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Abstract: Titania-based films on selective laser melted Ti13Zr13Nb have been formed by micro-arc 

oxidation (MAO) at different process parameters (voltage, current, processing time) in order to 

evaluate the impact of MAO process parameters in calcium and phosphate (Ca + P) containing 

electrolyte on surface characteristic, early-stage bioactivity, nanomechanical properties, and 

adhesion between the oxide coatings and substrate. The surface topography, surface roughness, 

pore diameter, elemental composition, crystal structure, surface wettability, and the early stage-

bioactivity in Hank’s solution were evaluated for all coatings. Hardness, maximum indent depth, 

Young’s modulus, and Ecoating/Esubstrate, H/E, H3/E2 ratios were determined in the case of 

nanomechanical evaluation while the MAO coating adhesion properties were estimated by the 

scratch test. The study indicated that the most important parameter of MAO process influencing the 

coating characteristic is voltage. Due to the good ratio of structural and nanomechanical properties 

of the coatings, the optimal conditions of MAO process were found at 300 V during 15 min, at 32 

mA or 50 mA of current, which resulted in the predictable structure, high Ca/P ratio, high 

hydrophilicity, the highest demonstrated early-stage bioactivity, better nanomechanical properties, 

the elastic modulus and hardness well close to the values characteristic for bones, as compared to 

specimens treated at a lower voltage (200 V) and uncoated substrate, as well as a higher critical load 

of adhesion and total delamination. 

Keywords: titanium alloys; micro-arc oxidation; composite oxide coatings; microstructure; 

properties 

 

1. Introduction 

Titanium and its alloys are widely used for medical applications. Among them, pure Ti (cp-Ti) 

or Ti with Al, V, and Mo alloying elements are still among the most common materials used for 

implantation. However, due to the reported mismatch in mechanical properties between bones and 

those materials, leading to the stress-shielding and implant loosening, as well as the toxicity of Al 

and V, new solutions are considered. Finally, among the perspective materials are β-type titanium 

alloys [1–3] known as low modulus and bioinert metals containing Ti, Zr, Nb, Hf, Ta alloying 

elements [4,5]. Although the material ensures preferable mechanical properties, which has been 
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proved as an effective factor in inhibiting bone atrophy [6] there is still a problem with its bioactivity. 

Many articles have reported that the composite layer can increase the surface area and roughness of 

the implant, and promote the ingrowth of the tissue while improving the adhesion between the bone 

tissue and implant. There are many methods which can enhance the bone tissue response, such as 

plasma spray, magnetron sputtering, ion implantation, and anodic treatment [7]. However, micro-

arc oxidation (MAO), also called plasma electrochemical oxidation (PEO), has gained special 

attention due to its applicability to biocompatible coating deposition with a gradient structure, rough 

and porous morphology on such metals as Ti, Al, Mg, Nb, Zr, and their alloys. According to the 

literature, the MAO technique combines many advantages and exhibits better improvement of 

surface properties compared to other conventional methods. Laser surface modification improves the 

wear and corrosion resistance of Ti alloys, however the coatings exhibit low bond strength and the 

residual stresses produced during remelting and solidification which lead to many cracks in the laser 

treated coatings [8]. Similarly, plasma spraying improves biocompatibility, wear resistance, and 

thermal stability, but the formation of tensile forces between the substrate and coatings cause cracks 

and weaken the bonds. On the other hand, physical vapour deposition (PVD) and chemical vapour 

deposition (CVD) brings out the coatings of high density and strong adhesion to the substrate; 

however, such hard coatings also exhibit a large mismatch between mechanical properties of the 

substrate and coatings and in consequence may cause delamination. The sol-gel films demonstrate 

that the low adhesion strength to the substrate, possess a limited bioactivity, and their thickness is 

difficult to control. The friction stir processing (FSP) method improves biofunctionality, corrosion, 

and wear resistance, but due to the low processing rate and inferior flexibility, it has limitation for 

the use on complex-geometry [9]. Conventional electrochemical modification is able to produce a 

reproducible and well-defined coatings, nevertheless the improvement in hardness and wear 

resistance of Ti alloys by this technique is seldom reported. Compared to the modification method 

presented above, the micro-arc oxidation (MAO) technique improves the corrosion and wear 

resistance of titanium alloys, significantly enhances biocompatibility and bioactivity, provides a 

better bonding between the substrate and coating, and it has the capability to coat the complex-shape 

objects what constitutes a big advantage for biomedical applications [10]. The MAO process has been 

investigated by several research groups in recent years, mainly concerned with the biologic behavior, 

corrosion behavior [11,12], and the characteristics of the surface layer in terms of crystalline structure, 

topography, porosity or composition [13]. According to the literature, the coating formed in the 

electrolyte containing Ca and P ions can significantly improve the bioactivity of titanium implants 

[14–17]. What is more, the structure and properties of MAO coatings can be easily controlled by 

different MAO process parameters such as applied voltage, current density, time processing, as well 

as various electrolyte compositions [18–20]. Du et al. [19] and Wei et al. [13] have reported that the 

applied voltage has significant influence on the structureal parameters such as thickness, the atomic 

ratio of Ca to P, micropore number, and size of the MAO film on Ti and Zr1Nb alloy [19] and Ti6Al4V 

alloy [13]. Komarova et al. [21] has shown that the coating thickness, roughness, and the average size 

of the structural elements grow linearly with increasing the MAO voltage from 200 to 370 V. While, 

the MAO time effects only the coating thickness. Another research report [22] described the 

morphology, elemental composition, phase components, and bioactivity in four types of electrolytic 

solutions and the applied voltage in the range of 200–500 V. Among the sodium carbonate, sodium 

phosphate, acetate monohydrate (CA), and a mixture of CA and β-glycerophosphate disodium salt 

pentahydrate (GP), only the last mixture treated by high voltage could induce apatite on the titanium 

surface and exhibited bioactivity. Alves et al. [7] also evaluated the MAO process duration and 

electrolyte composition on topography, morphology, chemical composition, crystalline structure, 

biological and tribocorrosion behavior of the Ca- and P-coatings on cp-Ti. Finally, Tsutsumi et al. 

[23,24] have already described the characteristic of MAO coatings in various electrolytes and 

electrochemical conditions on β-type titanium alloys. The results [23] have shown that the titanium 

with Nb, Ta, Zr elements (TNTZ) under the MAO treatment (with a positive voltage, constant-current 

condition of 12 mA, and time processing of 8 min) in a mixture of calcium glycerophosphate and 

magnesium acetate, results in thick calcium phosphate layers formed on the TNTZ after immersion 
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in Hank’s solution. The same research group investigated the structure, hardness, and Young’s 

modulus after the MAO process on Ti15Zr7.5Mo with a positive maximum voltage of 400 V and 

current density of 31.2 mA/cm2 applied for 10 min. The electrolyte for MAO treatment was 0.1 mol 

L−1 calcium glycerophosphate and 0.15 mol L−1 calcium acetate. The research has shown larger 

hardness (420 HV) compared to the commonly used Ti-5Al-4V alloy (320 HV) and TNTZ (180 HV), 

as well as higher Young’s modulus (104–112 GPa) compared to TNTZ (80 GPa) [24]. Similarly, Wang 

et al. [25] while studying the differences of MAO coating on Ti6Al4V and Ti35Nb2Ta3Zr, proved that 

titanium with Zr and Nb alloying elements possessed a better characteristic in terms of excellent 

corrosion resistance, hydrophilic, and film-forming properties. It can be noticed, that the most 

previous research with the effect of MAO process parameters on oxidized coatings has been mostly 

focused on the morphological features, corrosion and/or biological properties, and the studies on 

nanomechanical and adhesion properties of MAO coatings have been seldom reported [26]. What is 

more, many reports have been published on the micro-arc oxidation of titanium and its various 

alloys, but only little of these concern the MAO process of the very promising alloy Ti13Zr13Nb, 

which is characterized by excellent biocompatibility, corrosion resistance, high strength/weight ratio, 

good fatigue resistance, and lower Young’s modulus as compared to most of the metals [27]. 

