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Abstract— The article presents the results of simulation 

studies of four methods of time delay estimation for random 

signals using cross-correlation with the Hilbert Transform. 

Selected models of mutually delayed stochastic signals were used 

in the simulations, corresponding to the signals obtained from 

scintillation detectors in radioisotope measurements of liquid-gas 

two-phase flow. Standard deviations of the values of the 

individual functions were designated and compared, along with 

standard deviations of time delay estimates determined on their 

basis. The obtained results were compared with the results for 

classic cross-correlation function (CCF). It was found that for the 

analysed range of the signal-to-noise ratio (SNR): 0.2 ≤  SNR ≤  5, 

the lowest values of standard deviation of time delay estimates 

were obtained for the CCFHT function (cross-correlation with 

the Hilbert Transform of the delayed signal).  

Keywords — Time delay measurement, random signals, cross-

correlation, Hilbert Transform. 

I. INTRODUCTION

In areas such as radiolocation, acoustics, medical 
diagnostics, seismology, and two-phase flow measurement 
estimation of time delay is a very important issue. This theme 
is widely reported on in subject literature, among others in 
works [1-5]. In order to determine the time delay for random 
signals obtained from two or more sources, statistical methods 
are used [6-13]. The most well known classic methods, used 
primarily for Gaussian stationary signals, are: the cross-
correlation function and the cross-spectral density phase [1-3, 
6, 11-13].  
A modification of the cross-correlation method may be 
substituting the measuring signals with Hilbert Transforms 
(HT) of these signals, or the so-called analytical signals 
obtained using that transform [14-20]. 

The present paper describes the possibilities of using the 
Hilbert Transform in measurements of time delay for random 
signals by cross-correlation. It presents examplary results of 
the simulation of the four methods for models of signals 
corresponding to real signals obtained in radioisotope studies 

of liquid-gas two-phase flow. The obtained standard deviations 
of the estimations of the studied functions and the transport 
time delay were compared with the corresponding results 
obtained using the classic cross-correlation. 

II. APPLICATION OF THE HILBERT TRANSFORM IN CROSS-
CORRELATION MEASUREMENTS OF TIME DELAY 

The cross-correlation function Rxy(τ) of two ergodic signals 
x(t) and y(t) equals [6]:  

 )]()([()(   tytxERxy  

where E[·] denotes the expected value, while τ denotes time 
delay.  
CCF reaches the maximum value for τ = τ0, so transportation 
time delay may be obtained as the argument of the maximum 
of this function:  

 )}({arg)}(arg{max 00  xyxy RR   

The Hilbert Transform of a real signal x(t) produces a real 

signal )(~ tx  in accordance with the definition [12, 14]:
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The Hilbert Transform can be applied to implement the so-
called analytic signal: 

   )(~)()()()( txjtxtxjHtxtx  

The module of an analytic signal: 

 )(~)()( 22 txtxtx  
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is called the envelope of signal x(t). 

Literature presents several possible applications of HT and 
the analytic signal in time delay measurements of random 
signals using cross-correlation [12, 14-20]. 

Article [20] proposed to use a delayed signal )(~ ty  instead

of signal y(t) to calculate the cross-correlation function. Thus 
obtained, the CCFHT function: 

 )](~)([()(
~

)(~   tytxERR xyyx  

is zero for τ = τ0. The location of the maximum CCF (1) 
corresponds in this case to the search for an argument for 
which function (6) passes through zero, which is easier to 
achieve.  

Work [14] contains an analysis of the envelope of CCF, 
described by the relation: 

 )(
~

)()( 22
1  xyxyxy RRO   

Since for τ = τ0 0)()(
~

0~0   yxxy RR , therefore 

)()( 001  xyxy RO   and the maximums of CCF and )( 01 xyO

overlap. The properties of the envelope function (7) were 
discussed in [14, 17]. 

If two analytic signals (the original and the delayed one) 
are used to determine CCF, the obtained complex CCF will 
take the following form [12, 14]:  
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Seeing as )()(~~  xyyx RR   and )(
~
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[14], the modulus of relation (8) produces the function: 
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For τ = τ0 the arguments of function maximums (1), (7) and 
(9) overlap.

