
Auto-tuning methodology for configuration and

application parameters of hybrid CPU+GPU parallel

systems based on expert knowledge

Paweł Czarnul and Paweł Rościszewski

Faculty of Electronics, Telecommunications and Informatics

Gdańsk University of Technology

Gdańsk, Poland

pczarnul@eti.pg.edu.pl, pawel.rosciszewski@pg.edu.pl

Abstract—Auto-tuning of configuration and application param-
eters allows to achieve significant performance gains in many
contemporary compute-intensive applications. Feasible search
spaces of parameters tend to become too big to allow for
exhaustive search in the auto-tuning process. Expert knowledge
about the utilized computing systems becomes useful to prune
the search space and new methodologies are needed in the face of
emerging heterogeneous computing architectures. In this paper
we propose an auto-tuning methodology for hybrid CPU/GPU
applications that takes into account previous execution experi-
ences, along with an automated tool for iterative testing of chosen
combinations of configuration, as well as application-related
parameters. Experimental results, based on a parallel similarity
search application executed on three different CPU+GPU parallel
systems, show that the proposed methodology allows to achieve
execution times worse by only up to 8% compared to a search
algorithm that performs a full search over combinations of
application parameters, while taking only up to 26% time of
the latter.

Index Terms—performance optimization, hybrid high perfor-
mance computing, auto-tuning, multi-core CPU, GPU

I. INTRODUCTION

Solutions to many practical computational problems can

be implemented as hybrid parallel applications [1], which

allows for increased performance due to utilizing heteroge-

neous computing resources and combining multiple levels of

parallelization. Unfortunately, such approaches lead also to

multiplicity of parameters for which values have to be selected

for a certain application execution. These parameters can be

divided into two groups: configuration parameters dependent

on the utilized hardware and application parameters related

to the specific parallel implementation.

Since configuration parameters are related to the utilized

hardware, the specific parameters and their feasible values

depend on the architecture and components of the computing

system. For example, one of the configuration parameters

in a multi-core CPU is the number of used threads and the

possible values are integer numbers ranging from 1 to the

maximum number of threads allowed by the system. Similarly,

an example of a configuration parameter in a multi-node

cluster is the number of used nodes [2], in a multi-GPU system

- the number of used GPUs [3]. In a system that utilizes

GPUs, grid configuration has to be configured [4]. If Intel

Xeon Phi accelerators are used, setting the proper page size

for memory allocation can be beneficial [24]. Configuration

parameters can also be related to the software solutions used

in the computing system. For example, when using Hadoop,

one might configure the maximum number of used machines

or memory limit for each map and reduce tasks [5].

On the other hand, the feasible space of application pa-

rameters may depend on the used parallelization paradigm.

For example the number of workers used in each iteration,

task allocation and granularity of problem decomposition in

the master/worker (master/slave) paradigm, number of tasks

per each core in the SPMD paradigm [6], incurred latency

in the pipelining paradigm [7] or execution tree depth and

thread limit for the divide and conquer paradigm [8]. Paper [9]

proposes tuning complex parallel applications using a com-

bination of different parallel programming paradigms such as

master-worker and pipelining. Resources are assigned properly

to application components so as to achieve a performance

increase.

Auto-tuning of these parameters through executing a small,

yet representative probe of the computational problem with

multiple parameter configurations can lead to significant per-

formance improvements. Since interdependences between the

multiple parameters can be non-trivial, searching through the

whole parameter space is often required, instead of deter-

mining optimal values of the parameters independently [1].

However, the size of the search space, along with significant

execution times of the probing executions, often make exhaus-

tive search infeasible.

In this paper, we focus on the configuration and application

parameters of a parallel similarity measure computation appli-

cation executed in a hybrid CPU/GPU system. We propose

an auto-tuning methodology that reduces the parameter search

space based on expert knowledge about the components of

the considered computing system. This allows to significantly

reduce the auto-tuning execution time, while still finding

sensible sub-optimal parameter configurations. The outline of

the paper is as follows. We discuss related work in Section

II, provide problem statement in III and describe the proposed

This is a post-peer-review, pre-copyedit version of an article published in 2019 International Conference on High Performance Computing
& Simulation (HPCS). The final authenticated version is available online at: https://doi.org/10.1109/HPCS48598.2019.9188060

2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/HPCS48598.2019.9188060

methodology in Section IV. Conducted experiments and their

results are presented in Section V, while the paper summary

and future work directions are given in Section VI.

