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ABSTRACT 

In this paper, it is tried to simulate nonlinear bending analysis of a double-layered graphene 

sheet (DLGSs) which contains a geometrical imperfection based on an eccentric hole. The first-

order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear 

von Kármán strain field has been assumed in order to obtain large deformations. Whereas the 

DLGS has been considered, the effect of van der Waals forces has been taken into account in the 

analysis. In order to implement the nanoscale impact, the nonlocal elasticity theory has been 

employed. The solution methodology which is here based on the semi-analytical polynomial 

method (SAPM) solving technique presented previously by the authors, has been applied and again 

its efficiency has been demonstrated due to its highly accurate results. Due to the fact that this 
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research has been done for the first time and there is not any validation available, the results of the 

local single layer sheet are compared with ABAQUS software. The effects of some other 

parameters on the results have been studied such as the value of eccentricity, van der Waals 

interaction and nonlocal parameter. 

Keywords: Eccentric vacant defect; Nonlocal elasticity theory; First-order shear deformation 

theory; Bilayer graphene sheet; Van der Waals interaction 

           Nomenclature 

w1: Defection of upper layer e: Distance between the center of plate and defect 

w2: Defection of bottom layer u : In-plane displacement of the plates’ nodes along r 

ro: Outer radius of the plate v : In-plane displacement of the plates’ nodes along θ 

ri: Size of defect w : Transverse displacement of the plates’ nodes 

 : Poisson’s ratio  : Rotation of elements around circumferential axis 

E : Young’s modulus  : Rotation of elements around radial axis 

h : Thickness of the each layer rM : Moment stress resultant around r axis 

0k : van der Waals force M : Circumferential moment stress resultant 

q : Static uniform transverse load 
rM  : In-plane moment stress resultant 

pk : Shear layer of elastic matrix N : Circumferential in-plane stress resultant 

wk : Winkler modulus of elastic matrix 
rN  : Torsional in-plane stress resultant 

t: time rN : Radial in-plane stress resultant  

a: an unknown variable in SAPM rQ and Q
: Shear stress resultants in two planes 

µ=(e0a)2: Nonlocal parameter term  
Rv: Ratio of deflection in the presence of defect to the 

ignoring of defect 

Rm: The nonlocal to local analysis Index i: 1 and 2 for upper and lower layers 

r : Radial strain rz : Shear strain in r-z plane 

 : Circumferential strain r : Shear strain in r-θ plane 
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z: Thickness coordinate z : Shear strain in θ-z plan 

s : Shear correction factor 2 : Laplace operator 

1. Introduction 

Double-layered graphene sheets (DLGSs) can be formed from two separated graphene layers 

which are connected due to the van der Waals interactions between the layers. It is possible to 

make a bilayer graphene sheet by applying chemical vapor deposition. Many methods have been 

used to predict the mechanical behavior of nanoscale structures. There are different three methods 

in this case: atomistic methods, nonlocal continuum methods, and atomistic-continuum methods. 

If classical mechanics is used, it might lead to considerable errors during the analysis. Between 

the mentioned theories, nonlocal continuum theory includes several methods as nonlocal elasticity 

theory [1-3], strain gradient and couple stress theories [4], stress-driven elasticity theory [5, 6], 

and mixing of the mentioned theories [7, 8], within which the nonlocal elasticity theory is more 

well-known. Therefore, many researchers have applied this theory to model the mechanical 

behavior of nanostructures.  

In [9, 10] the nonlocal elasticity theory has been presented by Eringen which can be a famous 

theory in elasticity. 

During the last years, many researches have been done to aim to analyze the mechanical 

behavior of graphene sheets, for example, vibration, buckling and bending analyses. Shen et al. 

[11] investigated the vibration of single-layered graphene sheet-based nano-mechanical sensor via 

the nonlocal Kirchhoff plate theory. Zenkour et al. [12] studied thermal analysis of a single-layered 

graphene sheet (SLGS) embedded in viscoelastic medium. Jiang et al. [13] studied for vibration 

analysis of single-layered graphene sheet-based mass sensor using Galerkin strip distributed 

transfer function method. 
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Dastjerdi et al. [14, 15] investigated the static behavior of monolayer annular/circular and 

double-layered rectangular nano graphene plate. They received this conclusion that the maximum 

deflection declines along with the increasing small-scale effects. Dastjerdi and Jabbarzadeh [16] 

found an approximate single layer equivalent for multi-layer graphene sheets based on nonlocal 

elasticity theory considering third-order shear deformation theory of the plates (TSDT). Liu et al. 

