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Abstract 

The major bottleneck of electromagnetic (EM)-driven antenna design is the high 
CPU cost of massive simulations required by parametric optimization, uncertainty 
quantification, or robust design procedures. Fast surrogate models may be employed to 
mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious 
limiting factor, hindering the construction of conventional data-driven models valid over 
wide ranges of the antenna parameters and operating conditions. This paper proposes a novel 
surrogate modeling approach that capitalizes on two recently proposed frameworks: the 
nested kriging  approach and two-stage Gaussian process regression (GPR). In our 
methodology, the first-level surrogate of nested kriging is applied to define the confined 
domain of the model in which the final surrogate is constructed using two-stage GPR. The 
latter permits blending information from a sparsely-sampled high-fidelity EM simulation 
model and a densely-sampled low-fidelity (or coarse-mesh) model. This combination 
enables significant computational savings in terms of training data acquisition while 
retaining excellent predictive power of the surrogate. At the same time, the proposed 
framework inherits all the benefits of nested kriging, including ease of uniform sampling of 
the confined domain as well as straightforward generation of a good initial design for 
surrogate model optimization. Comprehensive benchmarking carried out using two antenna 
examples demonstrates superiority of our technique over conventional surrogates 
(unconfined domain), and standard GPR applied to the confined domain. Application 
examples for antenna optimization are also provided. 
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1. Introduction 

Design of modern antennas has become a challenging endeavor with respect to 

almost every aspect of the process. On one hand, the conceptual development requires 

taking into account multiple performance specifications imposed on the electrical and field 

characteristics, implementation of various functionalities (broadband [1] or multi-band [2] 

operation, circular polarization [3], polarization/pattern diversity [4]), but also maintaining 

a small physical size of the antenna [5], [6]. Handling these requirements normally leads 

to topologically complex structures parameterized by a large number of variables and 

requiring full-wave electromagnetic (EM) analysis for their reliable evaluation. On the 

other hand, a precise parameter tuning has become mandatory to boost the performance as 

much as possible [7] and to find a usable trade-off between the conflicting design goals 

[8], [9]. Having in mind its complexity (multiple objectives and constraints and a typically 

highly dimensional parameter space), the design closure is nowadays often carried out 

through rigorous numerical optimization, as an alternative to still widespread parameter 

sweeping. 

Clearly, non-negligible cost of individual EM analysis becomes a serious issue when 

performing EM-driven design tasks that require massive simulations, notably parametric 

optimization (both local [10] and global [11]), uncertainty quantification [12], or tolerance-

aware design [13]. The necessity of extending the computational domain through 

incorporation of connectors, radomes, feeding structures, or other (coupled) radiators, only 

aggravates the problem. A number of techniques have been developed to improve the 

computational efficiency of simulation-based procedures, including adjoints sensitivities 

[14], [15], gradient-based search with sparse sensitivity updates [16]-[18], machine learning 
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methods [19], [20], as well as surrogate-assisted frameworks (space mapping [21], [22], 

response correction techniques [23], [24], feature-based optimization [25]). 

Utilization of fast surrogate models as replacements for expensive EM analysis is 

a potential way of reducing the computational burden whenever numerous simulations are 

required. By far, the most popular class of surrogates are approximation models 

constructed exclusively from sampled high-fidelity (EM simulation) data. Some widely 

used techniques include polynomial regression [26], kriging [27], radial basis function 

interpolation [28], Gaussian process regression (GPR) [29], neural networks [30], 

polynomial chaos expansion [31], and support vector regression [32]. All of these methods 

are affected by the curse of dimensionality, i.e., a rapid growth of the number of training 

data samples required to render a usable model as a function of the number of system 

parameters and their ranges. In the case of antennas, typically characterized by highly 

nonlinear responses, conventional surrogates can be constructed for structures described 

by a few parameters and within narrow ranges thereof. Clearly, this is largely insufficient 

for creating design-ready models of contemporary antennas. The methods such as high-

dimensional model representation (HDMR) [33] or orthogonal matching pursuit (OMP) 

[34] may alleviate these difficulties to certain extent but are not applicable for general-

purpose modeling of nonlinear antenna characteristics. 