II. RELATED WORK AND MOTIVATIONS

In recent works, several approaches to parameter auto-

tuning in high performance computing have been adopted. The

following can be distinguished:

1) full space enumeration (exhaustive search) – very time

consuming, unrealistic for many practical problems;

2) combinatorial search - testing only a subset of com-

binations chosen by a combinatorial search algorithm

(random, hierarchical [10], direct search [11], using

random forest feature importance [12], etc.);

3) modeling and simulation for fast execution time evalua-

tion (for example modeling and simulation for exploring

power/time trade-off of parallel deep neural network

training [3]);

4) search space pruning using expert knowledge or domain-

specific constraints (for example reducing the search

space from above 524 million to over 379 thousand

combinations in [13]).

It should be noted, that the aforementioned approaches can

be mixed. For example, expert knowledge can be used to

prune the search space, combinatorial optimization performed

on selected variables and full space enumeration for the

rest. Combinatorial search can be combined with machine

learning such as proposed in [14] with Simulated Annealing

for system configuration search and a machine learning trained

prediction model for assessment of performance of a given

configuration, prediction of performance was obtained using

Boosted Decision Tree Regression [15].

The auto-tuning methodology proposed in this paper comes

with a tool for iterative generation and testing of application

parameter combinations. Similar tools are available for specific

parallel programming platforms. For example, runtime param-

eters of OpenMPI programs can be optimized using the Open

Tool for Parameter Optimization (OTPO) [16]. In the paper,

the tool is used for optimizing InfiniBand communication

parameters. Analogously to our solution, the optimization

process in OTPO requires configuration of the parameters and

their potential values to be tested. The parameter file includes

default values, lists of possible values, start and end value

and traversal method. The latter is similar to <stepmode>

in the tool proposed in this paper and specifies the method

to traverse the range of variables for the parameter. In the

first version, OTPO includes one method: "increment". It is

similar to the LINEAR change in the tool proposed in this

paper, which supports also advanced traversal methods, such

as BASICEXP and SEARCHEXP. More importantly, the pro-

posed tool allows to auto-tune application-specific parameters,

as well as configuration parameters related to GPU execution.

The latter have been subject to tuning in [17]. The authors

used expert knowledge about the GPU architecture and pa-

rameter constraints to tune the grid size values for chosen

linear algebra micro-benchmarks. This approach allowed to

find configurations characterized by high GPU occupancy.

Auto-tuning of MPI configuration parameters has also been

proposed in [18]. Specifically, the authors proposed an MPI

parameters plugin allowing to find sets of parameters such as

eager message size limit for using the eager or randezvous

protocol, buffer size, bulk transfer parameters, affinity, polling

or non-polling when waiting for a message, polling inter-

val, faster communication vs larger memory trade-off related

parameter. Search strategies for particular parameters can

include exhaustive search, heuristic strategies such as GDE3

or random based. Expert knowledge is employed for tuning

the eager limit based on sizes of exchanged messages. From

the point of view of this work, that contribution is limited

to configuration parameters only and does not include GPU-

oriented parameters.

Auto-tuning of stencil computations has been considered

in [19] for a number of computing architectures, including

Intel Clovertown, AMD Barcelona, Sun Victoria Falls, IBM

QS22 PowerCell 8i and NVIDIA GTX280. The tuned parame-

ters included configuration parameters such as core block size,

thread block size, register block size, DMA size and cache

bypass, as well as an application parameter that determined

the chunk size of problem decomposition. Heuristics were used

for constraining search space in the auto-tuning process.

Expert knowledge is taken into account by a static code

analyzer for CUDA programs proposed in [20], which allows

for automatic identification of computational intensity. Based

on kernel’s GPU occupancy, the proposed approach allowed to

reduce the configuration search space from 5,120 to 640 due

to thread settings suggestions, without requiring any program

runs.

Application parameter tuning was investigated in [21] for

an application of GS2 for studying low-frequency turbulence

in magnetized plasma. Parameters such as grid point den-

sity, energy grid and number of nodes were considered in

analysis. Performance variablity was studied and a Parallel

Rank Ordering algorithm was presented for tuning application

parameters.

