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Abstract 

Present study is devoted to investigating the vibration characteristics of Functionally Graded 

(FG) porous nanobeam embedded in an elastic substrate of Winkler-Pasternak type. Classical 

beam theory (CBT) or Euler-Bernoulli beam theory (EBT) has been incorporated to address the 

displacement of the FG nanobeam. Bi-Helmholtz type of nonlocal elasticity is being used to 
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capture the small scale effect of the FG nanobeam. Further, the nanobeam is assumed to have 

porosity, distributed evenly along the thickness throughout the cross-section. Young’s modulus 

and mass density of the nanobeam are considered to vary along the thickness from ceramic to 

metal constituents in accordance with power-law exponent model. A numerically efficient 

method, namely the Hermite-Ritz method, is incorporated to compute the natural frequencies of 

Hinged-Hinged (HH), Clamped-Hinged (CH), and Clamped-Clamped (CC) boundary conditions.  

A closed-form solution is also obtained for Hinged-Hinged (HH) boundary condition by 

employing Navier’s technique. The advantages of using Hermite polynomials as shape functions 

are orthogonality, a large domain that makes the method more computationally efficient and 

avoids ill-conditioning for higher values of polynomials. Additionally, the present results are 

validated with other existing results in special cases demonstrating excellent agreement.  A 

comprehensive study has been carried out to justify the effectiveness or convergence of the 

present model or method. Likewise, impacts of various scaling parameters such as Helmholtz 

and bi-Helmholtz types of nonlocal elasticity, porosity volume fraction index, power-law 

exponent, and elastic foundation on frequency parameters have been investigated. 

Keywords 

FG nanobeam; Hermite-Ritz method; Bi-Helmholtz function; Porosity; Winkler-Pasternak elastic 

foundation; vibration.  

1. Introduction 

Functionally graded materials (FGMs) are inhomogeneous materials consisting of two or more 

different materials, and the composition or volume of constituents varies continuously along one 

or more specific dimensions. As a result, their properties and structure will change steadily along 

the same dimension. This idea was first used by Japanese researchers [Koizumi 1994]. The 

gradual and continuous changes in these materials have made them very important and useful 

properties for application in various industries. 

The introduction of FGMs to nano-micro technology has led to the development of devices and 

tools with better properties and capabilities, such as nano-micro-electro-mechanical systems 

(NEMS/MEMS), thin shape memory alloys, and atomic light microscopy. Nanotechnology is the 

study of microscopic objects about 1 to 100 nanometers in size and their applicability in various 

fields of science, such as chemistry, biology, physics, materials science, and engineering. 
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Recently, due to the special mechanical properties of nanostructures, the application of these 

structures has been developed in engineering, and researchers have been designing high-

performance tools such as nanosensors, nano actuators, nanogenerators, etc. to solve new 

problems. Nanoscale tools are designed using the properties of nanotubes, nanobeams, nano-

membranes, and nanosheets, so the discussion of modeling and analysis of nanobeams has 

attracted the attention of researchers.  

Many experiments and computer simulations (molecular simulation) proved that a nanostructure 

mechanically has different response while it is analyzed in nanoscale size compared with a 

macroscale investigation. They showed that size is a crucial factor on nanoscale. Among all tools 

which aid us to predict mechanical response of these materials, the non-classical continuum 

elasticity approaches are cost and time-effective methods. Accordingly, it has been observed that 

classical continuum theories do not provide the right answer in predicting the behavior of these 

small scale structures. In fact, classical continuum theory is unable to account for size effects. 

The most popular non-classical continuum mechanic theories are: strain gradient theory [Mindlin 

1965], nonlocal elasticity theory [Eringen 2002; Jena et al. 2019a; 2020a; 2020b], stress-driven 

nonlocal elasticity theory [Barretta et al. 2018; Sedighi and Malikan 2020], nonlocal strain 

gradient theory [Lim et al. 2015; Jena et al. 2019b; Malikan et al. 2020], modified coupled stress 

theory [Malikan 2017], surface elasticity theory [Ansari et al. 2013], and bi-Helmholtz nonlocal 

elasticity theory [Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018]. These aforesaid 

theories, each in turn has small scale parameters. The small scale parameter makes difference 

between macro scale and nanoscale. Many research approved that these scale parameters are not 

material constant and vary with variation in natural features and physical characteristics of the 

nanomaterial. As an example, boundary and edge conditions affect fundamentally the values of 

small scale parameter. Moreover, as the nano materials except for being size-dependent, are also 

temperature-dependent, the thermal environment can significantly affect the value of small scale 

parameter. Thus, a nanostructure in various boundary conditions and different external 

temperature requires different values for the small scale parameter to give exact results. That is 

why all the researchers presented amplitude for numerical values of small scale parameters. 

There are also further examples for factors that affect the amount of a small scale parameter, 

such as crack specifications in cracked nanomaterials, arrangement of atoms in atomic lattice 
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into some special nanomaterials like graphene and nanotubes with changeable arrangement 

(chirality effect), etc. 

The mechanical behavior of FG nanomaterials with different geometries and various loading and 

boundary conditions has been extensively investigated by researchers in the current decade. 

Beams are of great importance due to their wide use in engineering. To date, numerous articles 

have been written on the study of the dynamics of FGM nanobeams. Eltaher et al. [2012] based 

on the finite element method (FEM) analyzed natural frequencies of a nanoscale FGM beam by 

considering nonlocal continuum mechanics. The beam was modeled according to the Euler-

Bernoulli beam theory (EBT) approach. The numerical outputs were calculated for a variety of 

boundary conditions. Sharabiania and Yazdi [2013] depicted a nonlinear frequency analysis on 

FGM nanosize beams in the framework of EBT while the size dependency was investigated on 

the basis of surface effects. The results were shown for some different edge conditions. Esmaeili 

and Tadi Beni [2019] investigated buckling and vibration characteristics of flexoelectric smart 

nanobeam composed of functionally graded materials. Nazemnezhad and Hosseini-Hashemi 

[2014] studied nonlocal effects within the framework of nonlinear analysis of vibrations for 

FGM nanoscale beams. The immovable ends, such as fixed and pinned conditions were assumed 

when EBT was employed to give the constitutive equations of frequency. Hashemi et al. [2014] 

considered analytically effects of surface and stress nonlocality for pivot-pivot EBT-FGM 

nanobeam models. Ansari et al. [2015] examined the excited frequencies nonlinearly for an FGM 

nanobeam in the body of an exact solution. The influences of the environment, such as 

temperature differential, were measured as well. The nanosize into the EBT model was 

investigated utilizing surface elasticity theory, and the Galerkin technique helped to solve the 

attained equations. Zeighampour and Tadi Beni [2015] developed FGM nanobeams by 

considering the variation of diameter in the length direction. The strain gradient theory, EBT, 

and Visco-Pasternak foundation model were combined, which led to the governing equations. 