In [35] an alternative approach to handling dimensionality issues has been proposed 

with the surrogate model established within a small region of the parameter space, 

determined by a set of reference designs pre-optimized with respect to the performance 

figures pertinent to the structure at hand. Due to the confined domain being dramatically 

smaller than the conventional space (delimited by the lower/upper bounds for the 
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parameters), a reliable surrogate could be constructed without formally restricting neither 

the dimensionality nor the parameter ranges [35]. This concept has been further developed 

in [36] to permit an arbitrary number of performance figures, and in the nested kriging 

method of [37] that enables arbitrary allocation of the reference designs, uniform sampling, 

and straightforward surrogate model optimization. 

This paper proposes an alternative surrogate modeling approach, which falls into the 

category of performance-driven modeling but offers further advantages by incorporating 

variable-fidelity EM simulations into the nested kriging framework of [37]. Handling of 

variable-fidelity models is realized using two-stage GPR  [38]. Under the first stage of two-

stage GPR, a full-wave simulator is used to generate a low-fidelity (coarse) training data set of 

m points, and maux << m points of the corresponding (computationally expensive) high-fidelity 

(fine) training set. A model is then trained that maps low-fidelity training targets (e.g., 

Re{S11}), along with the design vector and frequency, to the corresponding high-fidelity ones. 

This model is then used to predict the remaining m – maux high-fidelity targets that were not 

simulated. The maux simulated high-fidelity targets and the m – maux predicted ones – together 

with the input vectors–yield the m-point “approximate” high-fidelity training set. The second 

stage entails the construction of a final (i.e., main) GPR surrogate model using the latter 

training set. In this work, both first- and second-stage models are constructed within the 

confined domain rendered by the nested kriging framework. 

The proposed methodology brings in some important technical novelties and 

contributions: (i) enhancing performance-driven modeling by employment of variable-

fidelity EM simulation models, (ii) development of a rigorous modeling framework that 

combines nested kriging with two-stage GPR, (iii) further reduction of the computational 
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cost of surrogate model construction beyond what was offered so far in the literature, (iv) 

demonstration of the applicability of the proposed models for solving EM-based design tasks, 

specifically, parametric optimization. The presented framework is illustrated using two 

microstrip antennas: in each case, significant computational savings in terms of (equivalent) 

high-fidelity model evaluations is demonstrated, while still covering wide ranges of 

operating conditions. Benchmarking against conventional (unconstrained) GPR as well as 

single-fidelity nested GPR is also provided. 

 

2. Nested Kriging Modeling 

This section gives a brief overview of the nested kriging modeling framework, 

primarily utilized here to establish a confined domain for the two-stage GPR surrogate. 

 
2.1. Parameter Space and Objective Space. Design Optimality 

The modeling process involves two spaces. The first is the antenna (geometry) 

parameter space X defined as an interval [l, u], where l = [l1 … ln]T and u = [u1 … un]T are 

the lower and upper bounds, respectively. The parameter vectors are denoted as x = [x1 … 

xn]T. The second space is the objective (or operating condition space) F consisting of 

vectors f = [f1 … fN]T, with fk being the figures of interest pertinent to the design process 

(e.g., operating frequencies of a multi-band antenna). The space F is also an interval defined 

by fk.min  fk  fk.max, k = 1, …, N.  

The design optimality with respect to the objective vector f, denoted as Uf(f), is 

understood as the solution to the minimization problem [37] 

( ) arg min ( , )fU U
x

f x f                                                       (1) 

where U is a scalar objective function encoding the performance requirements.  
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 According to the performance-driven modeling approach [35]-[37], the surrogate 

model is to be established in the vicinity of the N-dimensional manifold Uf(F) that contains 

the optimum designs for all f  F. Operating outside Uf(F), in particular, allocating the 

training data and constructing the surrogate model, is a waste of resources as these regions 

only contain uninteresting designs from the point of view of the considered performance 

figures. 