A study aiming specifically for similarity search algorithms

in [22] distinguished the following performance-related appli-

cation parameters that can be subject to tuning: shortcutting

flag, number of vectors in block, number of query partitions,

query batch size and data striping size in dimensions. A

configuration parameter has also been considered, namely

the number of threads per partition. An auto-tuner based on

simulated annealing provided up to two orders of magni-

tude improvement over the worst settings. Hyperparameters

of a similarity search algorithm have also been tuned for

approximate nearest neighbor (ANN) search in [23], where

indexing methods are tuned based on randomized space-

partitioning trees. The approach is competitive with existing

index building approaches in terms of achieved recall while

being significantly faster.

Auto-tuning at a more global operating system level for a

set of applications is presented in [24]. Tuning is transparent

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

to the user and is performed at the Linux kernel level for

system wide performance at runtime. Examples such as a

bzip2 compression and video processing applications were

used as case studies for demonstration of approach benefits

in an environment with an Intel Core 2 Quad CPU and the

Linux operating system.

There is a need for methodologies and tools that will take

into account both application and configuration parameters

and expert knowledge for hybrid applications. This paper

proposes an approach that allows auto-tuning by exploit-

ing expert knowledge and experiences from optimization of

configuration parameters from previous works and heuristic

multidimensional search through combinations of application

parameters. This approach allows to achieve very good results

in terms of obtained application execution times much faster

than enumeration of parameter combinations.

III. PROBLEM STATEMENT

Firstly, we assume that there are several parameters that can

be divided into the following two groups:

1) configuration parameters CP = {cp1, . . . , cp|CP |} – set

before/at application runtime such as:

• number of threads run on CPU(s),

• number of threads run on accelerators,

• thread affinity,

• grid configuration for GPU(s),

2) application parameters AP = {ap1, . . . , ap|AP |}, e.g.

buffer sizes in the application.

Assuming parallel application PA, input data D, parallel

system PS, the goal is to minimize the execution time et by

finding proper combination of values of both configuration and

application parameters:

min
AP,CP

et(PA,D, PS,AP,CP) (1)

IV. PROPOSED AUTO-TUNING METHODOLOGY

A. Design and implementation of an auto-tuning tool

The proposed tool iteratively generates combinations of

configuration and application parameters as environment vari-

ables and subsequently invokes a given application in an

environment in which those variables are available. In the

tests, values of such environment variables were passed to

the application as command line arguments but could also

be read directly from within an application. The tool reads

a configuration file with the following syntax:

CPU_THREAD_COUNT <min> <max> <stepmode> \

<startval>

GPU_COUNT <min> <max> <stepmode> <startval>

GPU_THREADS_IN_BLOCK_COUNT <min> <max> \

<stepmode> <startval>

APP_PARAM_0 <min> <max> <stepmode> \

<startval>

APP_PARAM_1 <min> <max> <stepmode> \

<startval>

COMMAND <appcommand>

TIME_OUTPUT <timeparsecommand>

where values of parameters i.e. <min>, <max> and <default>

are minimum, maximum and default i.e. starting values for a

given parameter. <stepmode> denotes how the tool changes

the value of parameter p and can be one of the following in

the current version of the tool:

LINEAR – a linear increase of p by a constant step

(of 1 by default) from pmin to pmax or a linear

decrease of p by a constant step (of 1 by default)

from pmax to pmin.

BASICEXP – an increase by multiplication of a

current p value by 2 from pmin to pmax or a

decrease by division of a current p value by 2 from

pmax to pmin

SEARCHEXP – searching for the best value of a

single parameter p with the following algorithm:

int direction=-1;

int directionchanged=0;

for(int p=pstart;p>=pmin

&& p<=pmax;)

{

double time=

runcommandgettime(...,p,...);

if (time<besttime) {

besttime=time;

bestp=p;

} else {

if (directionchanged)

break;

direction=1;

directionchanged=1;

}

if (direction==-1)

p/=2;

else

p*=2;

}

<startval> denotes the starting value used by the tool – it

is assumed to be between <min> and <max>.

