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Abstract
Genuinely entangled subspaces (GESs) are the class of completely entangled sub-
spaces that contain only genuinely multiparty entangled states. They constitute a
particularly useful notion in the theory of entanglement but also have found an appli-
cation, for instance, in quantum error correction and cryptography. In a recent study
(Demianowicz and Augusiak in Phys Rev A 98:012313, 2018), we have shown how
GESs can be efficiently constructed in any multiparty scenario from the so-called
unextendible product bases. The provided subspaces, however, are not of maximal
allowable dimensions, and our aim here is to put forward an approach to building
such. The method is illustrated with few examples in small systems. Connections
with other mathematical problems, such as spaces of matrices of equal rank and the
numerical range, are discussed.

Keywords Genuinely entangled subspace · Genuinely multiparty entangled ·
Completely entangled subspace · Entanglement · Spaces of matrices of bounded rank

1 Introduction

Genuinely entangled states are a crucial resource for many quantum information pro-
cessing protocols in networks (see, e.g., [1–5]). Their exhaustive characterization is
thus of vital importance for the success of future quantum technologies, and for this

B Maciej Demianowicz
maciej@mif.pg.gda.pl

Remigiusz Augusiak
augusiak@cft.edu.pl

1 Atomic Physics Division, Department of Atomic, Molecular and Optical Physics, Faculty of
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reason, it has been the subject of intensive, both theoretical (see, e.g., [6–9]) and
experimental (see, e.g., [10–12]), studies.

A particular line of research on entanglement in multipartite systems concerns
characterization of subspaces composed only of entangled states. Primarily, these
were completely entangled subspaces (CESs), that is, subspaces only with states that
are in any way entangled [13–15]. Recently, we have witnessed an interest in so-called
genuinely entangled subspaces (GESs), i.e., subspaces composed solely of genuinely
multiparty entangled (GME) states, or, in other words, void of states displaying any
form of separability [16–19]. The initial interest in CESs and GESs stemmed from
the observation that (mixed) states supported on them are, respectively, entangled and
GME. However, entangled subspaces have also been proved useful in quantum error
correction [20–24] (in particular, k-uniform subspaces [15]) and, very recently, their
applicability in cryptographic protocols has been recognized [25]. It is expected that
the range of their applications is much wider and they may be a more general resource
in protocols where entangled states already serve as such.

One of the main problems in the area is the construction of entangled subspaces,
in particular, those of the maximal possible dimensionality. While it is known how
to approach it in the case of CESs, the problem remains unsolved in the general
case for GESs and only suboptimal with this respect constructions have been put
forward [16,17]. The aim of the present paper is to fill this gap and propose an approach
to constructingmaximal GESs. Our strategy is to select those subspaces from the set of
CESs which are at the same time GESs. The main tool of our treatment of the problem
is the characterization of bipartite CESs given in [26] and its application boils down
to finding the form of full rank matrices satisfying a certain finite set of conditions.

The paper is organized as follows. In Sect. 2, we provide the necessary background
and the notation. In Sect. 3, we introduce a general method of constructing maximal
GESs in qubit systems and discuss its application mainly in the three-partite case.
Further, in Sect. 4, we show how the method can be applied in the multiparty setup
with parties holding qudits instead and illustrate it with an example. Section 5 discusses
connections of the main problem with the notions of spaces of matrices of equal rank
and the restricted numerical range. We conclude in Sect. 6, where we also point out
some potential future research directions and state open problems.

2 Preliminaries

We begin with an introduction of the terminology and the notation.
Notation In the paper, we focus on finite-dimensional product Hilbert spaces,

denoted Hd1,d2,...,dn = C
d1 ⊗ C

d2 ⊗ · · · ⊗ C
dn or Hdn = C

d ⊗ · · · ⊗ C
d . Subsys-

tems are denoted A1, A2, . . . , An =: A in the general multipartite case or A, B, . . .

for smaller systems. For pure states, we use the traditional denotations: |ψ〉, |ϕ〉, . . .,
often adding subscripts corresponding to respective (groups of) parties, e.g., |ψ〉ABC .
We will use the standard basis for all the parties {|i〉}di=0 and the kets will be written
as row vectors.

Entanglement An n-partite pure state |ψ〉A1A2...An is said to be fully product if it
can be written as |ψ〉A1A2···An = |ϕ〉A1 ⊗ |φ〉A2 ⊗ · · · ⊗ |ξ 〉An . Otherwise it is called
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entangled. Among entangled states, a particularly interesting class is constituted by
genuinely multiparty entangled (GME) states, i.e., those which cannot be written as
|ψ〉A1A2···An = |ϕ〉S ⊗ |φ〉S̄ for any bipartite cut (bipartition) S|S̄, where S is a subset
of the parties and S̄ := A\S. In other words, a GME state is not biproductwith respect
to any bipartite cut of the parties. A canonical example of a GME state is the famous
GHZ state |GHZ〉 = 1/

√
2(|00 · · · 0〉 + |11 · · · 1〉). A state |ψ〉 is called k-product if

it is of the form

|ψ⊗k 〉 = |ψ1〉S1 ⊗ |ψ2〉S2 ⊗ · · · ⊗ |ψk〉Sk , (1)

where S1 ∪ S2 ∪ · · · ∪ Sk = A is a k-partition. In the particular case k = n, the vector
is fully product; when k = 2 it is biproduct.

