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Abstract

We use a Borsuk-Ulam type argument in order to prove existence of nontrivial
bounded solutions to some nonautonomous differential equations, which are
odd with respect to the spatial variable.
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1. Introduction

The main purpose of this short note is to present a simple topological
argument for the existence of fully bounded solutions of some nonautonomous
differential equations satisfying symmetry conditions. We can consider a
process defined by the equation in the extended phase space. Since invariant
sets are noncompact in general, we propose to define another topologically
equivalent dynamical system which can be extended to a compact space.
To this end, we use an old idea coming from H. Poincaré [9] which has
been applied to some planar systems. This technique has been used by E.
González-Velasco in [5] in order to study the properties of polynomial vector
fields at infinity.

Simple symmetry properties (like oddness) of a vector field (the right-
hand side of a system of differential equations) yield analogous symmetries
of the induced flow in phase space. Our main topological argument here
is the Borsuk-Ulam theorem in the version, which asserts that there are
no continuous equivariant maps between the spheres Sn and Sk with the
standard free antipodal actions of Z2 whenever n > k. We consider only this
simplest case of the theorem here, because such symmetry of a vector field is
almost trivial to verify. However, some more sophisticated properties can be
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used in connection with the antipodal type actions (comp. e.g. [4]). Those
properties have been applied successfully to some PDE’s, see e.g. [14].

In this article we assume some basic knowledge of the theory of dynamical
systems and their properties which can be found in many textbooks (see e.g.
[8]). We briefly recall only some necessary notation.

A dynamical system (a flow) in a space X is a continuous map g : X×R→
X such that g(x, 0) = x for all x ∈ X and g(g(x, t), s) = g(x, t + s) for all
t, s ∈ R, x ∈ X. Usually (in Rn) a flow is induced by a vector field by
means of solving Cauchy initial problems, which satisfy standard existence
and uniqueness assumptions. Subset A ⊂ X is called invariant if for every
x ∈ A also g(x, t) ∈ A for all t ∈ R (one can consider also either positively or
negatively invariant sets defined in a natural way). The set {g(x, t) | t ∈ R}
is called the orbit of the point x. An ω-limit set of x is the set of all limits of
convergent sequences g(x, tn) with tn → +∞. Similarly one defines an α-limit
set with tn → −∞. Two dynamical systems on X and Y are topologically
equivalent if there exists a homeomorphism h : X → Y which maps orbits
onto orbits (with the same direction of time).

2. Poincaré compactification

In this section we recall briefly a procedure described in [1], [5], following
the ideas of H. Poincaré [9], which shows how a polynomial vector field in
Rn gives rise to a vector field in a sphere Sn ⊂ Rn+1 by means of central
projection.

Let us consider a polynomial vector field X = (P1, P2, ..., Pn) generating a
flow in Rn. We can identify Rn with the hyperplane Π = {y ∈ Rn+1 | yn+1 =
1} in Rn+1, tangent to the unit sphere Sn = {y ∈ Rn+1 |

∑n+1
i=1 y

2
i = 1} at the

north pole (0, ..., 0, 1). Denote by Sn
+ and Sn

− the open northern and south-
ern hemisphere respectively. Define the following two diffeomorphisms Φ+ :
Rn → Sn

+ and Φ− : Rn → Sn
− by the formula Φ±(x) = ± 1

∆(x)
(x1, x2, ..., xn, 1),

where ∆(x) = (1+
∑n

i=1 x
2
i )

1
2 . Thus we can define a vector field Y in Sn

+∪Sn
−

by Y (y) = DΦ±xX(x) whenever y = Φ±(x). Now let k denote the maximum
of the degrees of the polynomials Pi. The following theorem has been proved
in [5](see also [1]).

Theorem 2.1. The vector field Y can be extended analytically to the whole
sphere Sn after multiplication by the factor yk−1

n+1 and in such a way that the
equator Sn−1 = {y ∈ Sn | yn+1 = 0} is invariant.
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The above theorem has been used to investigate the behavior of the poly-
nomial vector field at infinity. An important information from the proof of
Theorem 2.1 in [5] is that we can consider also a smooth vector field with
polynomial growth and we obtain a smooth vector field in the sphere. Let
us make this observation more precise.