The meaning of the parameters is as follows:

CPU_THREAD_COUNT – the number of computa-

tional threads running on CPU(s),

GPU_COUNT – the number of GPUs used,

GPU_THREADS_IN_BLOCK_COUNT – the number

of threads per block, it is assumed that the number

of thread blocks is obtained by the application using

this variable and input data size,

APP_PARAM_X – parameter understood by the ap-

plication,

COMMAND – invocation command for the application

TIME_OUTPUT – command for parsing application

output to find out real execution time (the application

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

can measure a part of its execution optimized by the

tool).

The proposed auto-tuning algorithm presented in Sections

IV-B and IV-C is further called PCPARSEARCH.

B. Approach to auto-tuning of configuration parameters

The following steps are proposed for auto-tuning of con-

figuration parameters, each of which searches for a value of

a given parameter for which the smallest execution time is

obtained, given fixed values of the others. This causes the

approach to be heuristic rather than potentially extremely time-

consuming search for a configuration out of all combinations

of parameters.

1) GPU count g – checking for the g giving the smallest ex-

ecution time. The number of computational CPU threads

is equal to cputhreadcountmax-2*g assuming Hy-

perthreading so that physical cores are left out for

management of GPUs. The starting grid configuration

is used and starting values of application parameters

are used. bestg is obtained and used in the next steps.

2) number of GPU threads per block tpb – checking

for the tbp giving the smallest execution time. The

number of computational CPU threads is equal to

cputhreadcountmax-2*bestg. The starting grid

configuration is used and starting values of application

parameters are used. besttpb is used for subsequent

computations.

3) number of computational CPU threads cct (apart from

CPU threads managing computations on GPUs) – check-

ing for the cct giving the smallest execution time.

Starting values of application parameters are used.

Further configuration parameters can be used e.g. the

number of CUDA streams as investigated in [25]. For the

purpose of this work, the hybrid application used overlapping

communication and computations using 2 CUDA streams per

device. Additionally, thread affinity may have an impact on

performance. Specifically, we may expect that balanced may

typically be preferred for parallel computations on Intel Xeon

Phis [26] with potential checks for scatter and compact while

scatter vs compact should be checked for host CPUs. In the

following experiments, default thread affinity was used.

C. Approach to auto-tuning of application parameters

For auto-tuning of application parameters, the following

algorithm is used that traverses the search space in each

dimension in two directions, as shown in Figure 1.

D. Reference fuller search algorithms

The proposed heuristic algorithm has been compared to two

algorithms performing fuller searches of the combined con-

figuration+application parameters, albeit still not exhaustive

search.

The first, fuller search algorithm, that we will further refer

to as SEMIFULLSEARCH1, executes the following steps:

1) GPU count g – checking for the g giving the smallest

execution time. The number of computational CPU

threads is equal to cputhreadcountmax-2*g. The

starting grid configuration is used and starting values of

application parameters are used. bestg is obtained and

used in the next steps.

2) number of computational CPU threads cct (apart from

CPU threads managing computations on GPUs) – check-

ing for the cct giving the smallest execution time.

Starting values of grid configuration and application

parameters are used.

3) Performs a full search over all combinations of appli-

cation parameters together with all considered values

of grid configurations. The latter stem from different

values of the number of threads within a block since

we assume that the number of blocks stems from input

data size and the block thread count. The rationale

behind this assumption is that various combinations

of application parameters and grid configurations may

potentially result in various minima.

The second, semi full search algorithm, that we will further

refer to as SEMIFULLSEARCH2, executes the steps optimiz-

ing configuration parameters exactly as the algorithm shown

in Section IV-B. This is followed by performing a full search

over all combinations of application parameters together with

all previously obtained configuration parameters set.

V. EXPERIMENTS

A. Testbed Environments

For experiments, we used three modern multicore CPU(s)

+ GPUs systems:

• eagle (HPC workstation, 2x Xeon CPU + 2x GTX GPU),

• des19 (poweful desktop, 2x i7 CPU + 2x GTX GPU),

• apl11 (HPC server, 2x Xeon CPU +2x Tesla GPU).

Specifications of the systems are listed in Table I.