Additionally, there is still very little reports on the micro-arc oxidation coatings deposited on the 

selective-laser melted (SLM) substrate [28]. Designing personalized implants can improve their 

longevity. Among others, selective laser melting (SLM) shows several advantages over conventional 

manufacturing techniques as a method for customized mechanical properties [29,30]. Some authors 

indicate that the high thermal gradient and high solidification of SLM-made alloys may affect MAO 

coating characteristics. For example, Yao et al. [28] obtained higher porosity with relatively smaller 

pores on the surface of the MAO coating applied on TC4 alloy produced by SLM, compared to other 

works. Some authors explained this phenomenon by an appearance of many small micro-arc 

oxidation discharges related to small grains size obtained by the SLM manufacturing process [31]. 

There are also studies, which indicate that the SLM/MAO process improves the osseointegration 

capacity [32,33]; however, the improvement of surface properties is rather related to the ability of 

additive manufacturing to produce the 3D structure which optimizes the contact interface with a 

human bone, than with a special microstructure characteristic. 

To our best knowledge, there are no reports of the complex correlations between the MAO 

process parameters and growth mechanism, structural characteristics, adhesion strength, and 

nanomechanical behavior of MAO coatings on the selective-laser melted β-rich Ti13Zr13Nb alloy. 

The main aim of this study was to investigate the complex effect of micro-arc oxidation process 

parameters (applied voltage, current, and duration time) in Ca- and P-containing electrolyte on the 

surface characteristics, early-stage bioactivity, nanomechanical properties, and adhesion between the 

MAO coatings and SLM-made Ti13Zr13Nb alloy. The MAO process was performed on the SLM-

made and mechanically polished Ti13Zr13Nb alloy. Specimens were treated in 0.1 mol·L−1 of calcium 

glycerophosphate C3H7CaO6P (GP) and 0.15 mol·L−1 of calcium acetate Ca(CH3COO)2 (CA) by the DC 

power supply under various voltages 200, 300, and 400 V and a constant current of 32 mA for 10 and 

15 min, and a constant current of 50 mA for 10 min. In order to obtain the characteristics of coatings, 

the topography, surface roughness, pore diameter, elemental composition, crystal structure, and 

surface wettability were evaluated. The ability of calcium phosphate formation on oxide coatings was 

examined to obtain the bioactivity characterization. Hardness, maximum indent depth, Young’s 

modulus, and Ecoating/Esubstrate, H/E, and H3/E2 ratios were determined with the nanomechanical 

evaluation while the MAO coating adhesion was estimated by the scratch test. 

2. Materials and Methods 

2.1. Specimens Preparation 

The cylindrical specimens (discs 20 mm in diameter and 3 mm thick) were manufactured by the 

selective laser melting (SLM) additive technique while using Ti13Zr13Nb spherical powder (TLS 

Technik GmbH & Co. Spezialpulver KG, Bitterfeld-Wolfen, Germany) with particle size ranging from 
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20 to 70 µm. Samples were designed using the Materialise Magics (Materialise NV, Ghent, Belgium) 

software. The used SLM 100 apparatus (Realizer GmbH, Borchen, Germany) was equipped with the 

ytterbium one mode fiber laser CW YLR-100-SM (IPG Laser GmbH, Burbach, Germany) using a 1070 

nm wavelength. The laser melting process was carried under a protective argon atmosphere and 

other process parameters (i.e., spot diameter, laser power and scanning speed, and layer thickness) 

are patent pending. The samples were mechanically polished using #150, #320, #600, and #800 grid 

SiC abrasive papers and ultrasonically cleaned with acetone, isopropanol, and distilled water for 10 

min each. After ultrasonication, the specimens were dried in ambient air. 

2.2. MAO Coating Preparation 

The micro-arc oxidation process was performed with a DC power supply (PL-650-0.1, 

Matsusada Precision Inc., Shiga, Japan) under various voltages 200, 300, and 400 V and a constant 

current of 32 mA for 10 and 15 min, and a constant current of 50 mA for 10 min. The labels of MAO 

coatings formed at the different parameters are shown in Table 1. The MAO was conducted in 1 L of 

an aqueous electrolyte with contents of 0.1 mol·L−1 calcium glycerophosphate C3H7CaO6P (GP) and 

0.15 mol·L−1 calcium acetate Ca(CH3COO)2 (CA), as P and Ca ions source, based on previous studies 

[34,35]. Ti13Zr13Nb was used as an anode and a cylinder made of AISI 304 stainless steel as a cathode. 

Each disk was fixed onto a polytetrafluoroethylene holder with an O-ring. Details of the working 

electrode were as described in [36]. A magnetic stirrer rotating at 200 rpm was used to create a 

turbulent flow regime, and the glass container was kept in a water-cooled bath at room temperature. 

After the MAO treatment, the surfaces were washed in ultrapure water and dried. The control group 

called “control” are represented by the Ti13Zr13Nb SLM-made specimens after polishing without 

the MAO treatment. 

Table 1. The labels of micro-arc oxidation (MAO) coatings formed at different process conditions. 

Applied 

Voltage (V) 

Current 

(mA) 

MAO-Treatment Time 

(min) 

Lebels in 

Groups 

Labels in 

Subgroups 

200 

32 15 

MAO_200 

MAO_32_15_200 

32 10 MAO_32_10_200 

50 10 MAO_50_10_200 

300 

32 15 

MAO_300 

MAO_32_15_300 

32 10 MAO_32_10_300 

50 10 MAO_50_10_300 

400 

32 15 

MAO_400 

MAO_32_15_400 

32 10 MAO_32_10_400 

50 10 MAO_50_10_400 

2.3. MAO Coating Characterization 

Process parameters (current and voltage) were continuously recorded at intervals of 0.1 s by a 

sensor interface (PCD-300A; Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan). The content of 

the ripples was controlled to less than 0.1%. Scanning electron microscopy (SEM; S-3400NX, Hitachi 

High-Technologies Corp., Tokyo, Japan) was used to characterize the surface morphology. The 

samples' topography, surface roughness, and pore diameter, were evaluated by the laser scanning 

microscope (LSM; Olympus LEXT OLS4100 3D, Tokyo, Japan). The thickness of MAO coating was 

measured by the coating thickness gauges Elcometer 456 (Elcometer, 456, Elcometer Inc, Michigan, 

MI, USA) in a range of 0–1500 μm and ±1% accuracy. The elemental compositions of the samples 

were analyzed using energy dispersive X-ray spectrometry (EDS; S-3400NX, Hitachi High-

Technologies Corp., Tokyo, Japan). X-ray diffraction (XRD, BRUKER D8 DISCOVER, Bruker AXS 

KK, Yokohama, Japan) was performed to characterize the crystal structure of the specimens. The 

surface wettability was determined by the contact angle (CA) measurements with the falling drop 

method while using an optical tensiometer (Attention Theta Life, Biolin Scientific, Espoo, Finland). 
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The volume of the liquids was about 1 μL/sample. Measurement was carried out immediately after 

the deposition of the drop of the liquid while using the OneAttension program (Biolin Scientific, 

Espoo, Finland).  