Article [12] provided a discussion concerning the use in
cross-correlation analysis signals defined as follows: 

    22
1 )()()( txHtxtx  ,     22
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obtained real CCF takes the following form [11]: 
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If one applies centred signals in calculating the correlation 
[10], one obtains a function expressed thus: 
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III. SIMULATION STUDIES

A. Models of Signals

When considering the estimation of time delay, the relation
between signals x(t) and y(t) obtained from two sensors is 
most often expressed using the following formulae [12]: 

 )()()( tmtstx  a

)()()( 0 tntscty   b

where: s(t) – stationary low-band random signal with normal 
probability distribution N(0, σs), c – constant coefficient (most 
often c = 1); τ0 – transportation time delay; m(t), n(t) – 
stationary white noises with Gaussian distributions N(0,σm), 
and N(0,σn) uncorrelated with signal s(t) or with each other.  
With the above presumptions for models of signals [12], the 
following relations are true: 


222 )0( msxxx R   a

2222 )0( nsyyy cR   b

where σx and σy denote standard deviations of signals x(t) and 
y(t) respectively, while Rxx( ) and  Ryy( ) are their 
autocorrelation functions. 

For low-band noises with limited frequency band B, power 
spectral density of the signal s(t) is: 
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and the autocorrelation function is expressed by the equation: 
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Depending on the considered issue, in models [12] the 
following values are adopted: m(t) ≠ n(t) ≠ 0 or 
m(t) = n(t) ≠ 0 or m(t) = 0 and n(t) ≠ 0. In practice, the last 
two cases are most commonly applied. 

B. Examples of Results

In order to compare the properties of functions (6), (7), (9)
and (11) in relation to the classic CCF (1), simulations were 
carried out using LabVIEW software. Discrete stochastic 
signals x(n) and y(n) were generated, where: n = t/Δt, Δt - 
sampling interval, corresponding to the models (12). Signal 
s(n) was formed with white noise using digital low-pass 
filtering, interferences m(n) and n(n) were Gaussian white 
noises uncorrelated with signals x(n) and y(n). The signal 
parameters were selected in such a way as to obtain CCF 
graphs similar to the radioisotope measurements of the liquid-
gas flow [3, 21]. 

Discrete estimator of the CCF was calculated from: 
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where: N – number of samples, l = τ/Δt.  

This estimator was used in determining the CCF and CCFHT 
for appropriate signals as well as O1xy, O2xy and O3xy in 
accordance with the relations provided in the second chapter. 
In the simulations that were carried out, it was assumed that 
σm = σn, so the signal to noise ratio (SNR) was equal to: 
SNR = (σs/σm)

2
 = (σs/σn)

2
.   

Figure 1 shows the graphs of functions: CCF, CCFHT, 
O1xy, O2xy and O3xy for models of signals (12) and parameters: 
relative band B∆t  = 0.025, N = 100,000, l0 = τ0/Δt = 100, c = 1, 
σs = 1, and σm  = σn = 0.45 (SNR = 5).  

 

Fig. 1. CCF, CCFHT, O1xy, O2xy and O3xy for models of stochastic signals (12) 

and parameters: N = 100,000, l0 = 100, c = 1,  SNR = 5. 
 

Increasing the values of σm  and σn reduces SNR, which causes 
distortion of the graphs of the analysed functions. An 
examples for SNR= 0.5 and SNR= 0.2 are shown in Figure 2.  

In the first stage of research, for given SNR values 
experimental standard deviations of the value of the individual 
functions with neighbourhood l = l0 were designated from the 
formula:  
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where f  denotes the considered function (CCF, CCFHT, O1xy, 

O2xy or O3xy), and M – the number of repetitions of the 
experiment.   

