battery ageing and internal
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temperature influence were incorporated into the model [18]. However, semi-empirical models
presented in [9,13,15–18] were designed for battery systems with cell electrodes in a two-phase system.
The Gibbs energy distribution is based on electric potential changes [5], and, therefore, the two-phase
system model will fit well for an LFP type cell. Tremblay’s model is not sufficiently accurate [12] for
systems with three or more phases. The proposed model has been verified using an LiNi0.5Mn1.5O4
cathode battery, which exhibits three phases in the Gibbs energy distribution.

2.1. Model Assumptions

The following simplifying assumptions have been made in the development of the proposed model:

• The open circuit voltage temperature-dependent hysteresis phenomena is not taken into
account [19].

• The ageing phenomena [17] are neglected.
• The self-discharge of the battery is neglected.
• Internal ohmic resistance (Ri) is assumed constant.
• Diffusion resistance (Rd) is only dependent on the battery current.

2.2. Battery Voltage Equation

The battery performance can be described with the lumped-parameter circuit model (T-D model)
presented in Figure 2.
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The main voltage equation is a function dependent on the SoC [14,15,19]:

vbatt(SoC, ibatt) = OCV (SoC) − vi − vd(ibatt), (1)

where vbatt is the battery terminal voltage, OCV is the open circuit voltage, vi is the ohmic voltage drop
and vd is the diffusion voltage drop.

The OCV, which is the representation of battery terminal voltage measured in a no-load relaxed
battery, is a function of SoC:

OCV(SoC) = E0 + Ae−BQ(1−SoC)
−KQ

( 1
SoC
− 1

)
, (2)

where E0 is battery constant specific voltage, A is exponential zone voltage, B is exponential zone
capacity, K is the polarization constant and Q is the maximum battery charge.

The diffusion resistance represents the battery behaviour in dynamic states [20,21]:

vd = Rd(SoC, ibatt) · i∗, (3)

where Rd is the diffusion resistance, ibatt is the battery current and i* is the filtered low-frequency battery
current. The internal ohmic resistance Ri corresponds to the voltage drop due to the battery current:

vi = Ri(SoC) · ibatt. (4)
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2.3. SoC Estimation

The SoC value is a relative parameter describing the charge inside of the battery, where SoC = 1
means that the battery is fully charged and SoC = 0 means that the battery is fully discharged (the
minimum non-destructive voltage level has been reached). The SoC estimation is the key aspect of
accurate battery modelling and determines the value of parameters such as Ri and Rd and also the OCV
function. For the SoC estimation in the proposed model, the Coulomb Counting (C-C) method [9,19,22]
was used:

SoC =
Qrem

Qm
, (5)

where Qrem is the remaining battery charge and Qm is the available capacity. For the discharging and
charging of the battery, the SoC value is calculated as:

SoC = SoC0 −
∆Q
Qm

, (6)

SoC = SoC0 +
∆Q
Qm

, (7)

where SoC0 is the initial value of the SoC and ∆Q is the change in battery charge, calculated as:

∆Q =

∫ tSoC f inal

tSoC0

idt, (8)

2.4. Available Battery Capacity

The battery capacity depends on the value of charging or discharging current (current range
0–60 A) [23,24]. The change in the available battery capacity for a low current rate (0.1–1) is linear and
depends on the current [5]. The authors decided to approximate the Peukert effect as a charging or a
discharging efficiency. For the discharging of the battery, the Qm value is calculated as:

Qm = ηdisch·Q, (9)

And for the charging process, the Qm value is calculated as:

Qm = ηch·Q, (10)

where ηdisch is the discharge efficiency and ηch is the charge efficiency.