[17] discussed the effects of defects on the chemical, electronic, magnetic, and mechanical 

properties of graphene and addressed the associated challenges and prospects on the future study 

of defects in graphene and other nanocarbon materials. Dastjerdi et al. [18] derived the constitutive 

equations of nanoplates embedded in elastic matrix based on Eringen nonlocal elasticity theory 

and applied both first-order shear deformation theory (FSDT) and higher-order shear deformation 

theory (HSDT) theory. Moreover, Dastjerdi et al. [19] investigated the eccentric defected mono-

layer graphene sheets embedded in an elastic matrix. They found that the types of boundary 

conditions and small-scale effects can affect the results. And also, the value of eccentricity can be 

added too. Malikan et al. [20] considered bilayer graphene sheets bridged on the elastic medium 

of Pasternak and analyzed the shear and thermal stability resistance of the FSDT modeled system. 

Ma et al. [21] studied the effects of magnetic field on thin composite films. They considered bilayer 

thin films in their analysis and used the Heisenberg model to describe the bilayer film structure. 

Naderi and Saidi [22] developed the nonlocal constitutive equations of nanostructures. They 

showed that nonlocal theories could not be used in the presence of surface effects. 

Mohammadimehr et al. [23] investigated the effects of surface stress on the bending and vibration 

analyses of SLGSs sheets embedded on an elastic foundation using the energy method. Karimi and 

Shahidi [24] studied thermo-mechanical bending, vibration and buckling analysis of orthotropic 

graphene sheets using refined nonlocal elasticity theory. They also considered the effects of 
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surface energy in their analysis. Ansari et al. [25] examined the stability of SLGSs with different 

boundary conditions using nonlocal elasticity theory. They evaluated the axial buckling analysis 

in their study. Lu et al. [26] analyzed the vibration and natural frequencies of a multi-layered 

graphene sheet based on the classical plate theory and analytical solutions. They investigated the 

influences of various layerwise tension forces. In a special research, Nazemnezhad et al. [27] 

modeled the multi-layered graphene sheets (MLGSs)) as a sandwich plate via molecular dynamic 

simulation (MD) and estimated the interlayer shear effects. They confirmed that modelling a 

MLGS with sandwich plate can result in a highly accurate prediction. Wu and Li [28] formulated 

a multiple time scale method to analyze the SLGSs embedded in the Pasternak foundation on the 

basis of Eringen nonlocal elasticity model. In a crucial study, Allahyari and Asgari [29] developed 

a nonlocal higher-order shear deformation theory to consider vibrations of a DLGS placed in an 

elastic matrix and thermal environment and also studied the surface effects.  Hashemi et al. [30] 

combined the internal viscosity to the elastic model of DLGSs and evaluated the natural 

frequencies while the DLGS was rested in a Pasternak medium. The classical plate hypothesis was 

in conjunction with linear Lagrangian strains as well as nonlocal elasticity theory of Eringen to 

present the desired mathematical relations. In an applicable research, Ansari et al. [31] conducted 

use of MD to study some vacancy defects in a rectangular SLGS. More importantly, they 

investigated fracture in the model. Wang et al. [32] based on the analytical results, discussed the 

effects of thermal on natural frequencies of a DLGS on the basis of nonlocal elasticity model. In a 

particular work, Allahyari and Asgari [33] presented a nonlinear wave propagation analysis on the 

SLGS with assuming circular geometry. Moreover, the effects of environments such as magnetic 

and temperature were also taken into consideration. They utilized the nonlocal elasticity as well as 

the modified couple stress theory to justify the small scale influences. Giannopoulos and Avntoulla 
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[34] analyzed crack and crack features on the tensile strength of graphene in thermal environment 

by means of MD. In another valuable research, Giannopoulos [35] estimated a circular graphene 

sheet involving a crack under a vibrational situation using a structural mechanics method in a 

three-dimensional spring-based domain on the basis of the atomistic models.  