The number of repetitions in the study was adopted as 
M = 10

4
. Next, values of the quotient kσf (l) were calculated:  

  
  
  lCCF

lf
lk

f





ˆ

ˆˆ
  

(a) 

 
 
(b) 

 
 

Fig. 2. CCF, CCFHT, O1xy, O2xy and O3xy for models of stochastic signals (12) 
and parameters: N = 100,000, l0 = 100, c = 1; (a) SNR = 0.5,  

(b) SNR = 0.2.  

 
The experiments were carried out for N = 100,000 and several 
SNR values. The results for l = l0  = 100 are summarized in 
Table I. The lowest values of kσf (l0) were obtained, 
respectively, for functions: CCF, O1xy, O2xy, CCFHT and O3xy. 
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TABLE I. VALUES OF COEFFICIENT  0lk f
 OBTAINED FOR 0l  =100 

Parameter 

Function 

kσf (l0) 

SNR=5 SNR=1 SNR=0.5 SNR=0.2 

CCF 1.00 1.00 1.00 1.00 

CCFHT 1.24 1.45 1.54 1.44 

O1xy 1.00 1.00 1.00 1.00 

O2xy 1.01 1.00 1.00 1.00 

O3xy 14.64 6.95 5.92 6.92 

 

Figure 3 shows examples of graphs of normalised functions: 
CCF, CCFHT, O1xy, O2xy, and O3xy in neighborhood l = l0 with 
a marked interval of one relative standard deviation (17). The 
values of each function were normalized in relation to their 
maximum values. The adopted values of parameters are: N = 
100,000, l0 = 100, c = 1 and SNR= 0.5.   

(a) 

 
 

(b) 

 
 

(c) 

 

(d) 

 

(e) 

 

Fig. 3. Normalized functions in neighbourhood l = l0 with one interval of 

relative standard deviation marked: (a) CCF, (b) CCFHT, (c) O1xy, (d) O2xy, 

(e) O3xy. 
 

During the main phase of the study, the values of experimental 
standard deviations of the time delay  

f0ˆˆ  and the coefficient 

0
k  for each function and the same analysis parameters were 

calculated from the following relations:  
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In order to designate time delay estimates 
0̂ , parabolic 

approximation was used for CCF, O1xy, O2xy and O3xy and 
linear approximation was used for CCFHT in neighborhood 
l0 . The obtained results are summarized in Table II.  

TABLE II. VALUES OF COEFFICIENT 
0k OBTAINED IN EXPERIMENT 

Parameter 
 

Function 

0
k  

SNR=5 SNR=1 SNR=0.5 SNR=0.2 

CCF 1.00 1.00 1.00 1.00 

CCFHT 0.36 0.16 0.15 0.15 

O1xy 3.70 1.93 1.85 1.73 

O2xy 3.74 1.93 1.84 1.72 

O3xy 4.98 2.65 2.86 3.64 
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Based on the results in Table II, it can be concluded that for 
all the SNR values shown, the smallest values of coefficient 

0k are obtained for the CCFHT function. 

IV. SUMMARY AND CONCLUSION 

 The article summarizes the four applications of the Hilbert 
Transform in time delay measurements of stochastic signals 
by cross-correlation described in literature. The results were 
provided for simulation studies of functions CCF, CCFH, O1xy, 
O2xy and O3xy for models of mutually delayed random signals, 
corresponding to the signals from the scintillation probes in 
measurements of two-phase flows using radioisotopes. 
Standard deviations of the values of the individual functions 
were designated and compared, along with standard deviations 
of time delay estimates determined on their basis. It was found 
that the lowest values of the standard deviation of function 
value for 
l = l0 in the examined area of signal-to-noise ratio are (in 
order): CCF, O1xy, O2xy CCFHT, and O3xy. In the case of 
estimating transportation time delay, which was the main 
objective of the study, the lowest values of the standard 
deviation for time delay estimates were obtained for CCFHT 
throughout the entire analysed range of SNR: 0.2 ≤  SNR ≤ 5.  
 The findings of the studies presented in the article were 
used in works relating to the application of the CCFHT 
method in radioisotope flow measurements of liquid-gas 
mixtures and liquid-solid particles in pipelines [22, 23]. 
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