2.4. Bioactivity of the MAO Coatings 

The ability of calcium phosphate formation on the oxide coatings was evaluated by an 

immersion test in Hank's solution (0.005 L) with a pH value of 7.4 and concentration similar to the 

extracellular fluid. The composition of the fluid is shown in Table 2. The specimens were immersed 

in the solution at 310 K for 72 h. After the test, specimens were rinsed in ultrapure water. Calcium 

phosphate formation on the specimens was evaluated with the scanning electron microscopy (SEM; 

S-3400NX, Hitachi High-Technologies Corp., Tokyo, Japan) and energy dispersive X-ray 

spectrometry (EDS; S-3400NX, Hitachi High-Technologies Corp., Tokyo, Japan). 

Table 2. Ion concentration of Hank's solution. 

Ion Concentration (mol·L−1) 

Na+ 1.42 × 10−1 

K+ 5.81 × 10−3 

Mg2+ 8.11 × 10−4 

Ca2+ 1.26 × 10−3 

Cl− 1.45 × 10−1 

PO43− 7.78 × 10−4 

SO43− 8.11 × 10−4 

CO32− 4.17 × 10−3 

2.5. Nanomechanical Properties of MAO Coatings 

Nanomechanical properties of MAO coatings, i.e., hardness, maximum indent depth, Young’s 

modulus, and Ecoating/Esubstrate, H/E, H3/E2 ratios were determined using a nanoindenter (NanoTest 

Vantage, Micro Materials Ltd., Wrexham, UK) with Berkovich three-sided pyramidal diamond with 

an apex angle equal to 124.4°. The tests were performed with a maximum force of 50 mN, loading 

and unloading times equaled to 20 and 15 s, respectively, and the cycle had 5 s dwell at a maximum 

load. Hardness (H), reduced Young's modulus (Er), and Young's modulus values were determined 

using the Oliver-Pharr method [37] based on the NanoTest results analysis program. In order to 

convert the reduced Young's modulus into Young's modulus, a Poisson coefficient of 0.3 was 

assumed for the coatings [38]. For all tested specimens, the twenty-five independent measurements 

were performed. 

2.6. MAO Coatings Adhesion Properties 

The adhesion strength of the MAO coatings was estimated by NanoTest™ Vantage (Micro 

Materials, Wrexham, UK) using the Berkovich three-sided pyramidal diamond the same as 

mentioned above. The test parameters were as follows: Load equal was 400 mN, the loading rate was 

1.3 mN/s, and scratch length was 10 μm. The way of loading was linear and continuous. The adhesion 

of the coating was assessed based on the observation of an abrupt change in frictional force during 

the test. The failure events were examined by an optical microscope. 

2.7. Statistical Analysis 

Statistical analysis of the data was performed with the commercial software OriginPro 64 

(OriginLab, Northampton, MA, USA). The Shapiro-Wilk test was used to assess the normal 

distribution of the data. All of the results were presented as the mean ± standard deviation (SD), and 

they were statistically analyzed with a one-way analysis of variance (one-way ANOVA). Multiple 

comparisons versus the control group between means were performed using the Bonferroni t-test 

with the statistical significance set at p < 0.05.  
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3. Results and Discussion 

3.1. MAO Process Characterization 

The MAO process characterization was analyzed by the time-dependent relations of voltage and 

current, as shown in Figure 1. The curve characteristic is typical for the MAO process, where the 

variation of voltage can be divided into three stages [39]. First, the voltage increases linearly due to 

the formation of an initial dioxide film. During the second stage, the voltage increases slowly, which 

corresponds to the beginning of the micro-arc oxidation process, where the oxide layer is broken 

down to form a discharge channel. As the reaction progresses, with the increase of layer thickness, 

the voltage keeps increasing. During the last stage of the MAO process, the voltage fluctuates near 

the plateau with numerous sparks on each sample surface until the end of the treatment. A similar 

behavior was also observed by Qian [40]. Similarly, during analyzing the current-to-time curve, we 

can notice that the current decreases with increasing the MAO treatment time. In the first stage, the 

current is constant and stays on its highest value due to the formation of a compact and thin oxide 

layer (resulting in a better surface conductivity). When the system reaches the selected potential, a 

dielectric breakdown of these films and micro-arc discharge start to occur. With layer growing, the 

conductivity decreases, the sample electric resistance increases, and the current density decreases 

intensively [12]. Finally, the thickness of a coating prevents dielectric breakdown, and the current 

takes the minimum values near a plateau section of the current. This behavior is confirmed by the 

reports of Sobolev et al. [41] and Komarova et al. [21], and is correlated with optical observations. 

During the first stage, gas bubbles on the materials’ surface could be seen. During the second stage, 

white and tiny electric sparks appear, and with increasing time, they become larger and more intense. 

In the third stage, the MAO process varies in different conditions. When the MAO treatment was 

conducted at 400 V, the arcs became stronger while their number decreased. In contrast, when 

oxidation was performed at 200 V, after reaching the maximum voltage, the micro-arc sparks became 

weak and fewer in number. It can be seen that the intensity of the micro-arc oxidation increases while 

the value of maximum voltage increases. The presence of pulses on the curves indicates the periodic 

nature of electrical discharges. The highest dielectric breakdown behavior of the process at an applied 

maximum voltage of 400 V could be observed. 

 

Figure 1. Time-dependent curves of voltage (a–c) and current (a’–c’) of the MAO process for 

MAO_32_15 (a,a’), MAO_32_10 (b,b’), and MAO_50_10 (c,c’). 
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From a comparison of curves, it can be noticed that at current 32 mA and time 15 min, the 

maximum voltage of 200, 300, and 400 V is reached after 80, 261, and 641 s, respectively (the accuracy 

of determining the time was estimated at 2 s and current value at 0.001 A. When the time of the MAO 

process was reduced from 15 to 10 min, the relations of MAO_200 and MAO_300 were similar to 

those observed for 15 min (Figure 1a,a’ and b,b’), while for MAO_400, the limited time of 10 min 

occurred to be too short to obtain an expected voltage (the maximum registered value was 391 V). 

The incomplete MAO process significantly affected the coatings’ characteristics. The time needed to 

obtain the final voltage 200, 300, and 400 V was about two-times shorter (42, 153, and 381 s, 

respectively), when the initial current increased from 32 to 50 mA (Figure 1b,b’ and c,c’) indicating 

that the film could be faster formed at these process parameters. The average value of current 

obtained in the third stage of the process was similar under voltage 200 and 300 V, but if the treatment 

voltage was 400 V, the average minimum values near a plateau section were higher compared to 

those under 200 and 300 V. The effect can be attributed to the changing electrical resistance of the 

oxide layer. 