The obtained equations were discretized using differential quadrature method (DQM) for pined-

pined and clamped-clamped supported and then were solved by eigenvalue solver. Their best 

results proved the considerable effect of diameter variation on the dynamics behavior of FGM 

nanobeams. Ebrahimi and Salari [2015] studied the nonlocal effect on the FGM nanobeams by 

considering EBT beam model with the presence and absence of the influences of the thermal 

environment utilizing analytical method based on the Navier method. 
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Simsek [2016] discussed the free vibration of an FGM nanoscale beam based on the nonlinear 

strains and derived mathematical relation by presenting a new Hamiltonian in combining with 

EBT and nonlocal strain gradient elasticity. Shafiei et al. [2016] modeled a non-uniform FGM 

beam taking nanosize effects based on the nonlocal theory of elasticity. The natural frequencies 

were captured for the beam with the contribution of nonlinear terms. The procedure for solving 

of the harvested equations was generalized differential quadrature (GDQ) method and Homotopy 

perturbation method for fixed-fixed, pinned-pinned, and fixed-pinned boundary conditions. 

Hosseini and Rahmani [2016] combined thermos-elastic relations to study vibrations of an FGM 

nanoscale beam when the beam is geometrically curved. The nonlocal elasticity provides the 

size-dependent behavior, and the numerical results were obtained by analytical solutions. 

Khorshidi and Shariati [2016] investigated the vibration characteristics of the sigmoid-type of 

FGM nanobeams by using the modified couple stress theory. A variety of beam hypotheses such 

as EBT, first-order shear deformation theory (FSDT) and some higher-order shear deformation 

theory (HSDT) were investigated with the help of GDQ. Vosoughi [2016] applied nonlinearity to 

study free vibration of a FGM nanosize beam embedded on a nonlinear elastic medium. The use 

of FSDT and nonlocal elasticity addressed the desired equations that were discretized by DQM. 

Hamed et al. [2016] compared sigmoid with a nonlinear symmetric power varied along the 

thickness of EB-FGM nonlocal beams in a vibration study. Saffari et al. [2017] inspected the 

stability of an FGM nonlocal FSDT beam by taking surface effects in a dynamical situation. 

Thermal effects and foundation influences were implemented as well. Arefi and Zenkour [2017] 

explored the nonlocal vibration of a Timoshenko FGM nanobeam by taking the Visco-Pasternak 

matrix into account. 

Vu-Bac et al. [2016] carried out sensitivity analysis for quantifying the influence of uncertain 

input parameters by using probability density function on uncertain model outputs. The 

dynamics of three-dimensional inhomogeneities of FGM nanoscale beams was investigated by 

Hadi et al. [2018]. Jouneghani et al. [2018] modeled porosity into the material gradation of FGM 

nanobeams and examined the structural behavior of the system subjected to variation of 

environmental parameters such as temperature and humidity. Mirjavadi et al. [2018] focused on 

the nonlinear behavior of FGM nanosize beams considering porosities with respect to the EBT 

and second stress gradient of Eringen. Different end conditions were taken into consideration by 

the assistance of GDQM and an iterative technique. Simsek [2019] performed different closed-
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form approaches to study a variety of analyses on the FGM nanobeams, namely forced and free 

vibrations, static bending, and buckling. The nonlocal strain gradient theory was implemented to 

capture the size dependency influence. Various loading cases were demonstrated in the dynamic 

analysis of the graded EBT model.  

Aria and Friswell [2019] indicated a finite element analysis in the form of nonlocality to consider 

free vibration and stability of FGM nanobeams. Uzun and Yayli [2019] investigated the free 

vibration of functionally graded nanobeam for hinged-hinged and clamped-clamped boundary 

conditions with the help of the finite element model. The nonlocal effect of FG nanobeam was 

handled by the Eringen’s nonlocal theory. Karami and Janghorban [2019] showed a new shaped 

function into the higher-order shear deformation theory to study analytically natural frequencies 

of a FGM nonlocal isotropic/anisotropic beam. Thickness stretching influence was also evaluated 

by the shape function. The nonlocal strain gradient model determined the nanoscale behavior. 

Khaniki [2019] studied vibrations of FGM nanoscale beams based on the two phases nonlocal-

local models, and then functionality gradation was derived along length. GDQ helped to obtain 

numerical results. Chen et al. [2020] studied thermal buckling behavior of Euler-Bernoulli beam 

made up of FG material. The transformed-section method was used to investigate the buckling 

characteristics analytically. Uzun and Yayli [2020] in a pioneering work studied free vibration of 

functionally graded nanobeam for Simply Supported boundary condition using Euler-Bernoulli 

beam theory and Eringen’s nonlocal elasticity by utilizing FEM. 

Previous studies, as mentioned above illustrate the fact that the studies involving non-classical 

theories have rarely used the Bi-Helmholtz nonlocal elasticity theory; and have never used the 

advanced yet simple Hermit-Ritz method for this purpose. In this study, the Euler-Bernoulli 

theory is applied to find the numerical response of free vibration of FG nanobeams. The 

numerical solution of the free vibration is obtained, and the response of the rectangular 

nanobeam is calculated for the bi-Helmholtz nonlocal parameter by employing the Hermit-Ritz 

method for HH, CH, and CC boundary conditions while closed-form solution is obtained for HH 

boundary condition by utilizing the Navier’s technique. The beam is also embedded on the 

Winkler-Pasternak elastic bed. Due to the importance of porosity in the structure of functionally 

graded materials, this argument is included in the present analysis as well. The results of the 

theory presented are compared with those reported by previous researchers, and a good 

agreement is observed between the results. A parametric analysis is also carried out to 
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investigate the effect of various scaling parameters such as Helmholtz and bi-Helmholtz types of 

nonlocal elasticity, porosity volume fraction index, power-law exponent, and elastic foundation 

on the frequency response of the FG nanobeam. 