The irregularity in the atomic scale structure can occur in the two-dimensional (2D) plane 

graphene sheet during the manufacturing and production process. We can assume that the graphene 

sheet is also defective in its atomic scale. Such the irregularity in graphene sheets can be classified 

in some cases as a heterogeneous defect, topological defects (non-hexagonal shape of arranging 

atoms) and bonding defects (atoms dislocations, and vacancies) [36-38]. In this paper, the term 

defect is referred to as the vacancy and missing carbon atoms as a material deviation. In graphene, 

when one or more carbon atoms are missed, there cannot be a bond between surrounding atoms 

and some bonds remain in a dangling manner [39] (Fig. 1b). 

Studying of defected monolayer circular graphene sheet has been done before by the authors. 

However, it is too hard to find monolayers in reality. So, in this paper, the bilayer sheet is 

considered and nonlocal elasticity theory has been applied to obtain the governing equations 

including the van der Waals interaction between the layers. The position of defect is moving and 

it is not placed at the center so the axisymmetric problem has been obtained. The obtained 

equations are solved by applying SAPM for which the efficiency is proved again. Whereas there 

are not any works available in this case, the results are obtained for different locations of defect, 

and van der Waals interaction. The results are compared with ABAQUS software as well and good 

agreements have been achieved after this calculation. Finally, the effects of eccentricity, van der 

Waals interaction and small-scale influences on the results have been studied. 

2. Constitutive Equations and solution 
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Analysis of single layer defected graphene sheet was studied earlier [19]. In Fig. 1. a double-

layered graphene plate is considered which contains an internal eccentric hole. The bilayer sheet 

is embedded in Winkler-Pasternak elastic medium. The values of Winkler and Pasternak stiffness 

are kw and kp respectively. In addition, 𝑘𝑜  refers to the amount of van der Waals interaction 

between the layers. 

Stacking and layering the graphene as 2D sheets of graphite with chemical functionalization 

make bilayer and multilayer graphene sheets. There is a weak connection between layers when we 

compared the bonding with the connections of atoms in the plane. One can distinguish this weak 

bonding can be the van der Waals forces. As a rule, the induced electric polarity makes such 

bonding. There is no thermal or electrical conductivity along the bonding [40]. In an atomic 

analysis, the van der Waals forces are attained with respect to a derivative of Lennard-Jones pair 

potential [41]. One can find that this force is a nonlinear function of interatomic distance. However, 

the nonlinearity in the behavior of van der Waals forces can be important while we analyze in-

phase or out-phase for bilayer graphene sheet and as far as we assumed both layers are rigid 

together, it seems not important to consider nonlinearly the van der Waals forces. As the van der 

Waals force is based on the Taylor expansion, we only used the first term of this expansion leads 

to a linear expression. When using Taylor expansion for the van der Waals force and integrating 

it over the 2D sheet of graphene, the van der Waals bonding force between upper and lower sheets 

could be achieved [41, 42]. The distance between two layers is 0.331 nm ≤  distance ≤ 0.35 nm 

depending on how the layers are stacking on each other while both the layers are normally in an 

equilibrium condition [41-43].  

To access the value of the van der Waals coefficient, the distance between layers plays a 

major role and the amount of this force directly related to the distance [44]. As mentioned by [43, 
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44], the value of van der Waals force can be varied numerically in unit GPa/nm for linear 

expressions and GPa/nm3 for nonlinear ones. Note that the positive sign for van der Waals force 

represents the attraction of atoms and the negative sign depicts repulsion. As the scope of this 

paper is only considering the vacancy imperfection into the DLGSs, hence, we ignore the exact 

values of the van der Waals coefficient and an arbitrary value is in use whilst it results in rigidity 

behavior of both layers. 

In this study, the van der Waals interaction is simulated by linear spring as  2 1ok w w . 

With regard to the Fig. 1a and b, geometric parameters of the defect are S, and e, and the relation 

between the distance of the center of eccentric defect from outer boundary is 

   
2

2sin cosorS e
e

 
 

     
  
 

.  