3.2. MAO Coating Surface Evaluation 

The surface morphology of the Ti13Zr13Nb alloy samples treated by the MAO in various process 

conditions was observed by SEM, as shown in Figure 2, the dimensions of the pores were calculated 

using ImageJ software, while the MAO coating thickness was evaluated by using coating thickness 

gauges. The average diameter of pores varied from 1.8 to 8.4 μm (Figure 3a), with applied voltage 

increasing in the range of 200–400 V, for all current and time values. Samples treated under lower 

maximum voltages, 200 and 300 V, possessed similar average pore sizes, however, their shape and 

distribution differed from each other significantly. At the lowest voltage (MAO_200), the samples‘ 

surfaces revealed mainly few irregularly distributed micropores with size equal to 2.17 ± 0.89, 2.20 ± 

0.66, and 1.80 ± 0.64 μm (for MAO_32_15, MAO_32_10, and MAO_50_10, respectively). Additionally, 

on the surface, two characteristic regions can be observed (Figure 2a) with micropores (region II) and 

without micropores (region I). It could be assumed that at the selected potential 200 V, a dielectric 

breakdown of films and micro-arc discharge was not effective to form a fully porous coating. When 

limited voltage was 300 V, the sustainable and stable (Figure 1b) electrolytic plasma discharge 

resulted in regularly distributed pores over the surface with a relatively uniform pore diameter 2.36 

± 0.4, 2.80 ± 0.67, and 2.75 ± 0.61 μm for MAO_32_15_300, MAO_32_10_300, and MAO_50_10_300, 

respectively. As the MAO was performed at 400 V, the surfaces showed a crater-like structure with 

statistically the biggest pores about 7.13 ± 2.68, 5.66 ± 1.38, and 8.41 ± 3.19 μm for MAO_32_15_400, 

MAO_32_10_400, and MAO_50_10_400, respectively. The size of the micropores increased as some 

discharge channels connected and became larger. What is more, in these process conditions, the 

presence of tiny cracks can be observed (Figure 2c). The formation of microcracks may be caused by 

thermal stress [42] either due to the breakdown of the electrolytic plasma bubbles at the alloy surface 

which constantly release a large amount of energy, by rapid condensation of the molten compound 

during their exposition to the cold electrolyte [43] or rapid oxides‘ transformation from amorphous 

to crystalline form [44]. In a similar study, Correa et al. [14] observed qualitatively similar MAO 

samples’ morphology of the Ti15ZrxMo alloy subject to the anodic treatment carried out for 10 min 

at the same electrolyte concentration (Ca + GPa) under the maximum voltage limited to 300, 350, and 

400 V. In this case, the pore sizes were smaller as compared to our study and were as follows: 1.6–1.8 

μm for 300 V, 2.2–2.8 μm for 350 V, and 2.8–4.5 μm for 400 V. The addition of MO which improves 

the corrosion resistance may have distinct effects on the dielectric barrier of the films.  

Taking into consideration the standard deviation value of pore size, the most extensive and 

hardly reproducible structure was obtained at the highest maximum voltage, especially at the highest 

current parameter for MAO_50_10_400. While, the most regular and predictable structure was 

obtained for the middle value of voltage (300 V), in particular for MAO_32_15_300. It can also be 

noticed that in the case of MAO coatings treated in 400 V, shortening the process time from 15 to 10 

min in the same current conditions, decreases the pore size, while increasing the current from 32 to 

50 mA in the same time process conditions results in a bigger pore size (Figure 3). 
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Figure 2. SEM microstructure images of the MAO coatings with various MAO process parameters: 

MAO_32_15_200 (a), MAO_32_15_300 (b), MAO_32_15_400 (c), MAO_32_10_200 (d), 

MAO_32_10_300 (e), MAO_32_10_400 (f), MAO_50_10_200 (g), MAO_50_10_300 (h), 

MAO_50_10_400 (i) with two various marked regions (I, II) obtained in MAO_200 (a) and microcracks 

obtained in MAO_400 (c) (the presented results are representative for three analyses of each surface 

treatment specimens). 

 

Figure 3. Pore size (a) and thickness (b) of the investigated MAO coatings with various MAO process 

parameters measured by ImageJ software and coating thickness guages, respectively (n = 25; data are 

the means ± SD; (a) significantly different in groups (p < 0.05), (b) significantly different between time 

groups (p < 0.05), (c) significantly different between current groups (p < 0.05)). 
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The anodic treatment resulted in pores with a wide range of sizes. Alves et al. [12], applying the 

MAO at similar anodic treatment conditions, obtained smaller pore sizes (0.5–5 μm), compared to 

our results. The decrease of the pore size could be caused by lower electrolyte concentration (GP and 

CA). The increase in the size of the pores with increasing electrolyte concentration was also reported 

by Ishizawa et al. [45] for anodic titanium oxide films containing Ca and P.  

The MAO coating thickness also increased with increasing voltage and varied from 4.1 to 26.8 μm, 

for MAO_200 and MAO_400, respectively. Sedelnikova et al. [16] reported that CaP coatings on Ti 

and Zr1Nb increased linearly from 10 to 110 μm with the voltage rising from 150 to 300 V. Chen et 

al. [46] obtained the MAO film on Ti39Nb6Zr of 15 μm in thickness during a 10 min treatment at 400 

V. While Karbowniczek et al. [47] observed that the MAO coatings ranged from 16 to 60 μm in 

thickness, depending on the Ca/P ratio in an electrolyte. According to the literature, when a current 

density grows, the coatings deposition rate increases [48]. However, in our study only MAO_400 

fulfills this assumption. 

The results of microstructural characterization are in line with the average surface roughness 

(Ra) where with increasing voltages, the Ra value also increases (Table 3). The significant (p < 0.05) 

highest value of Ra parameter was observed at 400 V in each time and current conditions. 

MAO_32_10_400 has a statistically lower Ra parameter compared to other samples treated in 400 V, 

due to the “unfinished” micro-arc oxidation process (Figure 1b). When the MAO process was carried 

out at the same time oxidation but under higher current, the Ra parameter increased, its value being 

close to that of MAO_32_15_400. The obtained results are consistent also with SEM images, in which 

better surface development is observed at increasing voltage. Increasing values of roughness 

parameters for MAO_400 are associated with the existence of the additional craters and a hill-like 

structure caused by aggressive plasma discharge. The obtained results are in line with previous 

reports [16,25,49]. Karbowniczek et al. [47] using the same electrolyte but under pulsed DC with 400 

V and time of 5 min obtained Ra = 1.6 μm. Lin et al. [46] reported on Ra = 1.86 μm for the MAO treated 

Ti39Nb6Zr alloy after 10 min under 400 V. Sedelnikova et al. [16] showed that alloys containing Zr 

and Nb demonstrated lower values of roughness compared to pure Ti.  

Table 3. Average surface roughness Ra (µm) of the investigated control specimens and MAO coatings 

with various MAO process parameters measured by laser microscopy. 

Sample 
Average Surface Roughness Ra (µm) 

Control 
200 V 300 V 400 V 

MAO_32_15 0.41 ± 0.05 0.52 ± 0.01 2.67 ± 0.25 *,a 

0.19 ± 0.04 MAO_32_10 0.37 ± 0.03 0.54 ± 0.26 1.84 ± 0.17 *,a,b 

MAO_50_10 0.36 ± 0.02 0.51 ± 0.03 2.67 ± 0.18 *,a 

(n = 5; data are the means ±SD; * significantly different from control (p < 0.05); a significantly different 

from MAO_200 and MAO_300 (p < 0.05); b significantly different from MAO_400 (p < 0.05)). 