2. Reviews of Helmholtz and bi-Helmholtz types of nonlocal operators 

The bi- Helmholtz type nonlocal modulus, which is the Green’s function of bi Helmholtz 

operator may be stated as [Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018] 

                                   

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The corresponding bi-Helmholtz operator may be expressed as [Eringen 2002; Lazar et al. 2006; 

Koutsoumaris and Eptaimeros 2018] 
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4    and the constants 1  and 2 are demonstrated as 

[Eringen 2002; Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018] 
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Here the discriminant 041
4
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


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







 , i.e.,  2 . Considering  2 , we will have 

21   , where R21 , and the parameter   triumphs over   . For any other case, i.e., 

 2 , the effect of   prevails over  . From Lazar et al. [2006], Koutsoumaris and 

Eptaimeros [2018], it is evident that that bH operator matched the Born Karman’s model at the 

end of the Brillouin zone, when 21   . Now, the nonlocal modulus is given in Eq. (1) maybe 

stated as [Lazar et al. 2006; Koutsoumaris and Eptaimeros 2018] 
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Substituting  2  or 20 ae , Eq. (4) can be expressed as [Lazar et al. 2006; 

Koutsoumaris and Eptaimeros 2018] 
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Thus, the bi-Helmholtz operator in differential form may be given as [Lazar et al. 2006; 

Koutsoumaris and Eptaimeros 2018] 
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Assuming ae01   and 02   in Eq. (1), the Helmholtz-type nonlocal modulus is given as 

[Eringen 2002; Koutsoumaris and Eptaimeros 2018] 
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and the corresponding Helmholtz operator in differential form is given as [Eringen 2002] 

                                                              
2

2
2

01
dx

d
aeH  .                                                         (8) 

3. Mathematical formulation of the proposed model 

In this study, a functionally graded porous nanobeam with length  L , breadth  b  , thickness 

 h , and porosity volume fraction  ,  1  is taken into consideration, as depicted in Fig. 1.a . 

The material composition at the top surface  2hz   is assumed to be ceramic-rich while the 

bottom surface  2hz   is considered to be metal-rich, and the gradation along thickness from 

the ceramic-rich surface to metal-rich surface is governed by power-law variation model. The 

porosity in the nanobeam is assumed as evenly distributed throughout the metal and ceramic 

constituents, as illustrated in Fig. 1.b.  
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Fig 1.a Schematic diagram of rectangular FG nanobeam embedded in the Winkler-Pasternak 

elastic foundation. 

 

Fig 1.b Graphical representation of the rectangular cross-section of the FG nanobeam with 

evenly distributed porosity 

 

Thus, according to the modified rule of the mixture [Wattanasakulpong and Ungbhakorn 2014; 

Shahsavari et al. 2018] 

                                                 LULLUU PPVPVPP 
2


                                                    (9) 
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Here P  denotes the material property FG nanobeam. UP , UV  is the material property and volume 

fraction for the ceramic constituent, whereas LP , LV  symbolize the material property and volume 

fraction of the metal constituent. 

As per the power law variation model, the volume fractions of the ceramic and metal 

components are expressed as [Wattanasakulpong and Ungbhakorn 2014; Shahsavari et al. 2018] 
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Where k  is the non-negative parameter, namely power-law exponent, that regulates the 

distribution of material along the thickness of the nanobeam and z  denotes the distance from the 

mid-plane of the FG nanobeam. Using Eq. (9), Eq. (10), and Eq. (11), the material properties of 

the FG nanobeam with porosity may be given as [Wattanasakulpong and Ungbhakorn 2014; 

Shahsavari et al. 2018] 
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The Young’s modulus  zE , and material density  z  of the FG nanobeam can be demonstrated 

graphically in Figs. (2-3) and mathematically as [Wattanasakulpong and Ungbhakorn 2014; 

Shahsavari et al. 2018] 
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Fig. 2 Power-law variation of Young’s modulus for FG nanabeam composed of alpha-beta 

titanium alloy (Ti-6AL-4V) and zirconia (ZrO2) 

 

Fig. 3 Power-law variation of Mass density for FG nanabeam composed of alpha-beta titanium 

alloy (Ti-6AL-4V) and zirconia (ZrO2) 
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According to the classical beam theory or Euler-Bernoulli beam theory, the displacement field 

can be given as [Reddy 2007] 

                                                              
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                                                                  txwtzxu ,,,3                                                       (14.c) 

Where  txu , ,  and  txw ,  represent the axial and transverse displacements on the mid-plane of 

the FG nanobeam, respectively.  

The strain-displacement relation of the FG nanobeam is stated as 
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The stress component of the FG nanobeam as generalized Hooke’s law may be given as 

[Pradhan and Chakraverty 2014]                                                  
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3.1 Energy form of Equation for Hermite-Ritz method  

The strain energy  S  of the FG nanobeam is stated as  
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Where the stress resultants    dAzMN
A

xxxx  ,, .  

Now, the variation in strain energy  S  can be given as 
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                             (18) 

  The kinetic energy  T  of the FG nanobeam can be stated as 
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In which     dAzzzIII
A


2

210 ,,1,,  are the mass moment of inertias. 

The variation in kinetic energy  T  can be obtained from Eq. (19) as 
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The work done  W  by the Winkler-Pasternak elastic foundation can be expressed as [Uzun and 

Yaylı 2020] 
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where wk and gk  are Winkler and Pasternak elastic constants, respectively. 
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The variation in external work done  W can be derived from Eq. (21) as 
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Using Eq. (18), Eq. (20), and Eq.(22) in the extended Hamilton’s principle   

T

dtWST
0

0

and collecting the co-efficient of u and w , the governing equations of motion in terms of 

stress resultants and displacements can be obtained as 
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Multiplying Eq. (16) by dA  and dAz  and integrating over the area of cross-section of the FG 

nanobeam, the local stress resultants can be written as 
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where    dAzzQDBA
A


2

11111111 ,,1,, , are the stiffness coefficients of FG nanobeam. 