Completely and genuinely entangled subspaces It is a well-established fact that
there exist nontrivial subspaces containing only entangled states, so-called completely
entangled subspaces (CESs) [13–15]. It has been shown that their maximal achievable
dimension forHdn is DCES

max = dn −nd+n−1 = (dn−1+dn−2+· · ·+1−n)(d−1).
A characterization of CESs in the bipartite case with a qubit subsystem, i.e.,H2,m ,

relevant for our purposes, has been given in [26]. We present it in Sect. 3 and further
extend it in Sect. 4 to the domain of qudits.

If one additionally imposes the condition that all states in a CES are not only
entangled but their entanglement is genuinely multiparty, one then obtains genuinely
entangled subspaces (GESs) [16,17] (see also [15,27]). Since this notion is crucial in
the present paper, we single out their formal definition.

Definition 1 AsubspaceG ⊂ Hd1,...,dn is called a genuinely entangled subspace (GES)
of Hd1,...,dn if any |ψ〉 ∈ G is genuinely multiparty entangled (GME).

To obtain the maximal available dimension of a GES, one needs to consider maximal
dimensions of all bipartite CESs and take the smallest among them. It is then easy to
see that for Hdn [27]:

DGES
max = (dn−1 − 1)(d − 1). (2)

Importantly, it is in fact achievable as a set of randomly chosen DGES
max vectors will

typically span a GES. The achievability can also be seen from the construction given
in the present paper. We comment on this issue later in the manuscript.

An example of a two-dimensional GES of H2n is given by the span of the already
mentioned GHZ state and the W state, |W 〉 = 1/

√
n(|00 . . . 001〉 + |00 . . . 010〉 +

· · · + |10 . . . 000〉). In Refs. [16,17], we have given few other constructions of GESs
working in general multiparty scenarios attaining larger dimensions. In particular, one
of these constructions gives a GES of dimension dn−2(d − 1)2. Let us recall it here,
for simplicity considering H33 . Given is the set of vectors (α ∈ C): (1, α + α3, α2 +
α6) ⊗ (1, α3, α6) ⊗ (1, α, α2). The subspace orthogonal to the span of these vectors
is a twelve-dimensional GES. Choosing a set of twelve linearly independent vectors
of the form above, one obtains an example of a tripartite non-orthogonal unextendbile
product basis.
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As a concluding remark, we note that one could also consider ”intermediately”
entangled subspaces, i.e., completely entangled subspaces which are not only void of
fully product vectors but also lack k-product ones with 2 < k < n. While they are
clearly interesting from the theoretical standpoint, it is an open question whether they
are of any practical relevance.

3 Maximal GES in qubit systems

We now turn to the main body of the paper and propose a construction of GESs of
maximal dimensionality. As discussed earlier, our strategy is to use a certain charac-
terization of bipartite CESs related to a one versus many parties cut and select from
them those which are GESs at the same time.

In this section, we consider multiple qubit Hilbert spaces, i.e.,H2n := (C2)⊗n . The
mentioned relevant characterization of bipartite maximal CESswith a qubit subsystem
was given in [26]. We recall it below.

Fact 2 [26] Let V be an (m − 1)-dimensional CES of C2 ⊗ C
m. Then there exists a

nonsingular transformation A : Cm → C
m, such that the following vectors span V⊥

(α ∈ C)

|e(α), fA(α)〉 ≡ (1, α) ⊗ A
(
1, α, α2, . . . , αm−1

)
. (3)

In our case, Cm = (C2)⊗(n−1) and we realize that the dimension of the CES
agrees with the maximal possible dimension of a GES in this setup: 2n−1 − 1.
Our aim is to give a characterization of full rank matrices A in (3) leading to
GESs.

Before we move to the detailed discussion, let us sketch a general picture of
our approach. The condition that V is a GES is equivalent to saying that it is
void of any biproduct vectors, i.e., we require vectors of the form |ψ〉S ⊗ |φ〉S̄ ,
for any bipartition S|S̄, not to belong to V . In other words, there can be no such
vectors orthogonal to the subspace spanned by the vectors |e(α), fA(α)〉. In what
follows, we strictly formalize the latter condition, which in turn characterizes all
A’s leading to GESs. We will refer to such characterization of GESs as the A-
representation.

It is useful to realize that the task is non-trivial and not all full rank matrices will
do the job. With this aim, notice that: (1, α, α2, . . . , α2n−1−1)A2...An = (1, α2n−2

)A2 ⊗
(1, α2n−3

)A3 ⊗ · · · ⊗ (1, α)An . This implies that candidate matrices A cannot be
product (this in turn precludes, e.g., the simplest choice A = I) as locally on A1
and An the subspace spanned by |e(α), fA(α)〉 is then three-dimensional and there
thus exists a vector in V which is product across the cut A1An|A2 . . . An−1. This is
most easily seen for three parties with A = I. We then have the vectors spanning
V⊥: (1, α)A ⊗ (1, α2)B ⊗ (1, α)C . The vectors orthogonal to all these vectors are
|ψ−〉AC ⊗ |γ 〉B , where |ψ−〉 = 1/

√
2(|01〉 − |10〉) and |γ 〉 is arbitrary.
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3.1 General case: n qubits

Let V be a subspace whose orthocomplement V⊥ is given by Eq. (3) with some full
rankmatrixA : (C2)⊗(n−1) → (C2)⊗(n−1) acting on A2, . . . , An subsystems. Choose
a S|S̄ bipartition, S ∪ S̄ = A, with |S| = k, |S̄| = n − k (k ≤ �n/2
) and consider the
following (unnormalized) vectors which are product along this cut:

|β, g〉 := |β〉S ⊗ |g〉S̄ = (β∗
0 , β∗

1 , . . . , β∗
2k−1)S ⊗ (g∗

0 , g
∗
1 , . . . , g

∗
2n−k−1)S̄ . (4)

The complex conjugation of the elements is for later convenience. We assume the
parties are ordered lexicographically within each group and the permutation leading
to such order isσ . For example, for S = A2A5 and S̄ = A1A3A4, we haveσ(12345) =
25134. One can notice that due to this ordering the permutation actually determines
uniquely the bipartition.