2.5. Charging and Discharging Efficiency

The charging and discharging efficiencies are defined based on energy losses in ohmic and
diffusion resistances. Specifically, the discharging efficiency is defined as:

ηdisch =
Ebatt

Ebatt + E
, (11)

And the charging efficiency is given by:

ηch =
Ebatt − E

Ebatt
, (12)

where Ebatt is the battery energy calculated or measured at battery terminals and ∆E represents the
energy losses inside the battery. The battery terminal energy is calculated as:

Ebatt =

∫ t1

t0

(vbatt·ibatt)dt, (13)
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And the battery energy losses are evaluated from:

E =
(
i2batt·Ri + i2batt·Rd

)
, (14)

2.6. Current Filter

The diffusion capacitance is responsible for filtering the diffusion resistance current, which
represents the influence of the battery diffusion on the battery voltage. Based on [4,9,10,15], this current
filtering is described as:

i∗ = ibatt − 4τ
d
dt

ibatt = ibatt − 4RdCd
d
dt

ibatt, (15)

where τ is the battery relaxation time constant and Cd is the diffusion capacitance.

3. Results

3.1. Experimental Setup for Parameter Estimation

The experimental setup was controllable by PLC (Siemens-s7-1200), and used an inverter (Vacon
NXP0061), chopper (Vacon NXI0045), air-conditioned container (temperature 25 ◦C), and battery rack
with 10 battery modules (LG Chem UPB 4860 with JP 1.5 cells) connected in series. The module
parameters are taken from [25], while individual cell parameters are calculated for the module structure
type 14S4P (4 parallel chains, each made of 14 cells in series). Table 2 shows the characteristic of the
UPB 4860 module and the LG JP 1.5 battery. To adjust charge and discharge profiles, and for data
storage, a computer with the Python 3® and Matlab R2019b application were used.

Table 2. Characteristic of battery module and cell [25].

Module Cell

Model UPB 4860 (14S4P) JP 1.5
Energy (kWh) 3.1 0.22
Capacity (Ah) 60 15.75

Voltage Range (V) 42-59 3-4.2
Max current (A) 240 A 60 A

Dimension (W × H × D, mm) 445 × 122 × 550 -
Technology - NMC1

1 The probable cell technology identified from OCV measurements.

The battery voltage (Umes) between battery terminals of the grid was continuously monitored
by the chopper and the integrated BMS internal measurements (frequency resolution 0.01 Hz and
accuracy ± 1%). For thermal control, Figure 3 shows the test bench view.

Energies 2020, 13, x FOR PEER REVIEW 6 of 15 

 

3. Results 

3.1. Experimental Setup for Parameter Estimation 

The experimental setup was controllable by PLC (Siemens-s7-1200), and used an inverter (Vacon 
NXP0061), chopper (Vacon NXI0045), air-conditioned container (temperature 25 °C), and battery rack 
with 10 battery modules (LG Chem UPB 4860 with JP 1.5 cells) connected in series. The module 
parameters are taken from [25], while individual cell parameters are calculated for the module 
structure type 14S4P (4 parallel chains, each made of 14 cells in series). Table 2 shows the 
characteristic of the UPB 4860 module and the LG JP 1.5 battery. To adjust charge and discharge profiles, 
and for data storage, a computer with the Python 3® and Matlab R2019b application were used. 

Table 2. Characteristic of battery module and cell[25]. 

 Module Cell 
Model UPB 4860 (14S4P) JP 1.5 

Energy (kWh) 3.1 0.22 
Capacity (Ah) 60 15.75 

Voltage Range (V) 42-59 3-4.2 
Max current (A) 240 A 60 A 

Dimension (W × H × D, mm) 445 × 122 × 550 - 
Technology - NMC1 

The probable cell technology identified from OCV measurements 

The battery voltage (𝑈𝑚𝑒𝑠) between battery terminals of the grid was continuously monitored by 
the chopper and the integrated BMS internal measurements (frequency resolution 0.01 Hz and 
accuracy ± 1%). For thermal control, Figure 3 shows the test bench view. 

 
Figure 3. Test devices with measurements, the view of the test. 