Applying bi-Helmholtz operator to Eq. (24) and using Eq. (23), the nonlocal stress resultant 

resultants of the FG nanobeam can be obtained as  
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Substituting Eq. (25) in Eq. (17), the strain energy, kinetic energy, and work done by elastic 

foundation for the FG nanobeam can be depicted as 
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Assuming the motion of the FG nanobeam as sinusoidal i.e., plugging      txUtxu cos,  and 

     txWtxw cos,  , the maximum strain energy  maxS , kinetic energy  maxT , and work done 

by elastic foundation  maxW for the FG nanobeam can be obtained as 
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Substituting Eqs. (29-31) into Lagrangian energy function maxmaxmax TWS   and setting 

0 , one may get 
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Eq. (32) is the Lagrangian energy function of FG porous nanobeam with bi-Helmholtz type of 

nonlocal elasticity. The Lagrangian energy function for the Helmholtz type of nonlocal elasticity 

can be obtained from Eq. (32) as 
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3.2 Equation of motion for Navier’s technique 

Substituting Eq. (25) into Eq. (23), the governing equations of motion in terms of displacement 

can be obtained as 
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The governing equations of motion for the Helmholtz type of nonlocal elasticity can be obtained 

from Eq. (34) as 
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4. Solution procedures 

In the upcoming subsections, the Hermite-Ritz method and Navier’s technique have been 

described to solve the governing equations of motion for the proposed model. 

4.1 Application of Hermite-Ritz method 

Hermite polynomials [Bayın and Bayin 2006]   xnH ,  are set of orthogonal polynomials with 

respect to the weight function 
2xe defined over the domain   , , i.e., 

                                           















mn

mnn
dxxnHxmHe

n
x

,0

,!2
,,

2 
                                      (36) 

First five terms of Hermite polynomials with recurrence relations can be expressed as [Bayın 

and Bayin 2006] 

  1,0 xH  

  xxH 2,1   

  24,2 2  xxH  

  xxxH 128,3 3   

  124816,4 24  xxxH  

       xnHnxnHxxnH ,212,12,   and    xnHnxnH ,12,                                 (37) 

In this investigation, Hermite polynomials are taken as shape functions, i.e., both the axial and 

transverse displacements of the FG nanobeam are expressed in terms of Hermite polynomials. 

The main reasons behind choosing the Hermite polynomials as shape functions are; 

 Hermite polynomials are the orthogonal polynomials which reduce the computation time. 
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 Unlike other orthogonal polynomials such as Chebyshev polynomials, Legendre 

polynomials, etc., the domain is   , that offers flexibility in the limit of the Lagrangian 

energy function. 

 It helps to restrict ill-conditioning of the matrix for higher values of polynomials. 

The axial displacement  XU , and transverse displacement  XW  can be now expressed as 

[Pradhan and Chakraverty 2014]                                      

                                             



n

i

i XiHcXRXXU
1

),1(
                                              (38.a) 

                                              



n

i

i XiHdXRXXW
1

),1(
                                            (38.b)   

Here sci ' , and sd i ' are unknown coefficients,  XnH ,  is the nth term of Hermite polynomial 

which is used shape function,   XRX  is the admissible functions with exponents  , and  . 

For different boundary conditions  , and   possess different values, as shown in Table 1. 

Table 1  , and  for different boundary conditions [Pradhan and Chakraverty 2014]. 

B.C.     

H-H 1 1 

C-H 2 1 

C-C 2 2 

 

Substituting Eq. (38) into the Lagrangian energy function of bi-Helmholtz and Helmholtz types 

of nonlocal elasticity, i.e., Eq.(32) and Eq.(33) and minimizing 2  with respect to the unknown 

coefficients sci ' , and sd i ' , ni 3,2,1 , give rise to the generalized eigenvalue problem as 

                                                                   XX  2                                                      (39) 

where    Tnn ddddccccX  ,,,,,,, 321321 ,    represents the stiffness matrix, and    

denotes the mass matrix. 

4.2 Application of Navier’s technique 
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As per the Navier’s technique the axial displacement  txu ,  and transverse the displacement 

 txw , can be expanded in terms of sine and cosine series as [Bekhadda et al. 2019]; 

                                                        ti

m

m ex
L

m
utxu 















cos,
1

                                          (40.a) 

                                                        ti

m

m ex
L

m
wtxw 















sin,
1

                                            (40.b) 

where mu and mw  are arbitrary parameters and   is the natural frequency of vibration. Plugging 

Eq. (40) into the Eq. (34), and Eq. (35), generalized Eigenvalue problem for free vibration of FG 

nanobeam for bi- Helmholtz and Helmholtz types nonlocal elasticity, respectively, will be 

obtained as  

                                                                  XX bHbH  2                                              (41.a) 

                                                                                XX HH  2                                               (41.b) 

Here   
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By solving the Eigenvalue problem mentioned in Eq. (41), the natural frequencies for the 

proposed model will be obtained for Hinged-Hinged (HH) boundary condition. 

5. Numerical results and discussions 

In this investigation, the FG nanobeam is considered to be composed of metal constituents as 

alpha-beta titanium alloy or titanium (Ti-6AL-4V) and ceramic constituent as zirconia or 

zirconium dioxide (ZrO2). The geometrical properties or dimension of the specimen is taken 

from [Uzun and Yaylı 2020] as width   nmb 400 , thickness   nmh 100 , and length 

  nmL 8000 , whereas the mechanical properties [Uzun and Yaylı 2020] are given as; 

zirconia or zirconium dioxide (ZrO2): GPaEU 151 , 3.3000  mKgU , and 3.0U  

titanium (Ti-6AL-4V): GPaEL 7.105 , 3.4429  mKgL , and 298.0L . 

The Young’s modulus and mass density are assumed to vary through the thickness in accordance 

with the power-law exponent model. At the same time, for the sake of convenience, the 

Poisson’s ratio is taken constant throughout the thickness of the FG nanobeam, which is 3.0 . 