The EDS microanalysis of the MAO coatings revealed the different amounts of elements 

throughout the coating surface in relation to the MAO process conditions (Figure 4). The MAO 

coatings formed in the electrolytes are mainly composed of Ti and O. The oxygen concentration on 

MAO samples is about 60%, which is the result of intense anodization [50]. As seen, in each of the 

MAO specimens, Ca, P, Ti, Zr, and Nb elements appear. It could be speculated that Ca and P from 

the electrolyte were incorporated into the oxide layers on the substrates during the arc discharge 

process, while the Ti, Zr, and Nb elements were detected from the titanium alloy substrate [51]. It can 

be also noticed that with the increasing applied voltage, the concentration of Ca increases, Ti 

decreases, while the P compound content first intensively increases with the increasing voltage 

ranging from 200 to 300 V and then slightly decreases. This phenomenon has been previously 

observed [52] and can be correlated with an increase in the intensity and temperature of the micro-

arc discharges leading to the increase of the reactive capacity of all electrolyte components. It was 

also found [45] that sodium glycerophosphate and calcium acetate were suitable for the electrolytes 

to form a coating possessing the Ca/P ratio as that of hydroxyapatite (1.67). In this study, with the 
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increasing voltage, the Ca/P ratio also increased; however, the value was smaller than that of bone-

apatite. The highest value was measured for MAO_32_15_400 while the lowest for MAO_32_15_200 

specimens (1.38 and 0.31, respectively). On the other hand, Han et al. [22] presented a study showing 

that specimens with a Ca/P atomic ratio of 1.73 did not exhibit apatite-induced ability, while the 

specimens with higher Ca and P content, but lower Ca/P atomic ratio induced an apatite appearance 

on the surface. These observations confirm that the MAO process not only affects the surface 

morphology but also influences the chemical composition of the oxide films as well. 

Additionally, the high value of carbon (C) content, especially for control specimens, can be 

noticed. According to the literature, it is very difficult to obtain and analyze the reliable value of C 

content using energy dispersive X-ray spectrometry and the results significantly vary from each other 

from 2.1–5.7 (wt.%) [6], even to more than 27 (wt.%) [24], depending on the research group. Some 

authors did not include in their analysis the C content [51] at all. The high value of carbon detected 

during the EDS examination may be related to the contamination coming from the CO2 atmosphere 

during the MAO treatment, from the internal walls of the vacuum chamber in SEM, as well as from 

accidentally improper samples storage [53]. In the future, it is worth considering eliminating the EDS 

analyses of such elements such as carbon. 

 

Figure 4. Surface elemental composition analysis (at.%) of the investigated control specimens and 

MAO coatings with various MAO process parameters measured by energy dispersive X-ray 

spectrometry EDS (the presented results are representative for three analyses of each surface 

treatment specimens). 

In Table 4, the wettability measurements of each specimen are presented. They revealed that all 

specimens were characterized by hydrophilic surfaces (CA < 90°). The contact angle of the substrate 

and MAO coatings were in the range 35°–64°. As a comparison, Ming-Tzu Tsai [54] obtained for the 

MAO treated Ti specimens, the contact angle equaled to 50.7° ± 5.6°. The wettability of a surface is 

crucial for the adsorption of proteins and the cell adhesion [38], with optimal value suggested for 

35°–85° [55]. Although only the MAO_32_10_400, MAO_50_10_400, MAO_32_10_200, and 

MAO_32_15_300 specimens significantly (p > 0,05) improved the surface wettability compared to the 

control group; it could be said that all specimens fulfilled this criterion. The literature [14] discloses 

that the contact angle of the MAO coatings increases with the rising applied voltages, which may be 

correlated (among others) with a higher value of roughness [19] , and/or capillary forces between 

volcano-like pores and contacted distilled water [56]. However, in this study, only MAO_32_15_400 

is in line with this relation, but surface wettability may be strongly affected by other parameters such 

as morphology, crystallinity, and chemistry [57]. 
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Table 4. Surface wettability of the investigated control specimens and MAO coatings with various 

MAO process parameters determined by the measurements of the contact angle of distilled water. 

Sample 
Surface Wettability—The Value of Contact Angle (°) 

Control 
200 V 300 V 400 V 

MAO_32_15 56.65 ± 6.98 35.63 ± 4.35 *,b 64.31 ± 7.94 

60.83 ± 3.34 MAO_32_10 53.99 ± 2.56 * 57.40 ± 1.8 39.16 ± 5.18 *,a 

MAO_50_10 64.82 ± 4.95 d 62.13 ± 2.58 46.55 ± 3.57 *,c 

(n = 5; data are the means ±SD; * significantly different from control (p < 0.05); a significantly different 

from MAO_32_10_200 and _300, MAO_32_15_400 (p < 0.05); b significantly different from 

MAO_32_15_200 and _400; MAO_32_10_300 (p < 0.05), c significantly different from MAO_50_10_200 

and _300 (p < 0.05) d significantly different from MAO_32_10_200 (p < 0.05)). 

The XRD patterns of a control group and the micro-arc oxidized samples obtained at various 

applied voltages, and constant current 32 mA and time processing of 15 min are shown in Figure 5. 

In a case of a control group (Figure 5d), besides titanium peaks (α-, β-phase) related to the titanium 

alloy substrate, the rutile and anatase oxides were detected. It confirms a good ability of Ti13Zr13Nb 

alloy to self-passivation [58]. On the surface after the MAO treatment, among the titanium oxides, 

rutile, and anatase peaks appeared at all the applied voltages (Figure 5a–d). Additionally, at the 

lowest values of voltage (200 and 300 V), titanium peaks (α-phase) were also observed (Figure 5a,b). 

The intensity of the peaks slightly decreased with the increasing limiting voltage, which could be 

related to the oxide layer growth. For the highest applied voltage (400 V) (Figure 5c), the oxidized 

surface layer became mainly a mixture of anatase and rutile. The presence of anatase suggests that a 

vigorous oxidation reaction has occurred on a titanium surface during the MAO process [2]. The Ti 

peak on the XRD patterns may be correlated with X-ray penetration through the coating. According 

to the previous study, TiO2 can exist in the three crystalline polymorphs (anatase, rutile, and 

brookite). The literature also indicates that mostly anatase is formed at lower forming voltages, while 

the combination of anatase and rutile phases appear at higher forming voltages since anatase as a 

metastable-phase gradually transforms into rutile at higher temperatures with the increasing 

dielectric breakdown phenomena [59]. Wang et al. [25] showed that alloys contained Nb ad Zr 

elements could form a number of anatase phase grains higher than those of rutile phase during high 

voltage (400 V) oxidation, compared to pure Ti and Ti6Al4V, which enhanced their bioactivity. No 

more phases were detected by the XRD analysis despite the fact that the EDS analysis also showed 

incorporation of Ca and P ions. The additional phases may appear in the amorphous or crystalline 

structure at a content that is below the detection limit of XRD [22]. These phenomena are in line with 

the literature; Zhang et al. [60] did not find any peaks from hydroxyapatite with the Ti-MAO sample 

in the CA and GP solution, while Han et al. [22] observed only Ca- and P-containing phase by 

employing the CA- and β-GP solution at higher voltages, up to 450 V. 

 

Figure 5. X-ray diffractograms of samples: The control group (d) and MAO coatings obtained at 

various applied voltages in a constant current of 32 mA and time processing equal to 15 min: 

MAO_32_15_200 (a), MAO_32_15_300 (b), MAO_32_15_400 (c) (the presented results are 

representative for three analyses of each surface treatment specimens). 
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3.3. Early-Stage Bioactivity of the MAO Coating 

To investigate the early-stage bioactivity of the substrate and MAO coating under various 

maximum voltages, the specimens were immersed in Hank’s solution for 72 h. The surface 

morphologies of the example of the samples after immersion are shown in Figure 6. It can be noticed 

that there are a few white particles randomly scattered on the sample surface (Figure 6a,b) or riddle-

like small particles (Figure 6c,d) rich in Ca and P elements (Figure 6e,f). Other authors also observed 

similar morphologies with the spherical particles and precipitate layer being reported as apatite 

[19,60,61]. 