B. Testbed Application

For experiments performed in this paper, we used a hybrid

parallel OpenMP+CUDA application for parallel computa-

tions of similarity measures among pairs of multidimensional

vectors [27], [28]. Paper [27] presented manual steps of

optimization of this application by finding good values of

both configuration and application parameters, performing

full search for the latter. Specifically, the application uses 2

application parameters that denote size of the so-called first

vector batch size and second vector batch size respectively.

Each vector from the first batch size is compared to each

vector of the second batch size. The same application was also

optimized in a parallel environment with Intel Xeon CPUs

and Intel Xeon Phi coprocessors [26]. This paper presents

automation of these optimization steps, applicable to a multi

CPU + multi GPU environment.

The following configuration parameters were used for per-

forming tests for 32768 vectors with 4096 vector size on

system 1:

CPU_THREAD_COUNT 0 32 BASICEXP 1

GPU_COUNT 1 2 LINEAR 1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

for(i=0;i<appparamcounter;i++) {

current[i]=appparamstart[i];

bestappparamvals[i]=current[i];

sprintf(appparamvals[i],"%d",current[i]);

}

while (1) {

int cont=0;

for(i=0;i<appparamcounter;i++) {

// for each of the parameters perform 1 step and go to the next one

if (!appparamstop[i]) {

cont=1; // change in at least one dimension

if (appparamsteptype[i]==STEP_LINEAR) current[i]--;

if (appparamsteptype[i]==STEP_EXP) current[i]/=2;

if (appparamsteptype[i]==STEP_SEARCH_EXP)

if (appparamdirection[i]==-1)

current[i]/=2; else current[i]*=2;

sprintf(appparamvals[i],"%d",current[i]);

double time=runcommandgettime(bestgpucount,bestcputhreadcount,

bestgputhreadsinblockcount,appparamnames,appparamvals,

appparamcounter,command,timeoutput);

if (time<besttime) {

besttime=time;

bestappparamvals[i]=current[i];

} else {

if (appparamsteptype[i]==STEP_SEARCH_EXP) {

// in this mode change direction

// and if direction has already been changed then terminate

if (appparamdirectionchanged[i])

appparamstop[i]=1;

else {

appparamdirection[i]=1;

appparamdirectionchanged[i]=1;

current[i]=appparamstart[i]; // reset the initial value

}

}

}

if ((current[i]==appparammin[i]) && (appparamdirection[i]==-1)) { // change

// direction

appparamdirection[i]=1;

appparamdirectionchanged[i]=1;

current[i]=appparamstart[i]; // reset the initial value

}

if ((current[i]==appparammax[i]) && (appparamdirection[i]==1)) // terminate

appparamstop[i]=1;

}

}

if (!cont) break;

}

}

Fig. 1. Auto-tuning of application parameters in PCPARSEARCH

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

TABLE I
TESTBED CONFIGURATIONS

Testbed 1 2 3

CPUs 2 x Intel Xeon CPU E5-
2620v4 @ 2.10GHz

Intel(R) Core(TM) i7-
7700 CPU @ 3.60GHz

2 x Intel(R) Xeon(R) CPU
E5-2640 @ 2.50GHz

CPUs – total number of
physical/logical cores

16/32 4/8 12/24

System memory size
(RAM) [GB]

128 16 64

GPUs 2 x NVIDIA GTX 1070 2 x NVIDIA GTX 1060 2 x NVIDIA Tesla K20m

GPUs – total number of
CUDA cores

2 x 2048 2 x 1280 2 x 2496

GPU Compute capability 6.1 6.1 3.5

GPU memory size [MB] 2 x 8192 2 x 6144 2 x 5120

Operating system Linux 4.15.0-36-generic Linux 4.4.155-68-default Linux 3.10.0-
862.9.1.el7.x86_64

Compiler/version Cuda compilation tools,
release 9.1, V9.1.85, gcc
7.3.0

Cuda compilation tools,
release 9.1, V9.1.85, gcc
4.8.5

Cuda compilation tools,
release 9.1, V9.1.85, gcc
4.8.5

GPU_THREADS_IN_BLOCK_COUNT 64 1024 \

SEARCHEXP 128

APP_PARAM_0 32 4096 SEARCHEXP 128

APP_PARAM_1 32 4096 SEARCHEXP 128

COMMAND ./program-onegpumemalloc-\

gpu-comm-opt-overlapping1 \$GPU_COUNT \

\$CPU_THREAD_COUNT 32768 4096 \

\$APP_PARAM_0 \$APP_PARAM_1 \

\$GPU_THREADS_IN_BLOCK_COUNT

TIME_OUTPUT grep FINAL \

| cut -d’ ’ -f 10

For the other systems, the range of CPU_THREAD_COUNT

varied from 0 to the number of logical CPUs in the system.