5.1 Validation 
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In this subsection, the validation of the present model has been conducted with other existing 

results in special cases. In this regard, the first three natural frequencies of the functionally 

graded nanobeam of HH boundary condition has been compared with [Uzun and Yaylı 2020], 

by neglecting the porosity and assuming Helmholtz nonlocal operator. The numerical results are 

computed for HH boundary condition by using both the Navier’s technique (NT) and the 

Hermite-Ritz method (H-RM), which is demonstrated in Table 2. Likewise, the fundamental 

frequency parameter















L

L

Eh

L 


2

 for HH boundary condition has been compared with 

[Pradhan and Chakraverty 2014; Aydogdu and Taskin 2007] by neglecting the porosity, nonlocal 

effect, and elastic foundation. Here the material is considered as Alumina (Al2O3), and 

Aluminum (Al), and the gradation is taken along Young’s modulus only with GPa70LE , 

GPa380UE and 3.0 . The tabular result is depicted in Table 3, with various power-law 

exponent and aspect ratio. From these results, it is evident that the present model is accurate and 

copes well with the existing results in special cases. 

Table 2 Comparison of natural frequencies (in MHz) obtained by present study with Uzun and 

Yaylı [2020], in special cases 

 
 

k  
1   2   3   

[A] Present 

(NT) 

Present 

(H-RM) 

[A] Present 

(NT) 

Present 

(H-RM) 

[A] Present 

(NT) 

Present 

(H-RM) 

0 0 10.2084 10.3295    10.3294 26.4247 27.1637 27.1640 51.9523 53.8340 54.5844 

 2 8.6973 8.7744  8.7835 21.7885 22.2755 22.2756 42.0585 43.3202 43.9188 

 4 8.4672 8.5437  8.5497 21.1040 21.5893 21.5894 40.6136 41.8749 42.4450 

 6 8.3682 8.4449  8.4488 20.7909 21.2794 21.2795 39.9342 41.2065 41.7618 

 8 8.3116 8.3883  8.3910 20.6024 21.0920 21.0921 39.5165 40.7935 41.3395 

0.2 0 9.8519 9.9418    9.9418 21.2306 21.5871 21.5873 33.1951 33.8385 34.2605 

 2 8.4376 8.4945    8.5012 17.9078 18.1366 18.1367 27.8374 28.2510 28.6052 

 4 8.2208 8.2772    8.2816 17.4076 17.6348 17.6350 27.0354 27.4468 27.7885 

 6 8.1285 8.1851    8.1880 17.1877 17.4160 17.4162 26.6971 27.0928 27.4283 

 8 8.0763 8.1329    8.1349 17.0597 17.2882 172884 26.4697 26.8839 27.2159 

0.4 0 9.4203 9.4710    9.4709 18.6882 18.8290 18.8292 28.0525 28.2723 28.6346 

 2 8.1250 8.1568    8.1605 16.0475 16.1355 16.1357 24.0603 24.1955 24.5070 

 4 7.9245 7.9559 7.9584 15.6414 15.7285 15.7287 23.4472 23.5814 23.8843 
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 6 7.8405 7.8721    7.8737 15.4695 15.5570 15.5572 23.1871 23.3220 23.6210 

 8 7.7938 7.8253    7.8264 15.3729 15.4603 15.4605 23.0405 23.1754 23.4721 

 

A: Uzun and Yaylı [2020] 

 

Table 3 Comparison of frequency parameters obtained by present study with Pradhan and 

Chakraverty [2014], Aydogdu and Taskin [2007], in special cases 

 

 
h

L
 

k  
0 0.1 1 2 10 

5 [C] 6.847 6.499 4.821 4.251 3.737 

 [B] 6.847 6.512 5.176 4.752 3.959 

 Present 6.8470 6.5120 5.1764 4.7518 3.9597 

20 [C] 6.951 6.599 4.907 4.334 3.804 

 [B] 6.951 6.612 5.256 4.826 4.021 

 Present 6.9516 6.6115 5.2562 4.8258 4.0208 

 

B: Pradhan and Chakraverty [2014] 

C: Aydogdu and Taskin [2007] 

 

5.2 Convergence 

Through this subsection, the convergence of the present model has been carried out for first four 

natural frequencies of FG nanobeam by considering the power-law exponent   1k , porosity 

volume fraction   1.0 , non-dimensional nonlocal parameter 1.00 







L

ae
 , non-

dimensional Winkler elastic constant 40
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


IE
Lk

K
L

w
w , and non-dimensional Pasternak 

elastic constant 40
2





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




IE

Lk
K

L

g
g . Variations of the first four natural frequencies have 

studied with no. of terms of the Hermite polynomial for HH, CH, and CC boundary conditions, 
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which are depicted in Fig. (4), Fig. (5), and Fig. (6), respectively. Natural frequencies have also 

been computed from the closed-form solution by using Navier’s technique (NT) for HH 

boundary condition and compared with the results of the Hermite-Ritz method (HRM) showing 

good agreement as illustrated in Fig. 4. From these graphical results, it is quite evident that the 

first four natural frequencies of all the boundary conditions are attaining the convergence on or 

after no. of terms   6n . Also, it may be observed that the CC boundary condition is 

approaching convergence faster than HH and CH boundary conditions. 

 

Fig. 4 Variation of first four natural frequencies    with no. of terms  n  and comparison with 

analytical results for HH boundary condition 
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Fig. 5 Variation of first four natural frequencies    with no. of terms  n  for CH boundary 

condition 

 

Fig. 6 Variation of first four natural frequencies    with no. of terms  n  for CC boundary 

condition 
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5.3 Effect of bi-Helmholtz nonlocal elasticity 

In this subsection, the influence of the bi-Helmholtz operator has been studied on natural 

frequencies of HH, CH, and CC boundary conditions as compared with the Helmholtz operator. 

For the computational purpose,  power-law exponent   1k , porosity volume fraction   1.0 , 

non-dimensional Winkler elastic constant   40wK , and non-dimensional Winkler elastic 

constant   40gK  are taken into consideration. The graphical results, i.e., Fig. 7.a, and Fig. 7.b 

represents the variation of first four natural frequencies with respect to the nonlocal parameters 

  for bi-Helmholtz and Helmholtz operators, respectively, for HH boundary condition, and 

these results are computed by employing Navier’s technique. Likewise, Fig. 8 and Fig. 9 

illustrate the graphical results for CH and CC boundary conditions, respectively, which are 

computed using the Hermite-Ritz method. Here, the nonlocal parameters are assumed to vary 

from 0 to 0.5 with an increment of 0.1. From these graphical results, it may clear that the natural 

frequencies for all modes and all boundary conditions are decreasing with increase in nonlocal 

parameters except for the first and second modes of CH and CC boundary conditions with 

respect to bi-Helmholtz operator. Also, this decrease is very significant in the case of higher 

modes. 