 
2.2. Reference Designs. First-Level Surrogate 

In the nested kriging method [37], the manifold Uf(F) is approximated using the 

reference designs x(j)  Uf(F), j = 1, …, p, optimized w.r.t. selected vectors f(j) = [f1
(j) … fN

(j)] 

(also, using the notation of (1), we have x(j) = Uf(f(j))). In particular, the data set {f(j),x(j)}, j = 

1, …, p, is employed to construct the first-level surrogate sI(f) mapping the space F into the 

parameter space X. In [37] (and in the present work), sI is is implemented using kriging [27]. 

The image sI(F) of F provides the best approximation of Uf(F) one can obtain using limited 

information contained in the reference designs. 

 
2.3. Model Domain 

The domain XS of the surrogate model is established by an extending sI(F)  X into 

its orthogonal directions. This is to ensure that the extended set contains Uf(F) (or at least 

a majority of it). Given {vn
(k)(f)}, k = 1, …, n – N, an orthonormal basis of vectors normal 

to sI(F) at f, the extension coefficients a(f) = [a1(f) … an–N(f)]T are defined as 

TT (1) ( )( ) ( ) | ( ) | ... | ( ) |
2 2

n N
x n x n x n

D D     a f d V f d v f d v f                           (2) 

where dx = xmax – xmin is the range of antenna parameter variation within sI(F), with xmax = 

max{x(k), k = 1, …, p} and xmin = min{x(k), k = 1, …, p}; D is a user-defined parameter 
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determining the domain “thickness”. The matrix Vn is defined as Vn(f) = [vn
(1)(f) … vn

(n–

N)(f)]. 

The coefficients ak(f) determine the boundaries of the domain XS, which is allocated 

between the manifolds M– and M+ with 

  ( )

1
: ( ) ( )

n N k
I k nk

M X a


 
   x x s f f v f                                      (3) 

Formally, the surrogate model domain is defined as 

( )

1

( ) ( ) ( ) : ,

1 1, 1,...,

n N
k

I k k n
kS

k

a F
X

k n N









 
     

      

x s f f v f f
                                    (4) 

i.e., it contains all points of the form x = sI(f) + k = 1,…, n – N kak(f)vn
(k)(f) with f  F and –

1  k  1, for k = 1, …, n – N.  

Figure 1 illustrates the objective space F, the allocation of the reference designs, as 

well as the defining manifolds sI(F), M– and M+. The thickness parameter D determines the 

lateral size of the surrogate model domain in relation to the tangential size of sI(F). 

 
2.4. Second-Level Surrogate 

In [37], the second-level (or the actual) surrogate was a kriging model established 

in the domain XS. The procedure for uniform allocation of the training data samples 

{xB
(k),R(xB

(k))}k  = 1, …, NB (R being the EM-simulation model of the antenna), based on the 

surjective mapping between a uniform interval [0,1]n, can be found in [37]. In this work, 

the surrogate is set up using variable-fidelity models and two-stage GPR as described in 

the next section. 
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f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (k)

    x1

v1
(k)

M+

XS

x3

x2

sI(F)

sI(f
(k))

M-

 
                                    (a)                                                                (b) 
Fig. 1. Surrogate model definition according to the nested kriging approach [37] (here, using two-
dimensional objective space F and three-dimensional variable space X): (a) reference designs and 
objective space F; (b) the image sI(F) of the first-level surrogate model and the normal vector v1

(k) 
at f(k); the manifolds M– and M+ as well as the surrogate model domain XS defined as the orthogonal 
extension of sI(F). 
 