A biproduct vector (4) belongs to V if the following holds:

〈β, g|e(α), fA(α)〉 = 0, ∀α. (5)

Assuming

A =
1∑

i2,...,in=0
i ′2,...,i ′n=0

ai2...in ,i ′2...i ′n |i2 . . . in〉〈i ′2 . . . i ′n| (6)

and representing the indices of βi and g j in base-2, condition (5) then rewrites for all
α:

1∑
i1,...,in=0
j2,..., jn=0

αi1+ j22n−2+···+ jn20βiσ(1)...iσ(k)giσ(k+1)...iσ(n)
ai2...in , j2... jn = 0. (7)

The LHS of the above is just a polynomial of degree 2n−1 in α. Since the condition
must hold for any α, each coefficient of this polynomial must be equal to zero, i.e.,

1∑
i1,...,in=0
j2,..., jn=0

i1+ j22n−2... jn20=m

βiσ(1)...iσ(k)giσ(k+1)...iσ(n)
ai2...in , j2... jn = 0, (8)

where m ∈ {0, 1, . . . , 2n−1}. If we now treat β∗
i ’s as parameters, Eq. (8) is a homoge-

neous system of 2n−1 + 1 linear equations on 2n−k unknowns g∗
i with the principal

matrix given by:

[Xσ ]m1...mn−k ,p
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:=
1∑

i1,...,in=0
j2,..., jn=0

i1+ j22n−2... jn20=p

βiσ(1)...iσ(k)ai2...in , j2... jnδm1...mn−k ,iσ(k+1)...iσ(n)
(9)

with ml ∈ {0, 1}. The demand for a biproduct vector satisfying (5) not to exist, i.e., V
to be a GES, requires that the system only has the trivial solution. This only happens
when the principal matrix (9) of the system is full rank, i.e.,

r(Xσ ) = 2n−k (10)

for all βi ’s not being simultaneously zero. In other words, there cannot be such values
of βi ’s for which r(Xσ ) < 2n−k . The latter condition can be examined using the

minors of order 2n−k of Xσ . There are
(2n−1+1

2n−k

)
such minors being (homogeneous)

polynomials in βi ’s, and the rank deficiency of Xσ would require them to have a
common root.

We perform analogous analyses for all bipartitions, which is equivalent to all per-
mutations with properly ordered parties and in consequence all k ≤ �n/2
 bipartitions
(except A1|A2 . . . An , which by construction does need to be examined as the subspace
is a CES across this cut) as mentioned earlier. We thus arrive at the following.

Theorem 3 Let V be the subspace of H2n orthogonal to the span of the vectors
|e(α), fA(α)〉 (3). Then, V is a GES of dimension 2n−1 − 1 iff matrices Xσ ’s (9)
for all permutations σ are full rank for any values of β’s.

For a given matrixA, these conditions can be checked using the Gröbner basis [28].
Finding explicit form of a GES is an easy task once we know A as one can for
example determine the projection onto V⊥ and then find the orthogonal projection.
However, finding a general characterization of A for any n and d, or, in other words,
characterizing the set of all GESs through their A-representations, seems a hopeless
task due to the complexity of the problem. It appears that all one could hope for
are examples of classes of good matrices for particular cases. One can also easily
construct necessary conditions by considering particular classes of biproduct states
not to be present in a subspace. This will be our approach in further parts of the paper.

We should note that a generic A will lead to a GES as generically the sets of poly-
nomials under scrutiny will not have common roots. Nevertheless, a random matrix
will not be satisfactory from the practical point of view and in further parts we will be
interested in some structured examples of constructions.

In what follows, anA matrix for a setup with n parties holding d level subsystems
will be denoted by A(n,d).

3.2 Three-qubits case

Let us illustrate the method with the three-qubits case. In principle, in this case it is
possible to solve the problem fully and characterize all matricesA for GESs. However,
the characterization one obtains is very complicated and does not offer much insight
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into the structure of the matrices, which could later serve as a hint for generalizations
for more parties. We will thus be satisfied with an exemplary few parameters class of
matrices for GESs and an easy closed-form necessary condition for the form of A.

3.2.1 General case

The vectors spanning the subspace orthogonal to a GES are now given by:

(1, α)A ⊗ A(3,2)(1, α, α2, α3)BC , α ∈ C, (11)

with a properly chosen full rank matrix

A(3,2) =
1∑

m,n=0

1∑
μ,ν=0

amμ,nν |mμ〉〈nν|. (12)

The matrixA(3,2) must be constructed in such a way that there are no product, across
the cuts B|AC and C |AB, nonzero vectors perpendicular to the subspace spanned
by vectors (11). Let us concentrate on the first case, while for the second one the
reasoning goes along the same lines with the only difference that the matrix elements
are reshuffled in a certain manner.