 

Fig. 7 Variation of first four natural frequencies    with nonlocal parameter   for HH 

boundary condition 
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Fig. 8 Variation of first four natural frequencies    with nonlocal parameter   for CH 

boundary condition 

 

Fig. 9 Variation of first four natural frequencies    with nonlocal parameter   for CC 

boundary condition 
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5.4 Effect of porosity or porosity volume fraction index 

This subsection is dedicated to investigating the effect of porosity or porosity vol. fraction index 

  on natural frequencies of FG porous nanobeam. Here the porosity vol. fraction   is varied 

from 0 to 0.5 with an increase of 0.1, and other scaling parameters are taken as;  power-law 

exponent   1k , non-dimensional nonlocal parameter   1.0  non-dimensional Winkler 

elastic foundation   40wK , and non-dimensional Pasternak elastic foundation   40gK . In 

this regard, graphical and tabular results are given in Table 4 and Figs. 10-12. Natural 

frequencies of the FG nanobeam increase with the rise in porosity index, which is applicable for 

all modes, all boundary conditions, and in the case of both the bi-Helmholtz and Helmholtz 

operators. This is because although with more value of porosity parameter the stiffness of beam 

becomes lesser and also its cross-sectional moment of inertia reduces, the reduction rate of 

inertia is more than that of the stiffness in the beam. It should be noted that other types of 

porosity may have opposite result. Also, it may be noted that the increase in natural frequencies 

is more significant in higher modes. The results obtained by both the bi-Helmholtz and 

Helmholtz operators are almost equal in lower modes where it can be clearly distinguished for 

higher modes, Helmholtz operator possesses more natural frequencies than bi-Helmholtz, and 

this trend is valid in all the boundary conditions. 

Table 4 Natural frequencies (MHz) for Helmholtz operator (Ho) and Bi-Helmholtz operators (B-

Ho) with respect to porosity volume fraction index. 

(a) Hinged-Hinged (HH) boundary condition 

Porosity 

  

1   2   3   
4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

0 8.9954 8.9933    21.2976 21.1592 36.5307 35.4690 52.9015 49.3444 

0.1 9.3787    9.3766    21.8957 21.7614 37.2957 36.2590 53.8264 50.3436 

0.2 9.8364  9.8345    22.6194 22.4899 38.2265 37.2193 54.9544 51.5600 

0.3 10.3948    10.3930    23.5144 23.3904 39.3847 38.4129 56.3614 53.0744 

0.4 11.0950 11.0933    24.6526 24.5353 40.8676 39.9393 58.1674 55.0143 

0.5 12.0053    12.0038      26.1546 26.0456 42.8384 41.9655 60.5741 57.5937 

 

(b) Clamped-Hinged (CH) boundary condition 
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Porosity 

  

1   2   3   
4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

0 10.9378   10.8823 24.9546 24.5642 41.3135 39.8005 61.1409 54.8442 

0.1 11.3221 11.2586 25.5648 25.1599 42.1072 40.6310 62.1339 55.8055 

0.2 11.7839 11.7097 26.3055 25.8800 43.0744 41.6392 63.3464 56.9640 

0.3 12.3509 12.2622 27.2248 26.7690 44.2801 42.8905 64.8610 58.3899 

0.4 13.0667 12.9572 28.3985 27.8965 45.8267 44.4877 66.8086 60.1930 

0.5 14.0039 13.8634 29.9541 29.3777 47.8868 46.6030 69.4088 62.5552 

 

(c) Clamped-Clamped (CC) boundary condition 

Porosity 

  

1   2   3   
4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

0 13.4994 13.2904 29.1138 27.7048 46.4458 44.1091 64.3550 57.9714 

0.1 13.8795 13.6388 29.7438 28.1601 47.2742 44.9480 65.3712 58.8354 

0.2 14.3390 14.0564 30.5101 28.6844 48.2846 45.9578 66.6120 59.7990 

0.3 14.9070 14.5671 31.4636 29.2890 49.5452 47.1975 68.1620 60.8655 

0.4 15.6290 15.2076 32.6841 29.9802 51.1640 48.7578 70.1544 62.0347 

0.5 16.5814 16.0379 34.3065 30.7424 53.3224 50.7858 72.8136 63.3195 

 

 

Fig. 10 Variation of first four natural frequencies    with porosity vol. fraction index    for 

HH boundary condition 
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Fig. 11 Variation of first four natural frequencies    with porosity vol. fraction index    for 

CH boundary condition 

 

Fig. 12 Variation of first four natural frequencies    with porosity vol. fraction index    for 

CC boundary condition 
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5.5 Effect of Power-law exponent 

In this subsection, the influence of the power-law exponent  k  has been studied on the natural 

frequencies of FG nanobeam. The power-law exponent  k  is taken as 0, 0.2, 0.5, 1, 2, 3, 5, with 

porosity volume fraction   1.0 , non-dimensional parameter   1.0 , non-dimensional 

Winkler elastic constant   40wK , and non-dimensional Pasternak elastic constant   40gK . 

Table 5(a-c) and Figs. (13-15) represent the tabular and graphical results for HH, CH, and CC 

edges with respect to both the bi-Helmholtz and Helmholtz operators. All the computations for 

HH edge are carried out by using Navier’s technique, while the Hermite-Ritz method is used for 

other boundary conditions. These results clearly reveals that the natural frequencies of all modes 

and all boundary conditions decrease with an increase in the power-law exponent  k , that means 

when the beam is purely ceramic i.e., at 0k  possesses the highest natural frequencies and 

when the beam is purely metal i.e., at k  retains the lowest  natural frequencies. This 

reduction is due to the fact that as we go on increasing the power-law exponent  k , the beam 

becomes more flexible, retaining less natural frequencies. This reduction is more remarkable 

with higher modes and at 2k . 

Table 5 Natural frequencies (MHz) for Helmholtz operator and Bi-Helmholtz operator with 

respect to power-law index. 