 

Figure 6. Surface morphologies of the samples after soaking in Hank’s solutions for 72 h: The control 

group (d) and the MAO coatings obtained at various applied voltages in a constant current of 32 mA 

and time processing equal to 15 min (a–c): MAO_32_15_200 (a), MAO_32_15_300 (b), and 

MAO_32_15_400 (c). The Ca/P ratio (e) and elemental composition (f) of the post-immersed 

specimens (the presented results are representative for three analyses of each surface treatment 

specimens). 

The elemental composition of the post-immersed substrate and samples with MAO coatings, 

and Ca/P ratio are shown in Figure 6e,f. It can be observed that with the increasing voltage, the Ca 

and P values also increase. Additionally, all post-immersed MAO specimens are characterized by a 

higher Ca/P ratio as compared to a substrate (control). The Ca/P ratio after immersion for specimens 

treated at 200 and 300 V is about two times higher than before immersion (0.85 and 1.51, respectively). 

While for specimens treated under 400 V, the Ca/P ratio decreases and is almost the same as the value 

before immersion. It is difficult now to propose any model explaining the relative decrease in P 

content with the increasing voltage, but it may be somewhat attributed to the different chemical 

potentials of deposition of both ions and their different relations of chemical potentials on the 

electrochemical voltage. The results are in line with a report of Qing et al. [19] that presents that the 

MAO coating formed at 350 V shows better apatite-inducing ability as compared to the MAO process 

carried out at higher voltages (400, 450, and 500 V). The value of the Ca/P ratio being the nearest to 

stoichiometric hydroxyapatite (1.67) was obtained by specimens treated under 300 V (1.51). Anyway, 

the ratio Ca/P demonstrates the surfaces' ability to induce the precipitation of calcium phosphate.  
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According to the literature, due to nucleation of apatite and diffusion of Ca and P ions from the 

MAO coating into Hank’s solution, the degree of local supersaturation increases, and apatite nuclei 

are spontaneously growing. Moreover, the increase in the aperture and surface roughness of the 

MAO coating also accelerate the nucleation of apatite [28]. Thus, the bioactivity of MAO increased 

with a voltage change from 200 to 300 V. Its further decrease can be, as mentioned above, due to 

many factors, including relation of chemical potential on the voltage. In a similar study, Tsutsumi et 

al. [23] observed on MAO-treated Ti29Nb13Ta4.6Zr the newly formed layers rich in Ca and P after 

seven days of immersion in Hank’s solution. Correa et al. [14] presented that the calcium and 

phosphate contents increased with the limiting voltage in all samples after immersion. Our results, 

confirmed also by other research reports [19], indicate only that at high voltage the enhancement of 

bioactivity may decrease. 

3.4. Nanomechanical Properties of MAO Coatings  

The load-displacement hysteresis curve as an example of the results of nanoindentation tests is 

shown in Figure 7. Three main stages of the nanoindentation test are observed: Loading to a 

maximum value, pause with maximum value, and unloading. At the end of the loading stage, the 

maximum indenter displacement connected with elastic and plastic deformation can be observed, 

while at the end of the unloading phase, the final depth (connected with elastic recovery) of the 

contact impression can be the measure [37]. Irregularity occurring on the unloading step is correlated 

with the temperature drift. It can be seen that the elastic recovery of MAO specimens is significantly 

low when compared to control specimens and decreases with an increasing voltage of the MAO 

process. The lowest recovery characteristic was obtained by the MAO_32_10_400 treatment, while 

the greater by MAO_32_10_200. Increasing current values, from 32 to 50 mA, result in lower 

maximum displacement, while decreasing time of the MAO process from 15 to 10 min leads to higher 

maximum displacement. What is more, at the higher voltage of the MAO process, the longer 

displacement during pause time can be observed, which is connected with more distinct creep of 

these coatings. The results differ from the phenomena shown in the literature, where the MAO 

process significantly has improved elastic recovery compared to the uncoated substrate [62,63]. 

 

Figure 7. Nanoindentation load-displacement curve obtained for the investigated MAO coatings with 

various MAO process parameters and control specimens obtained by the nanoindentation test (a–c): 

MAO_32_15 (a), MAO_32_15 (b), and MAO_32_15 (c) (the presented results are representative for 

twenty-five analyses of each surface treatment specimens). 
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Hardness (H), Young’s modulus (E) value, and deformation mechanism of the coating under 

load are considered as the most important factors for the anti-wear performance of ceramic coatings 

[64]. Figure 8 presents the surface hardness, Young’s modulus, maximum indent depth, 

Ecoating/Esubstrate, H/E, and H3/E2 ratio of the MAO coatings. The highest value of hardness and Young’s 

modulus was obtained for the control group (4.75 ± 1.55 and 67.71 ± 13.09 GPa, respectively). It can 

be noticed that all modifications had a significant impact on both mechanical indices. Apart from the 

MAO_32_10_300 and MAO_32_10_400 specimens, with increasing voltages of the MAO process, the 

hardness significantly decreased, from two times for MAO_200 up to twelve times for MAO_400. In 

MAO_300 specimens, when the time decreased from 15 to 10 min, the hardness was reduced almost 

60% compared to the longer process, while the increment of current from 32 to 50 mA caused almost 

twice higher hardness of tested coating compared to specimens treated at 32 mA. A similar behavior 

was noticed for Young’s modulus where MAO_50_10_300 was characterized by a higher value of 

Young’s modulus in comparison to MAO_32_10_300. In contrast, the time change from 15 to 10 min 

first decreased (for MAO_200) and then increased (for MAO_300) the Young’s modulus value. A 

higher parameter of hardness in all cases was related to denser and smoother surface morphologies. 

Young’s modulus was higher for all specimens treated under 200 V with the highest value equal to 

80.94 ± 6.71 GPa obtained during the MAO process in 50 mA conditions, while specimens treated at 

300 and 400 V showed the significantly decreased Young’s modulus. The results are in line with the 

literature, where the lowest values of Young’s modulus and hardness correspond to materials with 

less dense microstructure and the highest levels of porosity [65–68]. The MAO process carried out at 

400 V indicated from two to four times bigger pore size compared to the MAO process at 200 V. 

Similarly, Souza et al. [69] suggested that the elastic modulus obtained for porous film was related to 

the actual elastic response of the film. In the case of biomaterials, lower values of Young’s modulus 

are often positive. The mismatch between elastic modulus and hardness of an implant and a bone 

can lead to stress shielding, which may provide implant loosening [27,29]. The obtained results 

indicate that the elastic modulus values for all MAO coatings are closer to values characteristics of 

bones (11.4–21.2 GPa) and the best matching is observed for specimens treated at 400 V (8.46 ± 0.59; 

14.06 ± 2.11; 15.00 ± 3.07 for MAO_32_15_400, MAO_32_10_400, and MAO_50_10_400, respectively). 