Let the vectors product across B|AC be written as [cf. (4)]

(1, β∗)B ⊗ ( f ∗
00, f ∗

01, f ∗
10, f ∗

11)AC . (13)

If there existed such a vector in the subspace under scrutiny, the following would be
true for any value of α [cf. (7)]:

1∑
k=0

1∑
m,μ
n,ν=0

βm fkμamμ,nνα
2n+ν+k = 0, (14)

which is equivalent to the statement that for every power ofα in the above its coefficient
equals to zero [cf. (8)], i.e.,

1∑
k,m,n,μ,ν=0
2n+ν+k= j

βmamμ,nν fkμ = 0, j = 0, 1, 2, 3, 4. (15)

For anyβ, Eq. (15) is a systemof linear equationswith the unknowns fkμ (k, μ = 0, 1).
Its principal matrix is five-by-four and has the elements [cf. (9)]:

[XB|AC (β)] j,kμ =
1∑

m,n,ν=0
2n+ν+k= j

βmamμ,nν . (16)
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In the more appealing matrix form, this reads

XB|AC (β) =

⎛
⎜⎜⎝

0 0
βa2 + a0 βa3 + a1

βa2 + a0 βa3 + a1
0 0

⎞
⎟⎟⎠ , (17)

where ai ’s are the rows of A written as columns.
System (15) has a nontrivial solution for fkμ iff there exists a value of β such that

r [XB|AC (β)] < 4.
Analogously, for the AB|C cut we consider vectors (g∗

00, g
∗
01, g

∗
10, g

∗
11)AB ⊗

(1, γ ∗)C and obtain the corresponding matrix:

[XC|AB(γ )] j,kμ =
1∑

m,n,ν=0
2n+ν+k= j

γmaμm,nν, (18)

or, in the matrix form,

XC|AB(β) =

⎛
⎜⎜⎝

0 0
βa1 + a0 βa3 + a2

βa1 + a0 βa3 + a2
0 0

⎞
⎟⎟⎠ , (19)

which compared to (16) simply involves the swap of the second and the third row of
A(3,2). Again, if there existed a product vector for this cut, there would be a value of
γ for which r [XC|AB(γ )] < 4.

The following then provides a necessary and sufficient condition for a matrixA(3,2)

to correspond to an A-representation of a GES (cf. theorem 3).

Fact 4 A(3,2) corresponds to a GES of H23 iff the matrices XB|AC (β) (16) and
XC|AB(γ ) (18) are rank four for any β and γ , respectively.

In turn, characterizing all GESs in three-qubit systems amounts to determining
the form of A(3,2)’s for which XB|AC (β) and XC|AB(γ ) are full rank for any values
of the parameters. Since an m × n (m ≥ n) matrix has the rank lower than n iff
m distinct n × n minors are zero, the full rank condition on each of the matrices
tells us that all of its five principal minors cannot vanish simultaneously for some
value of the parameter (β or γ ), i.e., they cannot have a common root when treated
as polynomials in this parameter. In principle, this can be checked analytically for
any given matrix as the minors are now polynomials of degree at most four and the
methods of solving such polynomial equations are available. Unfortunately, we have
not been able to obtain a compact closed-form characterization of such A’s. It is
nevertheless possible to obtain a simple necessary condition on these matrices by
considering particular biproduct states, namely the ones with β, γ = 0 and β, γ =
∞, which correspond to, respectively, (1, 0)B,C and (0, 1)B,C . Imposing now that

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


An approach to constructing genuinely entangled subspaces… Page 9 of 19   199 

r [XB|AC (0)] = r [XB|AC (∞)] = r [XC|AB(0)] = r [XC|AB(∞)] = 4, we obtain the
announced necessary condition.

Theorem 5 Let Ai j be the submatrix ofA(3,2) composed of its i th and jth rows. If the
subspace orthogonal to the span of vectors (3) is a GES, then neither of the matrices
A01, A23, A02, or A13 is of the form:

(
0,b, c,−ξ2b + ξc

)
,

(
a,b,

(
ξ2 − ξ21

)
a + ξ1b,−ξ1ξ2a + ξ2b

)
, (20)

where a,b, c ∈ C
2, ξ, ξ1, ξ2 ∈ C.

The proof is moved to Appendix C.
These forms can be further restricted by considering non-existence of other vectors

in a subspace, e.g., |+〉|i〉| j〉 and |−〉|i〉| j〉, i, j = 0, 1. One can also reduce the
number of parameters at the very beginning and consider only matrices of the form:
A = |0〉〈0| ⊗ (a|0〉〈0| + b|1〉〈1|) + |0〉〈1| ⊗ A01 + |1〉〈0| ⊗ A10 + |1〉〈1| ⊗ A11, with
a, b ≥ 0 and two-by-two matrices Ai j . This is due to the fact that we can always write
A = ∑

i, j |i〉〈 j | ⊗ Ai j and perform 1 ⊗ U (·)1 ⊗ V † with U , V stemming from the
singular value decomposition of A00 (this also applies to other blocks). The unitaries
are local operations and do not change entanglement properties of the system. The
latter approach, however, does not appear to simplify significantly the problem.