 

3. Two-Stage Gaussian Process Regression (GPR) Models 

3.1. Standard GPR 

A Gaussian process is a mathematical set comprised of an infinite number of 

random variables; any subset of these is jointly Gaussian distributed as well [39]. A 

Gaussian process g(w) can be defined as )( ) ~ ( ( ), cov( , ' )g GP r w ww w , with w and w' any 

pair of inputs in RP space; the mean function r(w) and covariance function cov(w,w') are 

given by r(w)=E[g(w)] and cov(w,w') = E[g(w)-r(w))(g(w')-r(w'))], where E[Y] denotes the 

expectation of the random variable Y.  

It follows that any collection of m function values g = [g1 ... gm]T = [g(w1) ... g(wm)]T 

has a jointly Gaussian distribution with mean vector [r(w1) ... r(wm)]T and an m  m 

covariance matrix with entries Kij = cov(wi,wj), i.e. specified by the covariance function.   

Suppose that a training data set of m noise-free function observations is available, 

namely C = {(wi, gi) | i = 1, …, m}, where the inputs wi are vectors of dimension P, while 

the output observations/targets gi are scalars. It is desired to predict the function values 

   1 1* *
* * * * ...   ...

TT

m m
g g g g      w w , where 1 *

** ...
m

w w  are test input vectors. To make 
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 9

predictions, a jointly Gaussian distribution of zero mean is assumed over the m training 

outputs (vector g), and the m* unknown test outputs (vector g*) (the prior distribution): 

( , ) ( , *)
~ ,

( *, ) ( *, *)

K W W K W W
N

K W W K W W

     
        

0
g

g*
                                     (5) 

Here, K(W,W*) is the mm* matrix of covariances evaluated between all possible pairs of 

m training and m* test outputs, where W and W* are matrices containing the training and 

test input vectors respectively (other sub-matrices are defined in a similar manner); N(z, H) 

denotes a multivariate Gaussian distribution with mean vector z and covariance matrix H.  

The posterior distribution, i.e. involving the test outputs conditioned on the known 

training outputs g, can then be expressed as g*|W*,W, g~ N(r, ), with mean vector r and 

covariance matrix Σ, given by r = K(W*,W)K(W,W)-1g and =K(W*,W*)-

K(W*,W)K(W,W)-1K(W,W*) respectively [39]. The predictive mean r contains the most 

likely values of the test outputs associated with the test input vectors in W*, while the 

diagonal of the covariance matrix Σ gives the corresponding predictive variances. Prior to 

conditioning, the hyperparameters of the covariance function are optimised by minimising 

the negative log marginal likelihood with respect to the hyperparameters [39, eq. (2.29)]. 

 
3.2. Two-stage GPR 

1) First stage: Consider a computationally expensive finely-discretized training 

data set Cfine = {(wi, yfine,i) | i = 1,...,m} with input vectors 

1 2[ ] [ ... ]T T T
i i oi i i Mi oiq x x x q w x                                              (6) 

of dimension M+1, and scalar targets yfine,i = Re{S11}fine,i. The design vector xi = [x1i x2i ... 

xMi]T consists of M adjustable antenna design variables,  while qoi is a frequency value 

within the band of interest (the target values could also be Im{S11} or |S11|; for the sake of 
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brevity we refer to Re{S11} below). In general, obtaining Cfine via EM simulation is 

assumed to be computationally prohibitively expensive.  

 The purpose of the first stage is to “approximate” Cfine by an inexpensive data set 

Cfine,approx of the same size. This can be accomplished by using a separate auxiliary model 

Raux trained on a specially constructed training data set Caux.  In order to construct Caux, the 

above m geometries are first simulated cheaply using a coarse mesh, yielding the data set 

Ccoarse={(wi, ycoarse,i) | i=1,...,m}, with wi as for Cfine, and ycoarse,i = Re{S11}coarse,i. Next, a 

small randomly selected subset of Cfine, consisting of maux < m points, is simulated (i.e., at 

high fidelity).  Using the latter subset of Cfine as well as Ccourse, the training set Caux can then 

be compiled as 

 
, ,

( , ) | 1, ...,
aux aux k fine k auxy k mC  w                                     (7) 

where the (M+2)-dimensional training input vector 

111 2[ ... Re{ } ]T
aux,k k k Mk ok coarse,kx x x q Sw                                    (8) 

is of the form of the input vectors of Cfine augmented by the associated coarse Re{S11} 

target value from Ccoarse. The target yfine,k is the corresponding Re{S11} value from the 

above small subset of Cfine (note that Ccoarse and Cfine share the same input vectors; the 

difference lies in the meshing density with which the targets have been simulated). Hence 