C. Results and Discussion

Firstly, after running SEMIFULLSEARCH1 and SEMI-

FULLSEARCH2, we have noticed, as shown in Table II, that

the best configurations have been obtained for the same CUDA

grid configurations. While it does not have to be the case in

general, we have selected SEMIFULLSEARCH2 as the faster

algorithm as a baseline for comparison of relative performance

and execution time of PCPARSEARCH.

In order to assess the range of application execution times

for various combinations of configuration and application

parameters and the three systems, Table III presents the

following metrics:

1) best application running times,

2) worst application running time across parameter sets (for

reference on how search improves compared to worst

case scenario),

3) average application running time across parameter sets

(for reference on how search improves compared to

average case scenario).

As an example, Figure 2 presents successive, descreasing

application execution times of configurations tested by PC-

PARSEARCH in successive time steps. Figures 3, 4 and 5

present relative execution times of the best application con-

figurations obtained by PCPARSEARCH compared to SEMI-

FULLSEARCH2, for system 1, 2 and 3 respectively, averaged

from 5 runs. The same figures show relative execution time

of PCPARSEARCH compared to SEMIFULLSEARCH2. It

can be seen that for the analyzed application and 3 vari-

ous CPU+GPU systems, PCPARSEARCH found application

execution times worse only up to 8% compared to SEMI-

FULLSEARCH2 while the time to find the solution was only

up to 26% of the execution time of SEMIFULLSEARCH2.

This makes it an interesting alternative to fuller search algo-

rithms at a small performance cost.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18

e
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

step number

32768 vectors, 4096 vector size
16384 vectors, 8192 vector size

Fig. 2. System 1 – application execution times in successive steps of the
auto-tuning algorithm

VI. SUMMARY AND FUTURE WORK

In the paper, we presented a heuristic algorithm for search-

ing for combinations of configuration and application pa-

rameter sets that aim at minimization of parallel application

execution times on modern hybrid CPU+GPU systems. As the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

TABLE II
OBTAINED CONFIGURATIONS

Number of
vectors / vector
size

system auto-tuning algorithm number of
GPUs

number
of
compu-
tational
CPU
threads

number
of threads
per block

first
batch
size

second
batch
size

32768 / 4096 1 SEMIFULLSEARCH1/2 2 28 128 1024 128
32768 / 4096 1 PCPARSEARCH 2 28 128 1024 512
16384 / 8192 1 SEMIFULLSEARCH1/2 2 16 128 1024 64
16384 / 8192 1 PCPARSEARCH 2 28 128 1024 512
32768 / 4096 2 SEMIFULLSEARCH1/2 2 4 128 1024 256
32768 / 4096 2 PCPARSEARCH 2 4 128 1024 1024
16384 / 8192 2 SEMIFULLSEARCH1/2 2 4 128 1024 128
16384 / 8192 2 PCPARSEARCH 2 4 128 1024 512
32768 / 4096 3 SEMIFULLSEARCH1/2 2 20 256 1024 32
32768 / 4096 3 PCPARSEARCH 2 20 256 512 512
16384 / 8192 3 SEMIFULLSEARCH1/2 2 20 256 1024 32
16384 / 8192 3 PCPARSEARCH 2 20 256 512 256

TABLE III
EXECUTION TIMES

Number of
vectors / vector
size

system best execution
time [s]

average execu-
tion time [s]

worst execution
time [s]

32768 / 4096 1 26.8 56.4 461.9
16384 / 8192 1 12.6 29.3 153.2
32768 / 4096 2 37.5 75.1 427.4
16384 / 8192 2 18.7 39.5 164.1
32768 / 4096 3 73.9 120.5 776.6
16384 / 8192 3 34.2 55.1 281.7

 0

 20

 40

 60

 80

 100

 120

32768 vectors
4096 vector size

16384 vectors
8192 vector size

re
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

 [
%

]

relative best application execution time [%]

100.7
107.8

relative optimization algorithm execution time [%]

25.4 23.4

Fig. 3. System 1 – relative application and auto-tuning algorithm execution
times

problem is computationally demanding, we showed that the

algorithm offers application execution times worse by only up

to 8% compared to an algorithm that performs a full search

over combinations of application parameters while taking only

up to 26% of auto-tuning time of the latter for an application

computing similarity among pairs of multidimensional vectors.