3.2.2 Fully solved class ofA(3,2)

Here we give an exemplary class of matrices, which can be fully solved to give the
necessary and sufficient conditions. Consider the following A matrix:

A(3,2)(x) =

⎛
⎜⎜⎝
x �= 0 0 0 0
0 a1,1 a1,2 0
0 a2,1 a2,2 0
0 0 0 1

⎞
⎟⎟⎠ (21)

with a1,1a2,2 − a1,2a2,1 �= 0 to satisfy the full rank condition. Using simple algebra,
one finds that it gives a GES if and only if the following conditions are fullfilled:

ai, j �= 0, a1,1a2,2 − x �= 0, a1,2a2,1 − x �= 0. (22)

3.2.3 Decomposition of a Hilbert space into GESs

Here we give an example of a decomposition ofH23 into three GESs, with two of them
obviously being maximal, i.e., of dimension 3. Such decompositions into orthogonal
entangled subspaces are known for CESs [29] and may be of use in quantum error
correction.

To this purpose, let us consider a particular matrix from the class considered above,
namely A(3,2)(x = 2). It is easy to verify that the following set of (not orthonormal-
ized) vectors span the corresponding GES: |ϕ1〉 = |001〉 − |010〉 − 2|011〉 − 2|110〉,
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|ϕ2〉 = |001〉 − |010〉 + 2|011〉 − 2|101〉, |ϕ3〉 = |001〉 + |010〉 − |100〉. Let us call it
GES(3)

1 with the superscript standing for its dimension. One immediately notices that
in its orthocomplement there are the following twoGME states which themselves span
a two-dimensional GES: |ψ1〉 = |GHZ〉 = |000〉 + |111〉, |ψ2〉 = |001〉 + |010〉 +
2|100〉. Any state orthogonal to |ψ1〉, |ψ2〉, and GES(3)

1 must have the form: |ψ̃3〉 =
a0|000〉+b0|001〉−b0|010〉+d0|011〉+ (b0 +d0)|101〉+ (b0 −d0)|110〉−a0|111〉.
We also require that the span of |ψ1〉, |ψ2〉, and |ψ̃3〉 is also a GES. An exemplary
(unnormalized) state satisfying these conditions is (a0 = b0 = 0, d0 = 1): |ψ3〉 =
|011〉+|101〉−|110〉. Let us denote: GES(3)

2 = span{|ψ1〉, |ψ2〉, |ψ3〉}.The remaining
two-dimensional subspace is:H2 = span{|000〉−|111〉, |001〉−|010〉+|101〉+|110〉}.
It is easy to verify that it is again a GES, call it GES(2)

3 . In turn, we have the decom-

position: H23 = GES(3)
1 ⊕ GES(3)

2 ⊕ GES(2)
3 .

3.3 Four qubits example

In case of a larger number of parties, the characterization is very difficult due to the
number of the bipartite cutswhich need to be considered.We thus only give an example
of a binary symmetric matrix for a GES. The matrix reads as follows:

A(4,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 1 1
0 1 1 1 0 0 1 0
1 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1
0 0 1 1 1 1 0 0
0 0 1 0 1 1 0 1
1 1 0 0 0 0 1 0
1 0 1 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

The spanning vectors for this GES are given in Appendix A.

4 Maximal GES in qudit systems

We now treat the case of higher-dimensional subsystems. We concentrate on the case
of equal local dimensions, but the result can be easily generalized to any dimensions.
It turns out that a reasoning similar to the one given in Sect. 3 can also be successfully
applied here. This is due to the following lemma.

Lemma 6 Let V⊥ be the subspace spanned by the vectors (α ∈ C)

(1, α, . . . , αd−1)A1 ⊗ A(1, α, α2, α3, . . . , αdn−1−1)A2A3···An , (24)

with a full rank matrixA : (Cd)⊗(n−1) → (Cd)⊗(n−1). Then, the subspace V orthog-
onal to V⊥ is a CES. In particular, all vectors from V are entangled across the
A1|A2 . . . An cut. The dimension of V is maximal for the given dimensions and reads:
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dim V = (dn−1 − 1)(d − 1). (25)

This lemma follows directly from [15], where a construction of CESs without the
matrix A was put forward. This additional element in the construction allows us to
select those CESs which are also GESs of Hdn . The derivation of the conditions on
A goes along the same lines as in Sect. 3.1, and we omit it here as it does not provide
any additional insight.

We stress that in this case not all CESs are given through the characterization
put forward in Lemma 6, and in turn, not all GESs may be obtained through this
approach. In principle, it could even be the case that none of the GESs is characterized
in this way. Nevertheless, a generic matrix will again do the job so we are sure that
this is not the case. Clearly, the problem of finding a description of good A’s gets
much more involved here even for the tripartite case as there are no closed-form
expression for roots of polynomials of degree larger than four. In the general (n, d)

case, it is thus natural to consider necessary conditions for the form of the matrix
as discussed earlier but even for the simplest cases they get quite involved and we
only give an exemplary matrix in the qutrit case for three parties in the following
subsection.

4.1 Qutrit example

As an illustration, we provide a simple binary matrix giving theA-representation of a
GES in the case of three qutrits:

A(3,3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0
0 0 0 1 0 1 1 1 0
0 1 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 1 0 0
0 0 1 1 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

The explicit form of the spannig vectors for this GES is given in Appendix B.