As presented in Figure 8b, with increasing voltage, maximum indentation depth also increases which 

is strictly correlated with lower hardness of the coatings. The highest indentation depth reached 2.55 

μm (for MAO_32_15_400) and was about 60% higher than the lowest one equal to 0.94 μm (for 

MAO_50_10_200). According to the literature, the lower the H/E and H3/E2 ratios are, referred to 

materials elastic strain failure and materials resistance to plastic deformation, respectively, the worst 

the materials wear performance is [70]. It can be noticed that both ratios are much lower for the MAO 

coatings compared to the control group, and lower than the optimal declared value of the H/E 

parameter approx. 0.1 [71], which refers to high plastic deformation of the coating and in 

consequence, low wear resistance (Figure 8e,f). Some authors proved that a close match between the 

elastic modulus of the coating and substrate reduced interfacial stress and ensured better adhesion 

[72]. It is preferable to obtain the value of Ecoating/Esubstrate ratio close to unity, since the higher mismatch, 

the greater plastic deformation and brittle cracking may be observed [73]. It can be noticed that 

Ecoating/Esubstrate decreases with increasing applied voltage, and the closest value to the optimum is 

obtained by all specimens treated under lower voltage (MAO_200), while the highest mismatch 

between both coating and substrate’s Young modulus occurs in the specimens treated under high 

voltage (MAO_400).  D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Coatings 2020, 10, 745 15 of 24 

 

 

Figure 8. Nanomechanical properties: Nanohardness (a), maximum indent depth (b), Young’s 

modulus (c), Ecoating/Esubstrate ratio (d), H/E ratio (e), H3/E2 ratio of investigated MAO coatings with 

various MAO process parameters and control specimens (n = 10; * significantly different from control 

(p < 0.05), (a) significantly different in groups (p < 0.05), (b) significantly different between time groups 

(p < 0.05), (c) significantly different between current groups (p < 0.05)). 

According to the literature, mechanical parameters depend on many determinants, i.e., porosity, 

phase composition of the oxide layer, and MAO process parameters. It is suggested that soft calcium 

phosphate agglomerates have a significant impact on lower mechanical properties. For example, 

Karbowniczek et al. [47] obtained that the MAO coating containing various Ca/P ratios with hardness 

ranged between 5.74 to 21.88 GPa and Young’s modulus from 29.3 ± 4.3 to 54.7 ± 11.8 GPa, in line 

with the results of this study. It is worth noting that the differencess of the mechanical properties and 

their significant standard deviation values are characteristic of nanoindentation measurements as 

observed by many authors [74]. Especially, nanoindentation of macro-porous films is challenging 

due to the experimental errors related to the influence of the substrate, the pore-filling densification 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Coatings 2020, 10, 745 16 of 24 

 

effect during indentation, as well as the surface roughness [75–77]. Additionally, the methodology to 

a reliable determining of the mechanical properties of porous coatings has not been well established 

yet. According to the literature, to minimize the effect of the substrate, the indenting should be 

provided to a maximum depth (hmax) less than 10% of the coating thickness (tf) (hmax/tf < 0.1) [37], and some 

authors indicate 20% of the film thickness for the porous thin ceramic films (hmax/tf < 0.2) [78], while others 

pointed out that for hardness measurements, the substrate effect would be relatively small as long as 

the indentation depth would be below 50% of the film thickness [79]. On the other hand, taking into 

consideration the roughness effect, the elastic modulus results are more consistent and reproducible 

when the indentation depth is bigger, in the range of 10%–20% of the film thickness [65], since when 

the indenter tip is similar to the value of the surface roughness, the stresses at the initial point are 

much greater and result in variability in the first stages of indentation [80]. It can be noticed that in 

our research all MAO coatings fulfill the relations hmax/tf < 0.5, while MAO_300 and 400 fulfill the 

relations 0.1 < hmax/tf < 0.2, which according to the literature should improve the reliability of the film-

only properties. What is more, to eliminate the experimental errors, a series of indentation tests were 

carried out, the critical values were statistically rejected and the median was taken into consideration. 

Additionally, due to minimizing the pore-filling densification effect, the experiment was performed 

with restriction distance of 20 µm offset in the Z and Y axis. In the future, to improve the 

nanoindentation examination, the spherical indenter tip (with a larger surface area), as well as the 

nanoindentation tests evaluated at different depths should be considered. 

3.5. MAO Coatings’ Adhesion  

In scratch testing, three main failures can be observed: Cohesive, adhesive, and mixed cracking 

[72]. The minimum load at which the first damage occurs is characterized by a critical load (Lc). In 

the literature usually one [74,81], two [82,83] or three [72,84] critical loads (Lc1, Lc2, Lc3) are 

presented. In this study, Lc1 is correlated with the first crack (initial cohesion deformation), Lc2 

marked the load under which, on the edge of the scratch, the first delamination occurred (initial 

adhesion deformation), Lc3 presents total coating perforations, where the substrate starts to be seen 

continuously. According to the literature [85], Lc1 may be identified by the first peak of acoustic 

emission correlated with a spontaneous shock wave that occurs as a result of the microcrack 

formations, while Lc2 and Lc3 can be measured in the first and follow high-peaks which indicate the 

large damage of the coating. To improve the investigation of failures, all results were also analyzed 

while using other scratch test data, i.e., friction force and penetration depth. Since the literature 

indicated that isolated damages could be ignored [85], to understand better at which location, the 

beginning of the failure event was occurring, the optical microscopy was used. 

A comparison of the microstructures of the coatings (Figure 9) shows that the scratch behavior 

is dependent on the MAO process parameters. For specimens treated under 200 V, only a small 

peeling occurred in the coating (apart of the place where the loading was completed, and bigger 

peeling could be observed), and only a few circular microcracks, some lateral and arc tensile cracks 

could be observed. The higher the process voltage, the more transverse semi-circular cracks, 

chipping, and spalling appear. For 300 and 400 V, conformal-type buckling cracks with local 

interfacial spallation indicate a highly cohesive failure. In both conditions at the edges of the 

scratches, two-sided peeling indicates the intense adhesive type of failure. However, the chipping 

deformations occur much later (farther from the beginning of the scratch path) compared to 

MAO_200 what may suggest the higher adhesion between substrate and coating. In specimens 

treated under 300 V conditions, total perforation becomes continuous, and in contrast, the coating’s 

damage of specimens treated in 400 V presents more cyclic delamination character. Although in all 

specimens coating breakthrough occurs, the place where the substrate starts to appear along the 

scratch track, varies; the lower the voltage was, the earlier (closer to the beginning of the scratch path) 

the total perforations appeared. The example of the relations between friction (F), acoustic emission, 

penetration depth and load (L) with the indicated critical loads (Lc1, Lc2, Lc3) for the MAO coatings 

are shown in Figure 9, while the average values of critical loads and critical friction force causing total 
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delamination (Fc (Lc2)) measured during the scratch test for all MAO coatings samples are present 

in Table 5. 

 

Figure 9. The scratch path with cohesion and adhesion failures after scratch testing (a–c), and the 

relation of friction (F), acoustic emission, and penetration depth on load (L) with the indicated critical 

loads (Lc1, Lc2, Lc3) (a’–c’) of the investigated MAO coatings obtained at various MAO process 

parameters: MAO_32_15_200 (a,a’), MAO_32_15_300 (b,b’), and MAO_32_15_400 (c,c’) (the 

presented results are representative for ten analyses of each surface treatment specimens). 

Table 5. Critical loads and critical friction force caused total delamination (Fc (Lc2)) measured during 

the scratch test for all MAO coatings samples (the presented results are representative for five 

analyses of each surface treatment specimens). 