The mathematical expressions of strain-displacement by means of FSDT can be appeared in 

the nonlinear view as 

2
1

2
r

u w
z

r r r




   
    
   

                                                                                                              (1) 

2
1 1 1

2

v z w
u

r r r



 

  

       
         

       
                                                                                  (2) 

rz

w

r
 


 


                                                                                                                                  (3) 

1
z

w

r
 




 


                                                                                                                              (4) 

1 1
r

u v w w
z v z z

r r r r r


 
 

  

      
       

      
                                                                   (5) 

The governing equations for the bilayer graphene sheet on the basis of Eqs. (1)-(5), and 

Hamiltonian, can be presented by neglecting some inconsiderable terms as follows [18] (i=1, 2): 
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 , ,

1
: 0r r r rui Ni Ni Ni Ni

r
         (6) 

 , ,

1
: 2 0r r rvi Ni Ni Ni

r
          (7) 

 
2

, , 2

2 2

2 2 2

1 1
1: 1 1 1 ( 2 1) 1

1 1 1 1 1 1 1 1
1 2 1 0

r r r o r

r

w
w Q Q Q q k w w N

r r

w w w w
N N

r r r r r r

 

 



  


     



      
       

       

   (8) 

  2

, ,

2 2 2

2 2 2 2

1
2 : 2 2 2 ( 2 1) 2 2

2 1 2 1 2 1 2 1 2
2 2 2 2 0

r r r o w p

r r

w Q Q Q k w w k w k w
r

w w w w w
N N N

r r r r r r r

 

 



  

       

       
       

        

  (9) 

 , ,

1
: 0r r r r ri Mi Mi Mi Mi Qi

r
                                                                                       (10) 

 , ,

1
: 2 0r r ri Mi Mi Mi Qi

r
                                                                                              (11) 

in which  

2 2

2

1 1 1 1

1 2 2
r

Eh ui wi ui vi wi
Ni

r r r r r


  

        
                     

                                                    (12) 

2 2

2

1 1 1 1

1 2 2

Eh ui wi ui vi wi
Ni

r r r r r
 

  

         
                     

                                                    (13) 

1 1

2(1 )
r

Eh vi vi ui wi wi
Ni

r r r r r


  

    
    

     
                                                                            (14) 

2(1 )

s
r

Eh wi
Qi i

r






 
  

  
                                                                                                            (15) 

1

2(1 )

sEh wi
Qi i

r





 

 
  

  
                                                                                                         (16) 
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3

212(1 )
r

Eh i i
Mi i

r r

  


 

    
    

    
                                                                                       (17) 

3

2

1

12(1 )

Eh i i
Mi i

r r


 
 

 

    
    

    
                                                                                     (18) 

 

3 1

24 1
r

Eh i i i
M

r r r


  

 

  
   

   
                                                                                          (19) 

As this paper is concerned with Eringen’s nonlocal elasticity theory to implement the small 

scale effects, the nonlocal stress can be appeared as [14, 45-48] 

 21 ij ijkl klC                                                                                                                       (20) 

Therefore, applying Eq. (20) on Eqs. (12)-(19) and re-writing Eqs. (6)-(11), one can get 

 , ,

1
0r r r rNi Ni Ni Ni

r
                                                                                                        (21) 

 , ,

1
2 0r r rNi Ni Ni

r
                                                                                                              (22) 

   
2

2

, , 2

2 2

2 2 2

1 1
1 1 1 1 ( 2 1) 1

1 1 1 1 1 1 1 1
1 2 1 0

r r r o r

r

w
Q Q Q q k w w N

r r

w w w w
N N

r r r r r r

 

 



  

 
       



      
       

       

                                                      (23) 

   2 2

, ,

2 2 2

2 2 2 2

1
2 2 2 1 ( 2 1) 2 2

2 1 2 1 2 1 2 1 2
2 2 2 2 0

r r r o w p

r r

Q Q Q k w w k w k w
r

w w w w w
N N N

r r r r r r r

 

 



  

          

       
       

        

                                         (24) 

 , ,

1
0r r r r rMi Mi Mi Mi Qi

r
                                                                                             (25) 

 , ,

1
2 0r r rMi Mi Mi Qi

r
                                                                                                     (26) 

Based on the Eqs. (12)-(19), Eqs. (21)-(26) would be attained into displacements as below (Note 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


that in order to shorten and summarize, as Eqs. (23) and (24) are too long, they are not transferred 

into the displacement mode) 

 

2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2

2

2

1 1 1 1 1 1

1

1 1 1 1

2 (1 )

1

21

Eh ui wi wi ui vi vi wi wi
ui

r r r r r r r r r r r r

Eh vi vi ui wi wi wi wi

r r r r r r r r

Eh ui wi

r rr


    

      



         
          

            

       
      

          

   
    

   

 

2

2 2

2

1 1 1

2

1 1 1 1
0

2 21

ui vi wi

r r r

Eh ui wi ui vi wi
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Taking a look at the governing equations, it is clear that a two-dimensional solving process 

must be considered in which its solution is not possible by common analytical methods. In the 

paper, due to eccentricity and axisymmetric nonlinear problems, applying common analytical and 
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numerical methods are not possible, hence SAPM method which is presented by the authors [14, 

49] before is applied again. According to the previous work, the polynomial functions can be 

presented below: (i=1, 2) 

    
   1 1

1 1 1
1 1

N M
k t

k t k M
k t

ui ai r 
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    
 

                                                                                         (31) 
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By considering the above polynomial equations, the constitutive equations are transformed 

into algebraic equations system and might be solved conveniently. The obtained equations can be 

solved by the definition of boundary conditions. 