5 Connections with other fields

In this section, we discuss connections of the problem of constructing GESs to other
fields, in particular, spaces of matrices of equal rank [30] (see also [31] for an appli-
cation of the concept in the area of quantum error correction) and the restricted, in
particular local/product, numerical range [32,33]. In the former case, the connection
is established for the maximal GESs, in the latter—it is a general relation regardless
of the dimension of a subspace.
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5.1 Spaces of matrices of equal rank perspective

We concentrate here for simplicity on the three-qubit case, but the argument easily
generalizes to other cases as well.

One quickly realizes that the matrix XB|AC (β) (16) is just of the general form
XB|AC (β) = A1 + βA2, with five-by-four matrices Ai having elements drawn in a
certain way from A. Let us introduce the space of matrices spanned by A1 and A2:
XB|AC = span{A1,A2}. The condition on A to gives rise to the A-representation
of a GES, i.e., that for all values of β it holds: r [XB|AC (β)] = 4, is then equivalent
to the demand that XB|AC is a so-called 4-subspace, that is, all its elements are rank
four. Analogously, one introduces another space of matrices XC|AB stemming from
considering biproduct vectors across the AB|C cut. Our problem of finding goodA’s
for the three qubit case can be thus phrased as follows.

Problem. Which full rank A’s lead to XB|AC and XC|AB being 4-subspaces (i.e.,
containing only rank-4 elements )?

It should be noted that the connection we have established here is of different nature
than the one from [27], where construction of entangled subspaces was related to the
notion of spaces of matrices of bounded (from below) or equal rank.

5.2 Restricted numerical range perspective

Various notions of a numerical range have appeared in the quantum information lit-
erature in the recent years [32–36]. The one relevant for the present problem—local
or product range—belongs to a general class of the restricted numerical range. Let us
recall these notions.

The following set is called the restricted numerical range of a matrix A [32]:

ΛT (A) = {〈ψ |A|ψ〉 : ‖|ψ〉‖ = 1, |ψ〉 ∈ ΩT }, (27)

where T specifies the type of pure states. If the states belong to the set of fully product
states, denote it Ω⊗n , one then deals with the local or product numerical range
Λ⊗n [33].

We propose to consider a more general notion, namely that of the k-product numer-
ical range of a matrix A, which we define as follows

Λ⊗k (A) = {〈ψ |A|ψ〉 : ‖|ψ〉‖ = 1, |ψ〉 ∈ Ω⊗k }, (28)

where Ω⊗k is the set of k-product vectors. For k = n, this notion is equivalent to
the above-defined product numerical range, which we now propose to call fully prod-
uct one to avoid confusion. In the particular case of k = 2, we have the biproduct
numerical range Λ⊗2 . The trivial case k = 1 simply recovers the numerical range of
A, Λ(A) [37]. Obviously, for a given matrix, the following inclusion relation holds:
Λ⊗n ⊆ Λ⊗n−1 ⊆ · · · ⊆ Λ⊗2 ⊆ Λ⊗1 ≡ Λ.

Let us now discuss the connection of these notions with the problem of determining
whether a subspaces is completely or genuinely entangled. Assume a decomposition
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of the whole Hilbert spaceH:H = P⊕Q, whereP is a GES or a CESwith projection
P; the projector onto Q is Q, i.e., P + Q = 1. Clearly, it holds:

〈ψ⊗2 |Q|ψ⊗2〉 �= 0, ∀ψ⊗2 (GES), (29)

〈ψ⊗n |Q|ψ⊗n 〉 �= 0, ∀ψ⊗n (CES), (30)

or, stating it differently:

〈ψ⊗2 |P|ψ⊗2〉 �= 1, ∀ψ⊗2 (GES), (31)

〈ψ⊗n |P|ψ⊗n 〉 �= 1, ∀ψ⊗n (CES). (32)

In consequence, we have the following fact.

Fact 7 LetH = P ⊕Q, and let P and Q be projections onto, respectively, P andQ.
Subspace P is a

(a) GES iff 1 /∈ Λ⊗2(P), or, equivalently, 0 /∈ Λ⊗2(Q),
(b) CES iff 1 /∈ Λ⊗n (P), or, equivalently, 0 /∈ Λ⊗n (Q).

In some applications, it might be convenient to consider a more specified notion.
Let Ωstr.

⊗k be the set of strictly k-product vectors, that is, k-product ones for which
none of the local vectors can further be written in a product form. We then define the
strictly k-product numerical range of A as follows: Λstr.

⊗k (A) = {〈ψ |A|ψ〉 : ‖|ψ〉‖ =
1, |ψ〉 ∈ Ωstr.

⊗k }.
Concluding, let us note that the set ΩT in (27) can also be taken to be the set

Ωk−produc. of so-called k-producible states, that is, states which can be written as a
product of at most k-partite states. We then arrive at the notion of the k-producible
numerical range: Λk−produc.(A) = {〈ψ |A|ψ〉 : ‖|ψ〉‖ = 1, |ψ〉 ∈ Ωk−produc.}. This
notion is expected to be useful, e.g., in the study of the entanglement depth [38,39] in
multiuser networks.

6 Conclusions and outlook

We have considered the problem of constructing genuinely entangled subspaces
(GESs) of the maximal possible dimension in any multipartite setup. The solution
we have proposed here relies on a certain characterization of completely entangled
subspaces (CESs) and boils down to finding a form of full rank matrices fulfilling
some finite set of conditions. Unfortunately, we have not been able to provide a gen-
eral form of such matrices for any number of parties holding systems of arbitrary
dimensions. Nevertheless, we have proposed how to construct necessary conditions
for these matrices and found their explicit form in the three-qubit case. We have also
provided exemplary matrices for some other small systems. Finally, connections with
the notions of spaces of matrices of equal rank and the restricted numerical range have
been discussed.