Critical Load (mN) 

Sample Lc1 Lc2 Lc3 Fc (Lc2) 

MAO_32_15_200 4.97 ± 1.47 12.34 ± 4.9 43.27 ± 8.16 220.68 ± 16.95 

MAO_32_15_300 7.19 ± 4.17 27.41 ± 12.78 80.62 ± 11.39 134.48 ± 25.53 

MAO_32_15_400 10.51 ± 1.68 63.49 ± 28.01 163.35 ± 42.13 368.332 ± 40.85 

MAO_32_10_200 5.07 ± 1.94 29.70 ± 10.49 59.39 ± 9.56 39.064 ± 14.56 

MAO_32_10_300 10.27 ± 3.63 31.28 ± 13.46 83.50 ± 8.06 45.14 ± 21.56 

MAO_32_10_400 8.52 ± 2.26 46.63 ± 16.88 157.76 ± 36.69 138.42 ± 43.69 

MAO_50_10_200 8.12 ± 1.89 17.63 ± 7.14 44.73 ± 4.26 131.80 ± 16.91 

MAO_50_10_300 13.42 ± 3.93 25.56 ± 5.67 76.38 ± 6.98 477.37 ± 19.93 

MAO_50_10_400 12.02 ± 3.99 43.13 ± 15.39 178.23 ± 43.81 520.08 ± 48 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Coatings 2020, 10, 745 18 of 24 

 

It can be said that for the MAO 200, 300, and 400 V conditions, the critical load of micro-cracking 

(Lc1) occurs at low force and ranges between 4.97 ± 1.47 to 13.42 ± 3.93 mN (for MAO_32_15_200 and 

MAO_50_10_300, respectively). According to Figure 9 and Table 5, the scratch resistance of the 

coatings was improved with the highest voltage of the MAO process, in line with the literature [62]. 

Some authors [28] suggested that the oxidation time influenced the adhesion; however, in this study, 

no significant difference could be observed. Lc3 of MAO_400 coatings (~157–178 mN) were 

approximately 50% higher than Lc3 of the MAO_300 and 70% higher than for the MAO_200. 

Additionally, MAO_400 remained without being totally damaged for the longest time (total 

delaminations occurring futher from the beginning of the scratch path) of all analyzed coatings (~370 

μm for MAO_32_10_400 and MAO_32_15_400 and ~ 480 μm for MAO_50_10_400). In contrast, the 

fastest (the total delaminations occurring closer from the beginning of the scratch path) total 

delamination occurred in MAO_200 (~173, 85, and 101 μm for MAO_32_10_200, MAO_32_15_200, 

and MAO_50_10_200, respectively). In the specimens oxidized under middle voltages (MAO_300), 

the average distance from the beginning of the scratch path, where the first delamination occurred, 

were at ~205, 223, and 187 μm for MAO_32_10_300, MAO_32_15_300, and MAO_50_10_300, 

respectively. Even though MAO_400 is characterized by lower hardness and higher porosity 

compared to the MAO_200, better adhesion may be related to the higher P and Ca elements’ 

incorporation due to a more intense oxidation process. The highest value of the friction force during 

the first adhesive damage Fc (Lc2) was obtained by the most rough specimens MAO_50_10_400 and 

MAO_32_15_400. The very high value of Fc (Lc2) of MAO_50_10_300 reflects the highest pill-up effect 

compared to other specimens (Figure 9b). 

Although the MAO has been declared as an effective method to improve adhesion between 

coatings and substrate compared to other wide known surface modification methods, such as sol-gel 

[62], or alkaline heat treatment [86], a typical brittle behavior can be still observed. Based on the Zhu 

et al. [87] study, the tribological performance of the MAO coatings can be improved by an optimal 

combination of the MAO process parameters as voltage, current, time oxidation, or electrolyte 

concentration. It is also worth noting that results obtained in scratch tests depend on various 

independent factors (test conditions, material parameters, and the randomness of measurements), 

and their direct comparability between various research groups is almost impossible. Therefore, the 

obtained findings are only approximate and should be mainly used for the qualitative comparison 

purpose. 

4. Conclusions 

After the MAO treatment, rutile and anatase peaks appear at all the applied voltages. Mostly 

anatase is formed at lower forming voltages, while the combination of anatase and rutile phases 

appears at higher voltages. The time-dependent relations of voltage and current characteristics of the 

MAO process on SLM-made Ti13Zr13Nb are typical, their dielectric breakdown intensities increasing 

with the growth of applied voltage. The time 10 min is too short to obtain a maximum voltage of 400 

V. The film is faster formed at higher initial current. 

The average diameter of pores and thickness of the MAO coating depend on the applied voltage 

and change from 1.8 to 8.4 and 4.1 to 26.8 μm, respectively, with increasing voltage. For the highest 

voltage, shortening the processing time in the same current conditions, decreases the pore size, while 

increasing current results in a bigger pore size. The most roughness, extensive, and hardly 

reproducible structure is obtained at the highest maximum voltage, while the most regular and 

predictable structure at the middle voltage (300 V). 

With increasing applied voltage, the concentration of Ca increases and that of Ti decreases, while 

the P compound content first intensively increases and then slightly decreases. With increasing 

voltage, the Ca/P ratio also increases. The closest value of the Ca/P ratio to bone-apatite is obtained 

by MAO_32_15_400. 

All specimens have hydrophilic surfaces, with values corresponding to optimal values to ensure 

better adsorption of proteins and the cell adhesion.  
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After the early-stage bioactivity examination in Hank’s solution, the MAO process results in a 

high Ca/P what indicates good bioactivity of MAO coatings. The nearest value of the CA/P ratio to 

stoichiometric hydroxyapatite is obtained by specimens treated at 300 V. 

The elastic recovery of the MAO treated specimens is low and decreases with an increasing 

voltage of the MAO process. The significant elastic recovery appears at higher current values and 

higher processing time. Young’s modulus is the highest for specimens treated at the lowest voltage 

200 V. The elastic modulus values for all MAO coatings are closer to values characteristic of bones 

with the best matching for specimens treated at 400 V. 

The ratios referred to coatings’ wear-resistant performance (H, H3/E2, Ecoating/Esubstrate) show a 

tendency to higher plastic deformation of the MAO coating and in consequence, lower wear 

resistance compared to the uncoated Ti13Zr13Nb. The soft calcium phosphate agglomerates have a 

significant impact on lower mechanical properties. For the higher process voltage, more intense 

transverse semi-circular cracks, chipping, and spalling appear. The critical loads referred to the first 

adhesive damage and total delaminations are weaker at the highest voltage of the MAO process, 

which can be correlated with higher thickness of those coatings.  

The results of the research indicate that there are no significant differences between MAO 

coating on the SLM substrate compared to MAO coating on titanium alloys produced by 

conventional methods. The differences in MAO coating properties were mainly correlated with 

micro-arc oxidation process parameters. 

The most important parameter of the MAO process influencing the coating characteristic is the 

voltage. The optimal conditions of the MAO process include the voltage 300 V for 15 min at 32 mA 

or 50 mA of the current. As a consequence, the coating is characterized by the most regular and 

predictable structure, high Ca/P ratio, high hydrophilicity, highest demonstrated early-stage 

bioactivity, better nanomechanical properties, such elastic modulus and hardness with higher 

matching to the values of bones, compared to MAO_200 and uncoated substrate, as well as the higher 

critical force of adhesion and total delaminations compared to MAO_200. Despite the perspective 

properties, the relatively low critical load presented during the scratch test is still a certain problem; 

however, it is also an interesting opportunity to evaluate the issue of adhesion strength in further 

research. The authors plan to improve the adhesion properties, while adding some components (i.e., 

silica) to the one-step MAO process. 
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