3. Numerical results 

Owing to this problem that there is no available study on the effect of eccentric defects, the 

obtained results of the monolayer macro sheet based on local theory considering different 

eccentricity values are validated with ABAQUS in Table 1. To assess the problem in FEM, we use 

a nonlinear triangular element. Moreover, the boundary conditions in the software were taken as 

CC and CF, which the first character relates to the outer diameter and the second one dedicates to 

the inner diameter. Generally, in this paper the C boundary condition means clamped and the F 

means free edges. The SAPM method is approximately 40 percent faster than ABAQUS by 
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considering high number of elements. Also, the nonlocal results of this paper for an 

annular/circular graphene sheet is compared with Ref [14] in Table 2. The insignificant differences 

between the results of this paper and Ref [14] are observed because this paper is two-dimensional 

analysis and Ref [14] is one dimensional. It is observed that the achieved results are similar to the 

results of ABAQUS and Ref [14]. Consequently, the SAPM gives acceptable results in this case 

and it could be possible to validate the obtained results of the mentioned method with the other 

references. The geometry and material properties of the sheet could be seen below (Table 1): 

11 2 40.1m; 0.5m; 0.01m; 1.9 10 N/m ; 0.29; 10 Pai or r h E q        

In Fig. 2, deflection of two layers versus the van der Waals interaction between two layers 

are compared. The plate specifications are as follows [19]: 

1nm; 5nm; 0.34nm; 1nm; 1.06TPa; 0.3; 0.1GPa

1.13GPa/nm; 1.13Pa.m

i o

w p

r r h e E q

k k

      

 
 

According to Fig. 2, it is observed that by raising the van der Waals interaction between two 

layers, the deflection of the upper layer decreases and for the bottom layer increases. In the 

following, by raising van der Waals force, deflections of both layers reach to each other, in 

continue, no significant differences can be seen. It can be noted that the van der Waals force 

between layers is dependent on the distance between layers and usually is taken ko = 40 GPa/nm. 

As Fig. 2 is shown, by raising the nonlocal parameter the deflections of both upper and bottom 

layers reach each other by small values of ko coefficient, and it has resulted that by raising nonlocal 

coefficient, the effect of van der Waals interaction between layers will be increased. 

Fig. 3 is plotted to show the effect of Rm. As it is observed, for the upper layer, deflection in 

the nonlocal case is always less than the local one. On the other hand, for the upper layer which 

Rm˂1, by raising ko or raising van der Walls force up to a specified value of ko, two nonlocal and 
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local analyses are far from each other and slope of the curve is steep. However, hereinafter by 

raising ko, Rm is constant without any effect, and the slope of the curve is approximately zero. Then, 

it is observed that by raising nonlocal coefficient, differences of nonlocal and local theories 

become more than before; however, without any effect on the mentioned ko which hereinafter 

variation of Rm becomes approximately zero. Also, the results of e0a =1 nm and e0a = 2 nm are 

similar as well. As it is shown in Fig. 3, for the bottom layer up to a specified ko on the contrary of 

the upper layer which deflection of nonlocal is less than local case, deflection of nonlocal is more 

than local. The rate of falling Rm for the bottom layer is similar to the upper layer, but the slope of 

variations is less than the upper layer. Finally, it is observed that by raising ko, Rm for both upper 

and bottom layers is identical, and after a specified ko, no change in Rm occurs, and the specified ko 

for two nonlocal cases of e0a =1 nm and e0a = 2 nm is approximately similar. 

Fig. 4 (a) and (b) show the diagram of deflection variations of the plate with CC boundary 

conditions versus raising eccentricity for different values of elastic medium Winkler-Pasternak. 