Tests have been performed on three different CPU+GPU

parallel systems.

The presented work will be extended in the future in several

ways:

 0

 20

 40

 60

 80

 100

 120

32768 vectors
4096 vector size

16384 vectors
8192 vector size

re
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

 [
%

]

relative best application execution time [%]

103.3 105.6

relative optimization algorithm execution time [%]

23.2 21.3

Fig. 4. System 2 – relative application and auto-tuning algorithm execution
times

1) other parallel applications will be tested,

2) additional tools such as nvprof etc. can be used to

predetermine better starting values for GPU related

parameters,

3) more HPC systems will be tested, including larger

numbers of GPUs and various ratios of CPU/GPU

performance.

ACKNOWLEDGMENTS

Work was supported partially by the Polish Ministry of

Science and Higher Education.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 0

 20

 40

 60

 80

 100

 120

32768 vectors
4096 vector size

16384 vectors
8192 vector size

re
la

ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

 [
%

]

relative best application execution time [%]

102.3 101.2

relative optimization algorithm execution time [%]

25.7 23.8

Fig. 5. System 3 – relative application and auto-tuning algorithm execution
times

REFERENCES

[1] Pawel Rosciszewski. Optimization of hybrid parallel application execu-
tion in heterogeneous high performance computing systems considering
execution time and power consumption. CoRR, abs/1809.07611, 2018.

[2] Paweł Czarnul and Paweł Rościszewski. Optimization of Execution
Time under Power Consumption Constraints in a Heterogeneous Parallel
System with GPUs and CPUs. In David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni
Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu
Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Mainak Chatterjee, Jian-nong Cao, Kishore Kothapalli, and
Sergio Rajsbaum, editors, Distributed Computing and Networking, vol-
ume 8314, pages 66–80. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[3] Paweł Rościszewski. Modeling and Simulation for Exploring Power/-
Time Trade-off of Parallel Deep Neural Network Training. Procedia
Computer Science, 108:2463–2467, 2017.

[4] Pawel Rosciszewski, Pawel Czarnul, Rafal Lewandowski, and Marcel
Schally-Kacprzak. Kernelhive: a new workflow-based framework for
multilevel high performance computing using clusters and workstations
with cpus and gpus. Concurrency and Computation: Practice and
Experience, 28(9):2586–2607, 2016.

[5] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Mass storage systems

and technologies (MSST), 2010 IEEE 26th symposium on, pages 1–10.
IEEE, 2010.

[6] Ronal Muresano, Dolores Rexachs, and Emilio Luque. Methodology for
Efficient Execution of SPMD Applications on Multicore Environments.
pages 185–195. IEEE, 2010.

[7] Ken Goodhope, Joel Koshy, Jay Kreps, Neha Narkhede, Richard Park,
Jun Rao, and Victor Yang Ye. Building LinkedIn’s Real-time Activity
Data Pipeline. IEEE Data Eng. Bull., 35(2):33–45, 2012.

[8] Paweł Czarnul. Parallelization of Divide-and-Conquer Applications on
Intel Xeon Phi with an OpenMP Based Framework. In Jerzy Swiatek,
Leszek Borzemski, Adam Grzech, and Zofia Wilimowska, editors, ISAT

(3), volume 431 of Advances in Intelligent Systems and Computing,
pages 99–111. Springer, 2015.

[9] J. A. Guevara, E. Cesar, J. Sorribes, A. Moreno, T. Margalef, and
E. Luque. A performance tuning strategy for complex parallel appli-
cation. In 2010 18th Euromicro Conference on Parallel, Distributed

and Network-based Processing, pages 103–110, Feb 2010.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[11] V. Tabatabaee, A. Tiwari, and J.K. Hollingsworth. Parallel Parameter
Tuning for Applications with Performance Variability. pages 57–57.
IEEE, 2005.