Raux learns a mapping between coarse and fine Re{S11} simulations using training data that 

correspond to maux specific instances of sets of design variables and frequency (the initial 

M+1 components of waux,k uniquely identifies the Re{S11} values). (This mapping 

embodies the correlations between the coarse and fine model responses.)  

After training, Raux is used to predict the m – maux fine Re{S11} values that were not 

simulated, from their coarsely simulated counterparts. The predicted targets are denoted by 
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ypred,k = Re{S11}pred,k, k = (maux+1), ..., m. The maux full-wave-simulated fine Re{S11} target 

values and the m – maux predicted ones then yield (along with input vectors consisting of 

geometry parameters and frequency of the form (6)) an m-point “approximate” fine training 

data set for Rs (the second-stage, i.e. final model): 

,

,

( , ) | 1, ...,

( , ) | ( 1), ...,

k fine k aux

fine,approx

k pred k aux

y k m

y k m m
C




 

 
 
 

w

w
                                     (8) 

The substantial savings in computational costs that can be achieved within the nested kriging 

framework by obtaining the targets ypred,k via model predictions—as opposed to direct full-

wave simulations—are described below.  

2) Second stage: Using standard GPR, Cfine,approx is used to train Rs, the final surrogate 

that maps design variables and frequency to Re{S11}. 

 

 
3. Proposed Modeling Framework: Variable-Fidelity Nested Kriging-GPR Surrogates 

This section summarizes the proposed methodology. The modeling process, as 

explained using the flowchart shown in Fig. 2, starts by defining the surrogate model 

domain based on the nested kriging method of [37] (cf. Section 2). The reference designs 

involved at this stage may be already available from the previous design work with the 

same structure or obtained specifically for building the surrogate.  

The actual surrogate is constructed by blending the low- and high-fidelity EM 

simulation data using the two-stage GPR procedure of [38] (cf. Section 3). The advantage 

brought by incorporating variable-fidelity computational models is a further reduction of 

the CPU cost of setting up the surrogate as compared to [38]. This is demonstrated in the 

next section. 
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4. Verification Examples and Benchmarking 

The proposed modeling technique is validated using two antenna structures: a dual-

band uniplanar dipole antenna (Antenna I) shown in Fig. 3(a) [40], and a ring slot antenna 

(Antenna II) shown in Fig. 3(b) [35]. Antenna I is implemented on a RO4350 substrate (εr 

= 3.5, h = 0.76 mm) and fed using a 50 ohm coplanar waveguide (CPW). The design 

variables are: x = [l1 l2 l3 w1 w2 w3]T; l0 = 30, w0 = 3, s0 = 0.15 and o = 5 are fixed (all 

dimensions in mm).  

 

Reference designs x(j)  Uf (F)

Set up first-level surrogate sI(f)
EM Solver

High-fidelity 
model

Low-fidelity 
model

Define surrogate model domain XS

Acquire training data (low- and high-
fidelity models) within XS

Define first-stage GPR model (high-to-
low-fidelity model mapping)

Define second-stage (final) GPR model

 

Fig. 2. Flowchart of the proposed surrogate modeling procedure. The surrogate model domain is defined 
according to the nested kriging modeling of [37] using a set of reference designs (cf. Sections 2.2 and 
2.3). The two-stage GPR surrogate involving sparsely sampled high-fidelity EM model and densely 
sampled low-fidelity model is rendered in the domain XS as described in Section 3. 
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Antenna II is implemented on 0.76-mm-thick substrate and described by eight 

parameters x = [lf ld wd r s sd o g]T . The relative permittivity εr of the substrate  is an 

additional variable for the modeling process. The feed line width wf is calculated for any 

given εr to ensure 50 ohm input impedance. 