3.2. Battery Parameter Estimation 

The basic test conducted in order to estimate the proposed model parameters was the Hybrid 
Pulse Power Characterization (HPPC) test, a standard in battery parameter estimation. The novelty 
of the approach is the repetition of the HPPC test with relatively short time intervals between each 
step. Due to the asymmetric nature of the voltage curve for the charge and discharge modes, the 
parameters have been divided into two sets: OCV parameters and dynamic parameters like Ri and 
Rd. Nine discharge and three charge HPPC tests for different levels of SoC were performed. The test 
methodology was previously described in the literature [4,9,20,26]. The OCV data points’ collection 
accuracy increased with the battery relaxation time. Because the HPPC test was carried out in the air-
conditioned container, the authors decided to reduce the battery relaxation time to 15 min. [26]. The 
analysis of the voltage-relaxation waveform, showed in Figure 4, indicates that results are accurate 
to within 0.33% SoC (the difference of about 1 mV per 15 min of relaxation time). For the HPPC test, 
the test bench was configured as presented in Figure 5. 

Figure 3. Test devices with measurements, the view of the test.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2020, 13, 2411 7 of 15

3.2. Battery Parameter Estimation

The basic test conducted in order to estimate the proposed model parameters was the Hybrid
Pulse Power Characterization (HPPC) test, a standard in battery parameter estimation. The novelty
of the approach is the repetition of the HPPC test with relatively short time intervals between each
step. Due to the asymmetric nature of the voltage curve for the charge and discharge modes, the
parameters have been divided into two sets: OCV parameters and dynamic parameters like Ri and
Rd. Nine discharge and three charge HPPC tests for different levels of SoC were performed. The test
methodology was previously described in the literature [4,9,20,26]. The OCV data points’ collection
accuracy increased with the battery relaxation time. Because the HPPC test was carried out in the
air-conditioned container, the authors decided to reduce the battery relaxation time to 15 min. [26].
The analysis of the voltage-relaxation waveform, showed in Figure 4, indicates that results are accurate
to within 0.33% SoC (the difference of about 1 mV per 15 min of relaxation time). For the HPPC test,
the test bench was configured as presented in Figure 5.
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15.75 Ah, the maximum charge voltage was equal to 4.2 V, and the minimum discharge voltage
was equal to 3.0 V, according to the manufacturer’s data. Table 3 shows the estimated OCV curve
parameters of the LG JP 1.5 battery.
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Table 3. Estimated OCV curve parameters.

Symbol Value Unit

E0 2.721 V
A 1.459 V
B 0.04013 A−1

K 0.0004589 A−1

Q 15.75 Ah
Vmaxch 4.2 V

Vmindisch 3.0 V

The ohmic and diffusion resistances and diffusion capacitance were estimated based on HPPC
tests for different SoC and charge/discharge current values. Due to the asymmetric nature of the voltage
curve for charge and discharge modes, the coefficients have been divided into the two sets. The ohmic
and diffusion resistances and the diffusion capacitance are defined based on [4,8,9,20] as:

Ri =
ur

I
, (16)
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Rd =
ud
I

, (17)

Cd =
τ

Rd
, (18)

where ∆ur and ∆ud are quantities evaluated from the HPPC test voltage, as shown in Figure 9.
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Figure 10 shows the ohmic (Ri) and diffusion (Rd) resistance as a function of SoC and the C-rate,
which is the battery current (A) in reference to the battery capacity (Ah) (the positive value of the
C-rate is the discharging current and the negative value is the charging current).
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While the influence of the SoC on both the ohmic and the diffusion resistances is negligible,
the C-rate influence on the diffusion resistance cannot be neglected. The authors decided to approximate
the ohmic resistance as a constant independent from the SoC and the C-rate and the diffusing resistance
as a function of the C-rate of the battery current. The diffusion resistance is defined as:

Rd(ibatt) = pRd1·

∣∣∣∣∣ ibatt
in

∣∣∣∣∣+ pRd0, (19)

where in is the battery nominal current (C-rate = 1), pRd0 = 0 is the approximation constant and
pRd1 = 0.003 represents the influence of the C-rate on the diffusion resistance.