Taking a look at diagrams, it is concluded that the deflection of both upper and bottom layers will 

be increased by raising eccentricity e. Also, by raising kw and kp as it is expected, the deflection 

will be decreased, but it is considered that by raising 𝑘𝑝 the deflection of the plate is reduced a 

little more than the case with just Winkler medium. Therefore, in this example, the Pasternak 

medium has more effect on the decrease of deflection. Slopes of both diagrams of Fig. 4 are 

approximately similar and it has resulted that the effects of raising eccentricity e for both Winkler 

and Pasternak are the same with a slight deviation. According to the diagrams, it is observed that 

by raising kw and kp, the rate of variation is decreased. On the other hand, the effect of eccentricity 

e is decreased and it is concluded that in high values of kw and kp, the effect of raising of eccentricity 

e on results becomes very smaller than before. Also, by raising kw and kp, deviation of two upper 
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and bottom layers is increased, due to the bottom layer embedded on elastic medium and the upper 

layer is under transverse loading. As well as raising kw and kp, deflection of the bottom layer rather 

than the upper layer is reduced more, therefore deviation of deflection for both layers is heightened. 

In Fig. 5, the diagram shows variation of deflection versus raising eccentricity e, considering 

different nonlocal coefficients (CC boundary conditions). According to Fig. 5, as the same as Fig. 

4 (a) and (b), it is observed that by raising eccentricity e, deflections of both layers are raised. 

Again, by raising nonlocal coefficient, deflections of both layers get similar to each other, but no 

considerable changes in the slope of diagrams are observed. Further to the mentioned paragraphs, 

by raising nonlocal coefficient, deflections of both layers get closer and it has resulted that the 

nonlocal coefficient effects on van der Waals interaction between layers is increased which leads 

to strengthening the force between the layers. 

Fig. 6 shows the effect of nonlocal analysis versus moving defect. It is observed that by 

raising eccentricity e, variations of Rm are very small. Distinctly, for the upper layer, the changes 

are very small and ignorable, but for bottom layer the variations are considerable and it is observed 

that by raising eccentricity e, Rm is decreased and approaches to the value for the upper layer. 

Therefore, in graphene sheets with two layers, it can be seen that by raising or decreasing the 

position of defect, no considerable change in the nonlocal analysis is attained. For example, if 

nonlocal deflection in small values of eccentricity e is available, the deflection of the plate for 

higher values of eccentricity (e) could be predicted as well. In particular, with increasing the 

eccentricity of defect, by increasing anti-symmetric specification, the numerical analysis will be 

more complicated, and according to Fig. 6, the resulted values of small e could be utilized for 

obtaining results of the cases with larger e. 

To study the effect of the existence of the defect, Fig. 7 is presented. As it is observed, by 
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raising the nonlocal coefficient, the value of Rv is decreased, so increasing the small-scale effects 

leads to reducing the effect of availability of defect. Another result according to Fig. 7 can be 

mentioned that the variation of Rv for the bottom layer is severely more than the upper layer. For 

the bottom layer, at the start of growing the nonlocal coefficient, the variations are severe, but for 

the upper layer is vice versa and the variations are small. Also, for the bottom layer, the slope of 

variations is decreased and by the manner, along the raise of nonlocal coefficient, Rv is increased 

approximately similar for both upper and bottom layers. 

The effect of defect size in a bilayer defected circular graphene sheet is studied. Fig. 8 is 

presented in this regard. As it is demonstrated, by increasing defect size, the deflection of the plate 

is decreased. At first, the variations are severe, but in continue, the variations are decreased. Also, 

by raising the nonlocal coefficient, as it has resulted before, it is observed that deflection of both 

upper and bottom layers tends to each other but the slope of variations of two layers are similar 

and increase of defect size has the same effect on the results of upper and bottom layers. 

Finally, the nonlinear analysis has been conducted on the research. The nonlinear terms in 

the strain field lead to more accurate results for large deflections. Whatever the amount of loading 

imposed on the sheet surface intensifies, the large deflection will be produced. Consequently, the 

deflection variation of upper and bottom layers versus loading is attended. Fig. 9 shows the 

comparison between the linear and nonlinear analyses for a defected bilayer graphene sheet. It is 

observed that for lower amounts of loadings both linear and nonlinear analyses are identical. 