The computational models are implemented in CST Microwave Studio. We have, 

for Antenna I: 

 High-fidelity model Rf: ~100,000 mesh cells, simulation time 60 s; 

 Low-fidelity model Rc: ~40,000 mesh cells, 20 s; 

and for Antenna II: 

 High-fidelity model Rf: ~300,000 mesh cells, 90 s; 

 Low-fidelity model Rc: ~90,000 mesh cells, 22 s. 

Note that the low-fidelity model on the whole is three to four times faster than the 

high-fidelity one.  

 

     
(a) 

 
(b) 

Fig. 3. Antenna geometries: (a) dual-band uniplanar dipole antenna (Antenna I) [39], (b) ring slot 
antenna (Antenna II) [35]. 

 

l0

w0

s0
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For Antenna I, the modeling objective is to construct a surrogate valid for the 

following ranges of operating frequencies: 2.0 GHz ≤ f1 ≤ 3.0 GHz (lower band), and 4.0 

GHz ≤ f2 ≤ 5.5 GHz (upper band). For Antenna II, the goal is to construct a surrogate model 

for the operating frequencies f within the range 2.5 GHz  f  6.5 GHz, and substrate 

permittivity εr within the range of 2.0  εr  5.0. The allocation of the reference designs 

and the lower/upper bounds determining the parameter space can be found in [37]. 

The surrogate model domains have been established according to the nested kriging 

approach (cf. Section 2.1 to 2.3) using the thickness parameters D = 0.05 and D = 0.1. 

Subsequently the two-stage GPR surrogates were constructed using the following training 

sets: 

 Antenna I: 200 antenna geometries, each coarsely evaluated at 10 random 

frequencies (m = 10); one of the 10 frequencies was also simulated at high fidelity 

(maux = 1; cf. Eq. (7));   maux/m = 10%. 

 Antenna II: 400 antenna geometries, each coarsely evaluated at 12 random 

frequencies (m = 12), with one of the 12 frequencies (maux = 1) also simulated at 

high fidelity; maux/m = 8.3%. 

Given the time evaluation ratios between the high- and low-fidelity EM models, the 

average number of equivalent high-fidelity simulations is 867 for Antenna I (note that 

Antenna I required 10 low-fidelity simulations and one high-fidelity simulation per 

geometry, that there were 200 geometries, and that the low-fidelity model was three times 

faster than the high-fidelity model – hence 200×(1+10/3)  867 equivalent high-fidelity 

simulations). For Antenna II, the number of equivalent high-fidelity simulations is 1600.  
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Two-stage GPR models were constructed separately for the real and imaginary parts 

of the reflection response: because of their smoothness, these responses are more naturally 

modelled by GPR than |S11|. Predictive results of the two models were then combined to yield 

|S11|. Throughout, the Matérn covariance function with  = 5/2 was used [39].  

For comparison purposes, standard (i.e. not two-stage) GPR models were trained 

on the above two-stage surrogate model (confined) domains; training data were comprised 

of the same geometries/frequencies as in the case of the two-stage models, but simulated 

at high fidelity only (e.g., 200 geometries  10 frequencies for Antenna I). Standard GPR 

models were also trained on the original, unconfined domains – this constitutes 

conventional GPR (as noted above, the bounds delimiting the original design space can be 

found in [34]). 

The numerical results have been gathered in Table 1 (predictive RMS errors are 

normalized to the ranges of the test target values for each antenna [38]). These are compared 

to conventional surrogates (i.e. where the domains are not confined), as well as the nested 

kriging model [37] but with GPR (instead of kriging) used as second-level surrogate (referred 

to as nested GPR in Table 1). It can be observed that the variable-fidelity GPR surrogates 

exhibit similar levels of predictive performance to the conventional nested-GPR surrogates, 

but at greatly reduced cost: in the case of Antenna I, the savings in terms of high-fidelity 

simulations is 57%; in the case of Antenna II, it is 67%.  