In order to calculate diffusion capacitance, Cp, a relaxation time constant approximation as a
function of SoC was used:

τ(SoC) = pτ1 · SoC + pτ0, (20)
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where pτ0 = 68 is the constant component of the relaxation time constant and pτ1 = 121 represents the
SoC influence on the relaxation time of the battery. Based on the value of diffusion resistance Rd and
relaxation time constant τ, presented in Figure 8, the diffusion capacitance is defined as:

Cd(SoC, ibatt) = Cd·
τ(SoC)
Rd(ibatt)

, (21)

3.3. Electrical Scaling of the Battery Model

In order to analyse the performance of the BESS and to validate the proposed modelling approach,
a cell model has to be scaled up to simulate the entire multicell system [2]. It is necessary to consider
the connection configuration of the number of cells in series (nseries) and in parallel (nparallel). Table 4
shows the scaling of model parameters according to [8].

Table 4. Scaling of the model parameters for the multicell system.

Coefficient Configuration Variables

Constant specific voltage E0 E0(mod) = E0cell·nseries
Exponential zone voltage A A(mod) = A·nseries

Exponential zone capacity B B(mod) = B· 1
nparallel

Polarisation constant K K(mod) = K· nseries
nparallel

Capacity Q Q(mod) = Q·nparallel

Ohmic resistance Ri Ri(mod) = Ri·
nseries

nparallel

Diffusion resistance Rd Rd(mod) = Rd·
nseries

nparallel

Diffusion capacitance Cd Cd(mod) = Cd·
nparallel
nseries

The values presented in Table 4 do not take into account manufacturer-dependent variation
in cell parameters, which can differ from nominal values by ± 2.5% according to the UPB 4860
module datasheet.

3.4. Model Validation

The starting point for the model validation was the estimation of initial SoC. For this purpose, the
OCV(SoC) relationship was used. The tested battery had an initial value of SoC = 84%. Figures 11
and 12 show the voltage and current waveforms during the battery simulation and laboratory test.
The measurements and simulations are presented, where “simulation 1” refers to the model described
in [9], incorporating constant values of ohmic and diffusion resistance, and “simulation 2” refers to the
results of the model proposed in this work. Both models were scaled with reference to Table 4.

Figure 13 shows the efficiency of the battery and Figure 14 shows the relative voltage error of the
battery model calculated for the test shown in Figure 11. According to (9), (10) and (12), the efficiency
of the battery depends on the ohmic and diffusion resistances, and, because of the increase in diffusion
resistance with the C-rate, the battery efficiency is highly dependent on the latter parameter.

The relative error between simulations and measurements was calculated according to:

Error =
|Umodel −Umes|

Umes
·100%, (22)D
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3.5. Model Robustness Analysis

In order to assess the model robustness and parameter estimation process, a real validation
profile was used. The current profile presented in Figure 15 is based on real battery charging with
overcharging failure. The battery configuration and experiment setup used in this analysis had the
same configuration as described in Section 3.1. The tested battery had an initial value of SoC = 10%
and was charged up to value SoC = 100.5%. When the battery reached the SoC value, 100.5%, the
BMS urgently cut off the power flow. The proposed model has been checked with a simulation profile
over the SoC scale. A comparison between the measurements and simulations of proposed in this
work model (simulation 2) is presented in Figure 16. The relative error between simulations and
measurements was calculated according to (21), and results are shown in Figure 17.
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4. Conclusions

During the simulation, some differences in SoC between the model and the LG JP 1.5 BMS were
observed. These were due to different calculation methods used by the authors and in the LG system.
The ohmic resistance Ri in the proposed LG JP1.5 battery model is constant. The diffusion resistance Rd
value depends on the battery current. The polarisation capacitance depends on the relaxation time and
the diffusion resistance of the battery. The lower efficiency that is observed while the higher current
value is applied to the battery might be due to the accumulation of electrons at the collectors during
charging and the shortage of electrons around the collectors during discharging. The results of Ri
and Rd estimation from tests for the battery being charged and discharged are comparable for the
same SoC, meaning that it should be sufficient to only carry out either charge or discharge tests for
adequate parameterization of the T-D model. It is worth noting that different battery relaxation times
were observed during battery charging and discharging. The battery after the charge cycle needs more
time to relax than the battery after the discharge cycle.
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