(a) Hinged-Hinged (HH) boundary condition 

k  
1   2   3   

4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

0 10.7925    10.7898    25.8422 25.6668 44.5660 43.2276 64.7052 60.2300 

0.2 10.2533    10.2509 24.3164 24.1573 41.7427 40.5234 60.4730 56.3892 

0.5 9.7849 9.7827 23.0058 22.8605 39.3257 38.2072 56.8548 53.1023 

1 9.3787 9.3766 21.8957 21.7614 37.2957 36.2590 53.8264 50.3436 

2 9.0255    9.0236    20.9608 20.8352 35.6073 34.6351 51.3214 48.0518 

3 8.8637    8.8619     20.5373 20.4155 34.8459 33.9022 50.1941 47.0188 

5 8.7060   8.7042     20.1140 19.9962 34.0766 33.1631 49.0495 45.9742 

 

(b) Clamped-Hinged (CH) boundary condition 
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k  
1   2   3   

4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

0 13.1944 13.1310 30.3566 29.8811 50.4572 48.5432 74.8310 67.0271 

0.2 12.4736 12.4098 28.4981 28.0498 47.2095 45.4679 69.8833 62.6547 

0.5 11.8530 11.7892 26.9066 26.4819 44.4338 42.8388 65.6618 58.9263 

1 11.3221 11.2586 25.5648 25.1599 42.1072 40.6310 62.1339 55.8055 

2 10.8668 10.8035 24.4403 24.0509 40.1747 38.7905 59.2147 53.2083 

3 10.6584 10.5948 23.9305 23.5472 39.3021 37.9573 57.8970 52.0277 

5 10.4516 10.3871 23.4172 23.0390 38.4169 37.1130 56.5535 50.8202 

 

(c) Clamped-Clamped (CC) boundary condition 

k  
1   2   3   

4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

0 16.3750 16.1390 35.4890 33.8613 56.7848 53.8613 78.8026 70.9212 

0.2 15.4095 15.1707 33.2565 31.6420 53.0834 50.3948 73.5705 66.2187 

0.5 14.5811 14.3408 31.3478 29.7477 49.9212 47.4324 69.1034 62.2012 

1 13.8795 13.6388 29.7438 28.1601 47.2742 44.9480 65.3712 58.8354 

2 13.2872 13.0467 28.4052 26.8338 45.0807 42.8800 62.2886 56.0261 

3 13.0181 12.7767 27.7990 26.2265 44.0912 41.9427 60.9000 54.7382 

5 12.7484 12.5044 27.1856 25.5997 43.0856 40.9884 59.4853 53.4032 
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Fig. 13 Variation of first four natural frequencies    with power-law index  k  for HH edge 

 

Fig. 14 Variation of first four natural frequencies    with power-law index  k  for CH edge 

 

Fig. 15 Variation of first four natural frequencies    with power-law index  k  for CC edge 
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5.6 Effect of elastic foundation 

This subsection is devoted to analyzing the effect of elastic foundation, i.e., non-dimensional 

Winkler  wK , and Pasternak  
gK  elastic parameters on natural frequencies of the FG 

nanobeam. In this regard, a comprehensive study has been undertaken by varying the elastic 

parameters, and the results are noted in tabular form, which can be seen in Table 6. The tabular 

results are incorporated for HH, CH, and CC boundary conditions with power-law exponent 

  1k , porosity volume fraction   1.0 , and nonlocal parameter   1.0 . Different 

combinations for elastic foundations are considered, and results are noted for the first four 

natural frequencies by considering both bi-Helmholtz and Helmholtz operators. From these 

results, it’s quite clear that the natural frequencies increase with the increase in elastic constants 

except the second mode of CC edge, where some irregularities occur with few combinations for 

elastic foundations, and these growths are more remarkable with higher modes. The increase in 

natural frequencies can be explained by the fact that the higher values of elastic parameters make 

the beam stiffer resulting higher value of natural frequencies. 

 

Table 6 Natural frequencies (MHz) for Helmholtz operator and Bi-Helmholtz operator with 

respect to elastic foundation 

(a) Hinged-Hinged (HH) boundary condition 

 
gw KK ,

 

1   2   3   
4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

(0, 0) 4.1382    4.1336    14.6881 14.4871 28.3939 27.0178 43.1712 38.7421 

(50, 0) 5.0270  5.0232    14.9627 14.7655 28.5369 27.1680 43.2652 38.8469 

(100, 0) 5.7807    5.7774    15.2324 15.0387 28.6791 27.3173 43.3591 38.9514 

(200, 0) 7.0504    7.0477   15.7579 15.5708 28.9614 27.6136 43.5462 39.1595 

(500, 0) 9.9290       9.9270    17.2385 17.0676 29.7924 28.4839 44.1027 39.7774 

(700, 0) 11.4529       11.4512    18.1587 17.9965 30.3338 29.0497 44.4698 40.1841 

(1000, 0) 13.4180     13.4166    19.4575 19.3063 31.1281 29.8782 45.0149 40.7865 

(0, 50) 9.8753 9.8734    23.1776 23.0508 39.1027 38.1152 56.1029 52.7706 

(0, 100) 13.3386   13.3372  29.3030 29.2027 47.4534 46.6430 66.5682 63.7849 

(0, 200) 18.4042    18.4032    38.7503 38.6746 60.8065 60.1762 83.6594 81.4622 

(0, 500) 28.6548   28.6542 58.5692 58.5191 89.6340 89.2076 121.2501 119.7446 
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(0, 700) 33.8037   33.8031 68.6746 68.6319 104.5250 104.1596 140.8428 139.5489 

(0, 1000) 40.3122 40.3118 81.5166 81.4807 123.5406 123.2316 165.9499 164.8531 

(50, 50) 10.2795   10.2776   23.3526 23.2267 39.2066 38.2218 56.1753 52.8475 

(100, 100) 13.9360    13.9346   29.5795 29.4803 47.6246 46.8171 66.6902 63.9123 

(200, 200) 19.2691    19.2681    39.1683 39.0934 61.0736 60.4461 83.8535 81.6615 

(500, 500) 30.0426   30.0420   59.2603 59.2108 90.0868 89.6626 121.5849 120.0836 

(700, 700) 35.4504 35.4499   69.4996 69.4574 105.0685 104.7050 141.2463 139.9561 

(103, 103) 42.2847  42.2842   82.5095 82.4740 124.1976 123.8902 166.4391 165.3455 

 

(b) Clamped-Hinged (CH) boundary condition 

 
gw KK ,

 