However, as the loading increases, the differences between linear and nonlinear studies will be 

more significant. The linear analysis gives the same increment of the results for the same variation 

of loading, absolutely on the contrary in nonlinear analysis. The differences between linear and 

nonlinear analyses are more considerable for the upper layer deflection rather than the bottom 
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layer. According to Fig. 9, it is concluded that if the sheet is under high loading, the linear analysis 

causes serious errors and the obtained results are not acceptable and the nonlinear analysis must 

be applied instead. The nonlinear analysis will be more complicated and increases the number of 

calculations dramatically; however, as stated before it gives more accurate results. Consequently, 

in this paper, the nonlinear analysis has been attended. 

4. Conclusions 

In the present study, the nonlinear bending behavior of double-layered defected graphene 

sheets is studied based on nonlocal elasticity theory while the plate is rested in an elastic matrix. 

The governing equations are derived by considering the van der Waals interaction between the 

layers. The constitutive equations are solved using SAPM which was presented by authors before. 

The main out-comings of the article can be summarized as follows: 

 SAPM which is a semi-analytical method gives appropriate results in comparison with the 

other numerical methods. 

 By raising the nonlocal coefficient, the effect of van der Waals interaction between the 

layers will be increased. 

 The results are dependent on the value of Winkler and Pasternak elastic foundations. 

Whatever the defect reaches to the edges, the effect of Winkler and Pasternak elastic 

mediums are approximately the same, however, the Winkler foundation’s effect is 

inconsiderably more than Pasternak. 

 The value of eccentricity has the same effects on the results for different values of the 

nonlocal parameter. 

 The increase of defect size has the same effects on the results of the upper and bottom 

layers. 
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 The presence of the defect affects the upper layer’s deflection significantly more than the 

bottom layer. 

 The small-scale effect decreases with the growth of the defect. 

 Nonlinear analysis gives more accurate results especially for large deflections in which the 

linear results are not acceptable. 
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Figure Captions 

Fig. 1. Schematic view of Winkler-Pasternak medium and van der Waals interaction (a) and 

geometrical view of the defect (b) 

Fig. 2. Maximum deflection of upper and bottom layers versus ko 

Fig. 3. Rm for upper and bottom layers versus ko 

Fig. 4. Maximum deflection of upper and bottom layers versus eccentricity for (a) different 

values of kw (b) kp 

Fig. 5. Maximum deflection of upper and bottom layers versus eccentricity for different values 

of nonlocal parameter 

Fig. 6. Variation of Rm for upper and bottom layers versus eccentricity for different values of 

nonlocal parameter 

Fig. 7. Variation of Rv for upper and bottom layers versus nonlocal parameter 

Fig. 8. Variation of maximum deflection for upper and bottom layers versus ri for different 

values of nonlocal parameter 

Fig. 9. Linear and nonlinear deflection results of bilayer defected graphene sheet 
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List of Tables 

Table 1. Maximum deflection obtaining in present paper and ABAQUS 

Table 2. Comparison between the results of present paper and Ref [14] 
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Fig. 1 
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Fig. 2 
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Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100

R
m

ko (GPa/nm)

Upper layer e0a = 1 nm

Bottom layer e0a = 1 nm

Upper layer e0a = 2 nm

Bottom layer e0a = 2 nm

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Table 1. Maximum deflection obtaining in the present paper and ABAQUS for a circular macro 

plate 

BCs 
e 

(m) 

w (mm) 

ABAQUS 
Present 

Elements=6500 13000 30000 50000 

CC 

0 0.03862 0.03902 0.03933 0.03933 0.03936 

0.05 0.05972 0.06032 0.06090 0.06090 0.05757 

0.1 0.08747 0.08839 0.08910 0.08910 0.08611 

0.15 0.12250 0.12370 0.12435 0.12435 0.1121 

0.2 0.16460 0.16596 0.16678 0.16678 0.1507 

FC 

0 0.57170 0.57392 0.57592 0.57592 0.5711 

0.05 0.60771 0.61020 0.61261 0.61261 0.5895 

0.1 0.61642 0.61952 0.62213 0.62213 0.6012 

0.15 0.59870 0.60258 0.60484 0.60484 0.5773 

0.2 0.56261 0.56509 0.56712 0.56712 0.5467 
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Table 2. Comparison between the results of present paper and Ref [14] 

/ ow r  

 0 nme a  [14] Present 

0 0.003063 0.003069 

0.5 0.002985 0.002990 

1 0.002774 0.002778 

1.5 0.002484 0.002487 

2 0.002170 0.002173 
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