[12] Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh, Che-Min Lin, and Shih-
wei Liao. Machine Learning-Based Configuration Parameter Tuning on

Hadoop System. In 2015 IEEE International Congress on Big Data

(BigData Congress), pages 386–392, June 2015.
[13] Roman Wyrzykowski, Łukasz Szustak, and Krzysztof Rojek. Paralleliza-

tion of 2d MPDATA EULAG algorithm on hybrid architectures with
GPU accelerators. Parallel Computing, 40(8):425–447, August 2014.

[14] S. Memeti and S. Pllana. Combinatorial optimization of work distribu-
tion on heterogeneous systems. In 2016 45th International Conference

on Parallel Processing Workshops (ICPPW), pages 151–160, Aug 2016.
[15] Suejb Memeti and Sabri Pllana. A machine learning approach for

accelerating dna sequence analysis. The International Journal of High

Performance Computing Applications, 32(3):363–379, 2018.
[16] Mohamad Chaarawi, Jeffrey M. Squyres, Edgar Gabriel, and Saber

Feki. A Tool for Optimizing Runtime Parameters of Open MPI.
In Alexey Lastovetsky, Tahar Kechadi, and Jack Dongarra, editors,
Recent Advances in Parallel Virtual Machine and Message Passing

Interface, volume 5205, pages 210–217. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[17] Nhat-Phuong Tran, Myungho Lee, and Jaeyoung Choi. Parameter based
tuning model for optimizing performance on gpu. Cluster Computing,
20(3):2133–2142, Sep 2017.

[18] Anna Sikora, Eduardo César, Isaías Comprés, and Michael Gerndt.
Autotuning of mpi applications using ptf. In Proceedings of the ACM

Workshop on Software Engineering Methods for Parallel and High
Performance Applications, SEM4HPC ’16, pages 31–38, New York, NY,
USA, 2016. ACM.

[19] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David A. Patterson, John Shalf, and Katherine A.
Yelick. Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In SC, page 4. IEEE/ACM, 2008.

[20] Robert V. Lim, Boyana Norris, and Allen D. Malony. Autotuning gpu
kernels via static and predictive analysis. In ICPP, pages 523–532. IEEE
Computer Society, 2017.

[21] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Parallel parameter
tuning for applications with performance variability. In SC ’05: Pro-
ceedings of the 2005 ACM/IEEE Conference on Supercomputing, pages
57–57, Nov 2005.

[22] Bugra Gedik. Auto-tuning similarity search algorithms on multi-
core architectures. International Journal of Parallel Programming,
41(5):595–620, 2013.

[23] Elias Jääsaari, Ville Hyvönen, and Teemu Roos. Efficient autotuning of
hyperparameters in approximate nearest neighbor search. In Qiang Yang,
Zhi-Hua Zhou, Zhiguo Gong, Min-Ling Zhang, and Sheng-Jun Huang,
editors, PAKDD (2), volume 11440 of Lecture Notes in Computer

Science, pages 590–602. Springer, 2019.
[24] Thomas Karcher and Victor Pankratius. Run-time automatic per-

formance tuning for multicore applications. In Emmanuel Jeannot,
Raymond Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel

Processing, pages 3–14, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[25] Pawel Czarnul. Benchmarking overlapping communication and com-
putations with multiple streams for modern gpus. In Maria Ganzha,
Leszek A. Maciaszek, and Marcin Paprzycki, editors, Communication
Papers of the 2018 Federated Conference on Computer Science and

Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12,

2018., pages 105–110, 2018.
[26] Paweł Czarnul. Benchmarking performance of a hybrid intel xeon/xeon

phi system for parallel computation of similarity measures between large
vectors. International Journal of Parallel Programming, 45(5):1091–
1107, Oct 2017.

[27] Paweł Czarnul. Parallelization of large vector similarity computations
in a hybrid cpu+gpu environment. The Journal of Supercomputing,
74(2):768–786, Feb 2018.

[28] P. Czarnul, P. Rościszewski, M. Matuszek, and J. Szymański. Simulation
of parallel similarity measure computations for large data sets. In 2015

IEEE 2nd International Conference on Cybernetics (CYBCONF), pages
472–477, June 2015.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