It can be expected that the computational benefits of the confined two-stage GPR 

would be even more pronounced if the low-fidelity model was faster as compared to the 

high-fidelity one. In our examples, the high-to-low-fidelity time evaluation ratio was only 

three for Antenna I and four for Antenna II. 
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Figure 4 shows the antenna responses for some selected test designs. The visual 

agreement between the surrogate and EM-simulated characteristics can be considered 

satisfactory for practical purposes. 

 

Table 1. Predictive results for |S11| for Antennas I and II 

Antenna 

Number of 
high-fidelity 

training 
samples$ 

Normalized RMS Error 
Number of 

equivalent high-
fidelity training 

samples$ 

Normalized RMS Error 

Conventional 
(unconfined) 

GPR 

Nested GPR Model 
Nested two-stage GPR 

Model 

D = 0.05 D = 0.1 D = 0.05 D = 0.1 

I 2000 9.97% 3.74 % 4.95 % 867 5.05%  6.19%  

II 4800 18.01% 2.91% 4.5% 1600 4.27% 5.60% 

$ Number of high-fidelity training samples calculated as the number of antenna geometries multiplied by the number of randomly 
selected frequencies per geometry.  
# Number of equivalent high-fidelity training samples calculated as the number of geometries multiplied by the number of equivalent high-fidelity 
simulations used per geometry (see text) to set up the surrogate. 

 

 

 
(a) 

 
(b) 

Fig. 4. Responses of the antennas of Fig. 3 at the selected test designs: EM model (—), confined two-
stage GPR surrogate (o): (a) Antenna I, (b) Antenna II. 
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The two-stage GPR surrogates (obtained for D = 0.05) were also used for antenna 

optimization. Figure 5 shows the results obtained for Antenna I for the following pairs of 

target operating frequencies: {2.2,4.5}, {3.0,5.0}, {2.45,4.8}, and {2.7,5.3} (frequencies 

in GHz). Figure 6 shows the results for Antenna II for four pairs of operating frequency 

and substrate dielectric constant (frequency in GHz): {4.8,2.2}, {5.3,3.5}, {2.7,2.5}, and 

{4.8,4.4}. It can be observed that the two-stage GPR models yields good results which are 

in agreement with the EM simulations. This confirms usability of the models for design 

purposes. 

 

 

Fig. 5. Optimization results of Antenna I using the two-stage GPR surrogate for the four pairs of 
operating frequencies, from top-left to bottom-right: {2.2,4.5}, {3.0,5.0}, {2.45,4.8}, and {2.7,5.3} 
(frequencies in GHz). Shown are: initial design obtained from the first-level kriging model (), 
response of the optimized two-stage GPR surrogate (o), EM-simulated antenna response at the GPR 
model optimum (—).  
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Fig. 6. Optimization results of Antenna II using the two-stage GPR surrogate for the four pairs of 
operating frequency and substrate permittivity, from top-left to bottom-right: {4.8,2.2}, {5.3,3.5}, 
{2.7,2.5}, and {4.8,4.4} (frequencies in GHz). Shown are: initial design obtained from the first-level 
kriging model (), response of the optimized two-stage GPR surrogate (o), EM-simulated antenna 
response at the GPR model optimum (—).  
 
 

5. Conclusion 

The paper proposed a novel technique for surrogate modeling of antenna input 

characteristics. It incorporates variable-fidelity EM simulations into the recently reported 

nested kriging framework by means of two-stage GPR. Our methodology has been 

validated using two planar antennas and benchmarked against conventional surrogates as 

well as high-fidelity-only nested GPR. The numerical results indicate that considerable 

computational savings can be obtained despite the fact that the time evaluation ratio 

between the high- and low-fidelity models is quite limited in the considered cases. At the 

same time, the surrogates produced using the proposed approach can be effectively 
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employed for design purposes as comprehensively demonstrated through parametric 

optimization of the respective antenna structures.  
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