Definition 2.2. A C1-smooth vector field X : Rn → Rn is said to be asymp-
totically polynomial of degree k if there exists a polynomial vector field P =
(P1, P2, ..., Pn) : Rn → Rn with k = max(degPi) and such that for every ε > 0
there exists a constant K > 0 such that

sup
||x||≥K

||X(x)− P (x)||+ sup
||x||≥K

||DX(x)−DP (x)|| ≤ ε.

The second norm in the above definition can be understood as the Euclidean
norm of the Jacobi matrix.

Theorem 2.3. The vector field Y obtained by the above procedure applied
to asymptotically polynomial C1-smooth vector field X of degree k can be
extended smoothly to the whole sphere Sn after multiplication by the factor
yk−1
n+1 and in such a way that the equator Sn−1 = {y ∈ Sn | yn+1 = 0} is

invariant.

Proof: We use Definition 2.2 for a given vector field X and a fixed polynomial
vector field P . In the first step we observe that for a given constant K we
can find L > K and a smooth partition of unity {p1, p2} subordinate to the
open covering U1 = {t ∈ R | |t| < L}, U2 = {t ∈ R | |t| > K} of R. We can
assume that the derivatives are bounded |p′i(t)| ≤ 1 for all t ∈ R. Then we
define a mixed vector field X given by X(x) = p1(||x||)X(x) + p2(||x||)P (x).

The following formula has been carefully calculated in [5] for the induced
vector field Y in the unit sphere: We have 2(n+1) coordinate neighborhoods
on the sphere Vi = {y ∈ Sn | yi > 0}, V ′i = {y ∈ Sn | yi < 0}, and the
corresponding coordinate maps ϕi : Vi → Rn are given by

ϕi(y) =
1

yi
(y1, ..., y̌i, ..., yn+1),

where the symbol y̌i indicates that the ith element is deleted, and similarly
for V ′i . Thus for y ∈ Vi we calculate that for j, s with 1 ≤ j ≤ i, i ≤ s ≤ k,

Y (y) = DΦ±xX(x) =

(
yn+1

yi

)2 [
...,

yi
yn+1

Xj(ỹ)− yj
yn+1

X i(ỹ), ...,
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yi
yn+1

Xs(ỹ)− ys+1

yn+1

X i(ỹ), ...,−X i(ỹ)

]
,

where ỹ = (1/yn+1)(y1, ..., yn). The same formula is valid for y ∈ V ′i . Observe
that the above formula makes sense only outside of the equator Sn−1 = {y ∈
Sn | yn+1 = 0}. But in a sufficiently thin neighborhood of the equator (i.e.
if yn+1 is small enough) the norm of ỹ becomes greater than L and therefore
the components X i(ỹ) = Pi(ỹ) are polynomials. By Theorem 2.1 the vector
field Y , when it is multiplied by the factor yk−1

n+1, has an extension to the
whole sphere Sn. It is given by the above formula because the terms with
yn+1 disappear from all of the denominators in the reduction process. The
extended vector field is therefore C1-smooth as soon as X is C1-smooth.

Now we can consider a sequence of constants Kr → ∞ and repeat the
first step. In this way we obtain a sequence of constants Lr →∞ and vector
fields Yr defined in the sphere. Observe that the polynomial vector field P
is the same for all r ∈ N and thus all of the extended vector fields are equal
on the equator. The desired C1-smooth vector field Y is the point-limit of
Yr as r →∞. �

Corollary 2.4. Given a flow in Rn defined by a C1-smooth vector field X
with a polynomial growth, there exists a flow Y defined on the closed unit
disc Dn = {y ∈ Rn | ‖y| ≤ 1} such that the open disc and the boundary are
invariant sets and the restriction of the flow generated by Y to the open disc
is topologically equivalent to the original flow in Rn.

Proof: By means of the projection π(y1, y2, ..., yn+1) = (y1, y2, ..., yn) we ob-
tain a homeomorphism h : Sn

+ → intDn, which gives the equivalence of the
flows: the one induced by the vector field from Theorem 2.3 in the open
northern hemisphere and the second induced by its projection onto the open
unit disc in Rn. On the other hand, the flow in the open hemisphere is topo-
logically equivalent to the original flow on Rn because of the diffeomorphism
Φ+ and the multiplication by a positive analytic factor yk−1

n+1 (comp. e.g.
[8]). This extends to the closed hemisphere because π is an identity on the
equator. �

3. G-spaces and G-index

We use here the C̆ech cohomology functor H∗ since it satisfies the continu-
ity property (if a cohomology class vanishes on a closed set, then it vanishes
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on a neighborhood of this set). The group Z2 of integers mod 2 will be used
as a coefficient group in cohomology.