1   2   3   
4   

Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

(0, 0) 6.4253 6.4083 18.3745 17.9859 32.9521 30.8534 50.7756 43.9596 

(50, 0) 7.0307 7.0151 18.5947 18.2108 33.0753 30.9850 50.8555 44.0520 

(100, 0) 7.5879 7.5734 18.8124 18.4330 33.1981 31.1160 50.9354 44.1441 

(200, 0) 8.5946 8.5819 19.2403 18.8696 33.4423 31.3764 51.0946 44.3278 

(500, 0) 11.0789 11.0690 20.4705 20.1224 34.1643 32.1448 51.5695 44.8743 

(700, 0) 12.4629 12.4541 21.2511 20.9160 34.6373 32.6470 51.8837 45.2350 

(1000, 0) 14.2898 14.2821 22.3709 22.0528 35.3349 33.3862 52.3514 45.7707 

(0, 50) 11.8992 11.8106 26.9144 26.4604 44.0082 42.5950 64.5997 58.1044 

(0, 100) 15.5169 15.2826 33.3305 32.5184 52.8007 51.4876 75.9482 68.0455 

(0, 200) 20.9356 20.3471 43.4007 41.5228 67.0109 65.4434 94.6476 80.4808 

(0, 500) 32.0856 30.2815 64.8135 58.3572 97.9710 93.0027 136.1183 96.3964 

(0, 700) 37.7273 35.0532 75.7982 65.7464 114.0332 101.8837 157.8232 111.2155 

(0, 1000) 44.8781 40.8570 89.7895 74.2754 134.5788 114.0412 185.6826 130.8656 

(50, 50) 12.2367 12.1506 27.0652 26.6138 44.1006 42.6904 64.6625 58.1743 

(100, 100) 16.0332 15.8066 33.5739 32.7678 52.9545 51.6454 76.0551 68.1649 

(200, 200) 21.6999 21.1326 43.7743 41.9131 67.2533 65.6915 94.8191 80.6828 

(500, 500) 33.3308 31.5980 65.4386 59.0508 98.3853 93.4393 136.4165 96.8176 

(700, 700) 39.2096 36.6439 76.5464 66.6078 114.5315 102.4415 158.1832 111.7264 

(103, 103) 46.6579 42.8044 90.6917 75.3639 135.1820 114.7528 186.1197 131.4858 

 

(c) Clamped-Clamped (CC) boundary condition 

 
gw KK ,

1   2   3   
4   
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 Ho B-Ho Ho B-Ho Ho B-Ho Ho B-Ho 

(0, 0) 9.2819 9.2306 22.4127 21.7182 37.7523 34.6837 53.7256 45.8169 

(50, 0) 9.7108 9.6618 22.5936 21.9048 37.8598 34.8008 53.8012 45.9054 

(100, 0) 10.1215 10.0745 22.7731 22.0898 37.9671 34.9174 53.8766 45.9938 

(200, 0) 10.8966 10.8529 23.1278 22.4553 38.1807 35.1496 54.0272 46.1700 

(500, 0) 12.9463 12.9096 24.1607 23.5178 38.8145 35.8369 54.4764 46.6946 

(700, 0) 14.1488 14.1152 24.8254 24.2002 39.2314 36.2880 54.7738 47.0411 

(1000, 0) 15.7816 15.7515 25.7904 25.1892 39.8485 36.9542 55.2170 47.5562 

(0, 50) 14.5242 14.1896 31.1770 29.0606 49.2867 46.9236 67.9123 60.6592 

(0, 100) 18.2933 17.4110 37.9571 31.6656 58.5964 55.4373 79.6126 65.9577 

(0, 200) 24.1051 21.9815 48.7571 27.9550 73.7730 67.9235 98.9483 74.2611 

(0, 500) 36.3111 30.8467 72.0062 93.8346 107.0957 100.0219 141.9482 134.5057 

(0, 700) 42.5415 35.2581 84.0015 107.3578 124.4489 114.8826 164.4844 155.6561 

(0, 1000) 50.4634 40.8676 99.3133 124.8369 146.6785 134.3457 193.4267 182.9408 

(50, 50) 14.8019 14.4738 31.3073 29.2003 49.3692 47.0102 67.9720 60.7262 

(100, 100) 18.7332 17.8728 38.1710 31.9218 58.7350 55.5839 79.7146 66.0810 

(200, 200) 24.7717 22.7106 49.0899 28.5321 73.9932 68.1627 99.1123 74.4800 

(500, 500) 37.4159 32.1400 72.5693 94.2673 107.4748 100.4278 142.2341 134.8075 

(700, 700) 43.8613 36.8399 84.6772 107.8871 124.9056 115.3773 164.8298 156.0211 

(103, 103) 52.0525 42.8145 100.1296 125.4871 147.2320 134.9499 193.8462 183.3844 

 

6. Concluding remarks 

In this investigation, a computationally efficient method, namely the Hermite-Ritz method has 

been employed to compute the frequency response of the proposed model. Bi-Helmholtz type of 

nonlocal operator has been incorporated to seizure the effect small scale effect. HH, CH, and CC 

boundary conditions are considered in this investigation, and closed-form solution is also 

obtained for HH boundary condition by utilizing Navier’s technique. Validation and convergence 

of the proposed model/and method have been conducted successfully. Conclusions obtained 

from the parametric study are summarized as follow; 

 The natural frequencies are decreasing with the increase in the nonlocal parameters except 

for the first and second modes of CH and CC boundary conditions concerning bi-Helmholtz 

operator. Also, this decrease is very significant in the case of higher modes. 
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 Natural frequencies of the FG nanobeam increase with the rise in porosity volume fraction 

index and the increase in natural frequencies is more substantial in higher modes.  

 The results obtained by both the bi-Helmholtz and Helmholtz operators are almost equal in 

lower modes. But, in higher modes, the Helmholtz operator possesses more natural 

frequencies than bi-Helmholtz operator. 

 The natural frequencies reduce with the increase in the power-law exponent  k , which 

means at 0k  the beam possesses the highest natural frequencies and at k  the beam 

retains the lowest natural frequencies.  

 The natural frequencies increase with the increase in elastic parameters except for the second 

mode of CC edge, where some irregularities occur with few combinations for elastic 

foundations, and these growths are more remarkable with higher modes. 
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