The results of the present paper raise the question about a general construction of
thematrixAworking in any dimensions and number of parties. It seems a very difficult
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  199 Page 14 of 19 M. Demianowicz, R. Augusiak

task, but it appears that some methods from different fields might prove useful with
this aim. It may also be possible that some other approach could more easily provide
a general construction of GESs. In particular, it seems that the most promising one
might bebasedon thenotionof spaces ofmatrices of bounded rank already successfully
applied for completely entangled subspaces. This will be considered elsewhere [M.
Demianowicz and R. Augusiak, in preparation].
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A GES from Sect. 3.3 (four qubits example)

The GES corresponding to matrix (23) is: GES(A(4,2)) = span{|0100〉 + |0110〉 −
|0111〉 + |1000〉 − |1111〉, |0001〉 + |0010〉 − |0100〉 − |0110〉 − |1110〉, 2|0000〉 +
5|0010〉 − |0011〉 − |0100〉 − 5|0101〉 − 4|0110〉 − |0111〉 + 2|1100〉, 2|0000〉 −
|0001〉+|0010〉+|0011〉+2|0100〉−3|0101〉−|0110〉−|1001〉, 2|0000〉−|0001〉+
2|0010〉+|0011〉+|0100〉−4|0101〉−2|0110〉−|1000〉+|1101〉, |0000〉−|0001〉−
|0010〉+2|0011〉 +|0100〉−2|0101〉+|0111〉−|1000〉+|1011〉, 4|0000〉−4|0001〉+
|0010〉+3|0011〉+3|0100〉−7|0101〉−2|0110〉+|0111〉−2|1000〉+2|1010〉}. That
this is indeed a GES can be verified with the Gröbner basis for the corresponding set of
polynomials as given in the general formulation of the method or with the techniques
considered in [17].

B GES from Sect. 4.1 (three qutrits example)

The GES is as follows: GES(A(3,3)) = span{|010〉 − |021〉 − |211〉, |001〉 − |010〉 −
|020〉 + 2|021〉 − |100〉, |001〉 + |011〉 − |012〉 + |021〉 − |112〉, |001〉 − |012〉 +
|021〉 + |022〉 − |110〉, |001〉 − |012〉 − |020〉 + |021〉 − |122〉 + |221〉, 2|001〉 −
|010〉 − |012〉 − |020〉 + 2|021〉 − |200〉, |001〉 − |011〉 − |012〉 − |020〉 +|021〉 −
|022〉+|120〉, |001〉−2|010〉−|011〉−|020〉+2|021〉−|022〉+|102〉, |001〉+|002〉−
2|010〉 − |020〉 + 2|021〉 + |022〉 − |212〉, |001〉 − |012〉 − |020〉 + |021〉 − |022〉 −
|122〉 + |210〉, 2|001〉 − |010〉 − |011〉 − |012〉 − 2|020〉 + 2|021〉 + |101〉, 2|001〉 −
|010〉 − |012〉 − |020〉 + 2|021〉 + |022〉 +|121〉, 2|001〉 + |002〉 − 2|010〉 − |012〉 −
2|020〉+3|021〉−|111〉, 2|001〉+|002〉−2|010〉+|011〉−|012〉−2|020〉+3|021〉+
|122〉−|220〉, |001〉+|002〉−|010〉−|012〉−|020〉+2|021〉+|022〉+|122〉−|202〉,
|001〉 + |002〉 − 2|010〉 + |011〉 − |012〉 − 2|020〉 + 3|021〉 + |022〉 − |201〉}.
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C Proof of Theorem 5.

Let A(3,2) = ∑1
m,μ,n,ν=0 amμ,nν |mμ〉〈nν|. The superscripts (3, 2) will be omitted

onwards. The proof operates on the degree-two minors: mi j,kl = aî,k̂a ĵ,l̂ − aî,l̂ a ĵ,k̂
i, j, k, l = 0, 1, 2, 3, where x̂ denotes the binary representation of a number x . Condi-
tions for rank deficiency ofmatricesXB|AC (0),XB|AC (∞),XC|AB(0), andXC|AB(∞)

involve the minors for, respectively, i j = 01, 23, 02, 13, and in this sense they are
decoupled. Moreover, all the conditions have an identical structure for any value of i j ,
meaning that these cases do not need to be treated separately, but rather collectively,
and the obtained characterization must be valid for all i j’s in the range. For clarity,
the minors will thus shortly be written as mkl with subscripts denoting columns from
which the elements of A are drawn. The said conditions, with the above notation
convention, are given by the system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m01 (m03 + m12) − m2
02 = 0,

m01m13 − m02m03 = 0,
m01m23 − m2

03 = 0,
m02m23 − m03m13 = 0,
m23 (m03 + m12) − m2

13 = 0.

(33)

Our strategy is to find forms of A’s, for which either of the above systems has a
solution under detA �= 0. Negating themwe obtain the formswhichA cannot assume,
i.e., a necessary condition on its form. Already here we notice that the trivial solutions
mkl = 0 for all kl (for any i j) are not allowed as they do not comply with the full rank
condition on A.

First, we simply inspect (33) without caring for the fact that the variables are the
minors ofA and the matrix must be full rank—these assumptions will enter the proof
only later. The analysis of (33) will be split into two cases: (1) m01 = 0 and (2)
m01 �= 0 within which possible subcases will be analyzed.