Let G be the group Z2. Assume that G acts freely on a paracompact
space X (it means gx 6= x for all x ∈ X if g 6= e). We call such a space X a
G-space. Every such G-space admits an equivariant map h : X → EG into
a classifying space EG; moreover every such two maps are homotopic (see
[2] Thm 8.12 and Thm 6.14). The map h induces a map of the orbit spaces
ĥ : X/G → BG := EG/G. Consequently we obtain a uniquely determined
homomorphism of their cohomology groups

ĥ∗ : H∗(BG,Z2)→ H∗(X/G,Z2).

This schedule works in general, but in our special case G = Z2 the space
EG can be identified with the infinite-dimensional sphere S∞ and the stan-
dard free antipodal action of G in it. The orbit space BG is the infinite-
dimensional real projective space P∞.

The concept of G-index for a free Z2-space has been introduced by C.T.
Yang in [15]. Then it was extended to other groups (see e.g. [12], [6]). We
recall the definition for Z2 from [12].

Definition 3.1. We say that the G-index of X is not less than k if the
homomorphism ĥk : Hk(BG,Z2)→ Hk(X/G,Z2) is a monomorphism.

Most of the properties of the G-index are immediate consequences of the
definition. In particular, we have:

• (Monotonicity):

If X, Y are free G-spaces and f : X → Y is an equivariant map, then
indGY ≥ indGX.

• (Dimension):

If dimX < m, then indGX < m, where dim denotes the topological
covering dimension.

An important special case of the above is the following:

• If indGX ≥ 0, then X 6= ∅.
The next property is a version of the classical Borsuk-Ulam theorem:
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• (Borsuk-Ulam property):

A sphere Sn with the standard antipodal action is a G-space and more-
over indGS

n = n.

The following one is a consequence of the continuity property of the
C̆ech cohomology theory:

• (Continuity property):

Let G act freely on X and let A ⊂ X be a compact G-subspace. Then
there is an open neighborhood U of A in X which is a G-space and
indGU = indGA.

4. Nonautonomous systems

Since we would like to illustrate only the simple geometric idea involved,
we do not try to formulate the most general possible result here.

Let us consider a nonautonomous asymptotically linear system of ordinary
differential equations in Rn:

x′(t) = A(t)(x(t)) + F (x, t), (1)

where A : R → Mn×n is a continuous map to the space of square matrices,
F : Rn × R → Rn is a nonlinear map which satisfies appropriate conditions
for the uniqueness and existence of global solutions to the Cauchy initial
problems. Here we assume for simplicity that F is smooth.

Additionally we assume the following:

• (A1) F is odd in x, i.e. F (−x, t) = −F (x, t) for all x ∈,Rn, t ∈ R;

• (A2) limt→±∞ F (x, t) = 0 uniformly in x;

• (A3) the growth of F in x is at most polynomial (of the same degree
for all t for simplicity);

• (A4) limt→±∞A(t) = A±;

• (A5) the matrices A+, A− are hyperbolic, i.e. they have no eigenvalues
with 0 real part.
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Let us denote by k the number of eigenvalues λ of A− with negative real part
and similarly let l be the number of eigenvalues of A+ with negative real
part. It is clear that x ≡ 0 is a (trivial) solution of the equation (1), because
it follows from (A1) that F (0, t) = 0. Our main result is the following:

Theorem 4.1. Assume (A1)-(A5) and let k < l. Then the equation (1) has
nontrivial bounded solutions.

Proof: It is well known that the equation (1) determines a process in the
extended phase space Rn×R, which is induced by the vector field X(x, t) =
(A(t)x + F (x, t), 1). In the terminology of [10] and [13] it is called a skew-
product flow.

Now we can apply the procedure from Section 2 in order to obtain a flow
in a compact space. We can do this in two steps. First we apply it to a
”frozen” vector field in Rn given by x 7→ A(t)x + F (x, t) for every fixed t.
In this manner we obtain a vector field in the closed unit disc Dn in Rn for
every t. Then for each fixed x we apply the similar procedure to the constant
vector field on R. More explicitly, we can multiply this constant vector field
by a smooth, even and monotone in R+, positive-valued function k(t) such
that k(0) = 1 and limt→∞ k(t) = 0 (e.g. k(t) = exp(−|t|) ), and then apply
the procedure from Section 2. In this way we obtain a skew-product flow
defined in a solid cylinder Dn × [−1,+1]. This flow ϕ, as considered in the
interior of the cylinder, is topologically equivalent to the original one in Rn+1.