(1) The condition m01 = 0 implies m02 = m03 = 0. We have further:

(1x) if m12 = 0 then m13 = 0, while m23 is arbitrary,
(1y) if m12 �= 0 then m23 = m2

13/m12.

(2) For m01 �= 0, we have the following subcases:

(2x) If m02 = 0, then m03 + m12 = 0, m13 = 0, and m23 = m2
03/m01,

(2y) For m02 �= 0, we have the following
(2y(1)) if m03 = 0 then m12 = m2

02/m01 and m13 = m23 = 0,
(2y(2)) if m03 �= 0 then m12 = (m2

02 − m01m03)/m01, m13 =
m02m03/m01, and m23 = m2

03/m01.

Let us now take into account that m’s are minors of full rank A and see what
structures ofA are possible if (33) holds. For any i j let Ai j be the two-by-four matrix
residing in the i-th and the j-th row of A. Let us write this matrix as

Ai j = (a0 a1 a2 a3) (34)
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with two-dimensional column vectors ai . Notice that the condition r(A) = 4 requiers
r(Ai j ) = 2. Using the notation above, we have for the minors: mkl = |ak, al |, where
|x, y| is the determinant of a two-by-two matrix with columns being x and y.

We now list the consequences of the conditions derived above.
(1) This condition means that either a0 = 0 (other vectors arbitrary) or a0 ∼ a1 ∼
a2 ∼ a3 with a0 �= 0. In the latter case r(Ai j ) = 1, which contradicts the condition
r(A) = 4. This implies that it must hold a0 = 0. Then, we have:
(1x) [assuming a0 = 0] Either a1 = 0 or a1 ∼ a2 ∼ a3 (a1 �= 0) holds, in which case
it would be that r(Ai j ) = 1, again a contradiction with r(A) = 4. We then conclude
that a1 = 0 and

Ai j = (Ø2×2; Ã2×2
i j ) (35)

with det Ãi j �= 0, where Ø2×2 is the two-by-two zero matrix.
(1y) [assuming a0 = 0] Now, a1 and a2 are linearly independent. We consider two
possibilities within this case.
(1y(1)) If a3 = 0 the matrix Ai j necessarily assume the form:

Ai j = (0, Ã2×2
i j , 0) (36)

with full rank Ãi j .
(1y(2)) On the other hand, a3 �= 0 implies

Ai j = (0; Ã2×2
i j ; a3) (37)

with a3 such that m23 = m2
13/m12. Since Ãi j = (a1, a2) is full rank, a1 and a2 span

C
2, one can write a3 = αa1 + βa2 for some α and β. Now, m23 = |a2, a3| = −αm12

and m13 = |a1, a3| = βm12, which finally means

Ai j =
(
0, a1, a2,−β2a1 + βa2

)
. (38)

Notice that β = 0 recovers form (36) so the latter form does not need to be considered
separately.

(2) We have Ai j =
(
Ã2×2
i j , X2×2

i j

)
with full rank Ã2×2

i j = (a0, a1) and Xi j = (a2, a3)
to be determined.
(2x) The vanishing of m02 = |a0, a2|, implies a2 ∼ a0 �= 0.
(2x (1)) If a2 = 0 then m03 = m12 = m23 = 0, which with the condition m13 = 0
gives

Ai j =
(
Ã2×2
i j ;Ø2×2

)
. (39)

(2x (2)
k ) If a2 �= 0 then a2 = αa0 for some α �= 0. This implies that m12 = |a1, a2| =

−αm01 and, in turn, m03 = αm01. Since m13 = |a1, a3| = 0, we have a3 = βa1,
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which gives |a2, a3| = |αa0, βa1| = αβm01 = m23 = m2
03/m01 = α2m01, from

which it follows α = β. Concluding this subcase:

Ai j =
(
Ã2×2
i j ;α Ã2×2

i j

)
. (40)

Although we have assumed that α is nonzero, the case α = 0 can be included here
as it simply recovers form (39). Actually, we can go even further and include α = ∞,
as this reproduces form (35).
(2y) The non-vanishing ofm02 = |a0, a2| implies that a0 and a2 are both nonzero and
they are not proportional to each other (they are linearly independent).
(2y(1)) The vanishing of m03 = |a0, a3| implies a3 ∼ a0 with a0 �= 0. Further,
m13 = |a1, a3| = 0 implies a3 ∼ a1 with a1 �= 0 (since m01 �= 0). Both conditions
can only hold if a3 = 0. We thus have:

Ai j =
(
Ã2×2
i j , a2, 0

)
(41)

with a2 such that the condition m12 = m2
02/m01 holds. By the same argument as in

(1y(2)) above, we have

Ai j =
(
a0, a1,−β2a0 + βa1, 0

)
. (42)

(2y(2)) We set a2 = α1a0 + β1a1, a3 = α2a0 + β2a1 with nonzero βi ’s. By the
arguments similar to the ones above, we get:

Ai j =
(
a0, a1,

(
β2 − β2

1

)
a0 + β1a1,−β1β2a0 + β2a1

)
. (43)

We notice that for β2 = 0 this form reproduces the case (2y(1)) and for β1 = 0—the
case (2x (2)).

Concluding, the forbidden forms of Ai j , i j = 01, 23, 02, 13, are given by (38) and
(43) just as claimed.
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