We have a natural antipodal action of the group Z2 on the cylinder, given
by (x, t) 7→ (−x, t). Since the central projection used in Section 2 is an odd
map, the constructed flow ϕ is equivariant, i.e. ϕ(−x, t) = −ϕ(x, t) for all
x ∈ Dn, t ∈ [−1, 1].

One easily observes that the sets

Dn × {−1}, Dn × {1}, ∂Dn × [−1, 1], {0} × [−1, 1]

are invariant sets with respect to the flow ϕ, which has been described above.
Observe also that the ω-limit set of every point (x, t) with t > −1 is contained
in the set Dn × {1} because of our assumptions.

Suppose that all nontrivial solutions of (1) are unbounded.
Considering the flow restricted to the invariant set Dn × {−1}, the di-

mension of the unstable subspace of the hyperbolic stationary point is equal
to n − k. Thus we consider a sphere Sε = Sn−k−1 of a small positive radius
ε, centered at 0, in the unstable subspace.
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Now let Sn−k−1 × {−1 + δ} be a small sphere on a bit higher level. An
orbit of every point from this set has to approach a neighborhood V of a
sphere Sn−l−1×{1} ⊂ ∂Dn×{1} (a sphere in the unstable subspace) as soon
as t is sufficiently close to 1. Since the sphere is compact, we can find the
common value of t0 such that for all points x ∈ Sn−k−1 we have ϕ(x, t0) ∈ V .
Of course we can choose a Z2-invariant neighborhood V which is arbitrarily
close to Sn−l−1 × {1}. Therefore the formula β(x,−1 + δ) = ϕ(x, t0) defines
an equivariant map

β : Sn−k−1 × {−1 + δ} → V.

By the continuity property of the G-index, indGV = n− l−1. Thus from
the monotonicity we obtain the following inequality

n− k − 1 ≤ n− l − 1,

and therefore l ≤ k, contrary to our assumption. This contradiction ends
the proof. �

Let us remark that in the special case of linear nonautonomous systems
the result has been proved in [3] and it seems to be complementary to some
results from [10].

As an example of application of the Conley index techniques in [7] (comp.
also [11]) the following planar Fourier–Taylor polynomial equations were con-
sidered

z′ =
1

p+ 1
iz + eitzp + eiktzq

for z ∈ C. The authors in [7] gave some sufficient conditions for existence of
periodic solutions as well as for merely bounded ones.

Observe that if both p and q are odd, then the right-hand side vector
field is odd. However, our assumptions A1-A5 are not satisfied here. Let us
modify the equation.

Example 4.2. Let f : R→ R be a smooth function such that limt→−∞ f(t) =
0, limt→∞ f(t) = 1 and let g : R → R be a smooth function of compact sup-
port. Then the planar equation

z′ = f(t)z + f(−t)z + g(t)(eitzp + eiktzq)

satisfies the assumptions of Theorem 4.1 whenever p, q are odd.
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In fact, one can also consider a function g such that limt→±∞ g(t) = 0. Ex-
amples in higher dimensional spaces can be easily produced. Let us observe
that the schedule of our proof is rather straightforward. It seems possible
to repeat it in the case of differential inclusions whenever the solution sets
of Cauchy problems are good enough to produce a generalized (multivalued)
dynamical system. Some versions of the Borsuk-Ulam theorem has been
proved to be true for admissible multivalued maps in the sense of Górniewicz
(see e.g. [4]) and may be applicable in this context. We do not claim that our
arguments are the most powerful. A kind of the Conley index theory may
be also used here (see [13]). Typical assumptions are that the considered
system of equations is some kind of perturbation of an autonomous linear
system and then a continuation property of the Conley index is being applied.

Acknowledgement. We are grateful for the Reviewer(s) careful reading
and many remarks which made the paper more readable.
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isolating segments, Nonlinear Anal. TMA 70 (2009) 2123–2131;
DOI:10.1016/j.na.2008.02.113

[8] Perko L., Differential Equations and Dynamical Systems, Springer V.
2001;DOI:10.1007/978-1-4613-0003-8
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