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Abstract. In recent years, smog and poor air quality have became a growing environmental problem. There is a need to continuously monitor the 

quality of the air. The lack of selectivity is one of the most important problems limiting the use of gas sensors for this purpose. In this study, the 

selectivity of six amperometric gas sensors is investigated. First, the sensors were calibrated in order to find a correlation between the concentration 

level and sensor output. Afterwards, the responses of each sensor to single or multicomponent gas mixtures with concentrations from 50 ppb to 1 ppm 

were measured. The sensors were studied under controlled conditions, a constant gas flow rate of 100 mL/min and 50 % relative humidity. Single Gas 

Sensor Response Interpretation, Multiple Linear Regression, and Artificial Neural Network algorithms were used to predict the concentrations of SO2 

and NO2. The main goal was to study different interactions between sensors and gases in multicomponent gas mixtures and show that it is insufficient 

to calibrate sensors in only a single gas. 
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1. Introduction 

Poor air quality has not only a significant impact on the 

health of the human population, particularly in urban 

areas, but also on the economy, increasing medical costs, 

cutting lives short and reducing productivity. Air pollution 

is also very dangerous to vegetation and ecosystems. It 

has a devastating effect on water and soil, contributing to 

the destruction of fauna and flora. The most harmful air 

pollutants for the ecosystem are ozone, ammonia and 

nitrogen oxides which introduce an excess of nutrient 

nitrogen. Nitrogen oxides and sulphur dioxide lead to soil, 

rivers and lake acidification and acid rain, resulting in 

biodiversity loss. 

Despite reductions in emissions and ambient 

concentrations, air quality still remains poor in multiple 

areas, when it comes to Europe. According to the 

European Environment Agency [1], the premature deaths 

attributed to PM2.5, NO2 and O3 were 412,000, 71,000 

and 15,100 people, respectively, in 2016. The countries 

with the highest numbers of premature deaths and years of 

life lost are Germany, Italy, Poland, France, Spain and the 

United Kingdom.  

 For environmental protection, it is very important to 

measure the level of pollution in the air. On the market, 

there is a wide range of commercial gas sensors. The most 

popular are metal oxide semiconductor sensors (MOX) 

whose output signal is based on a change of conductivity 

of the oxide that is caused by a reaction with volatile 

compounds [2]. Unfortunately, this type of sensor has 

poor selectivity and is sensitive to almost any volatile 

substances. Its sensitivity can be enhanced by changing 

the grain size and porosity, and adding impurities and 

dopants, but it decreases with higher humidities of the 

environment [3]. MOX sensors also have low 

reproducibility due to their manufacturing process [4]. 

They are not single-gas selective and one MOX sensor is 

not able to detect a gas concentration in a gas mixture [5]. 

Such sensors, due to their low cost and availability, are 

often used in multisensor arrays; so-called electronic 

noses (e-nose) [6-8]. 

A very interesting solution is the use of ZnO and TiO2 

nanostructures for NO2 detection [9]. TiO2 can detect low 

concentrations of this gas, but its sensitivity is very 

dependent on the humidity of the atmosphere. ZnO is less 

sensitive to changes in humidity, but it is not able to 

accurately determine the concentration of NO2. It is 

characterised by fast desorption and thus the combination 

of TiO2 and ZnO structures allows the detection and 

disappearance of NO2 gas in a short time. The effect of air 

humidity on the sensitivity of the sensors can be 

minimised with the help of dehumidifiers.  

Application of a graphene sensing layer allows very 

low concentrations of toxic gases to be measured. It has 

been demonstrated that graphene sensors are able to detect 

every single molecule of nitrogen dioxide [10, 11]. 

 Current research focuses on gas-sensitive materials 

and pattern recognition development [12]. It has been 

revealed that a multisensor array in combination with 

machine learning algorithms is a promising way to get a 

fast analysis of, e.g. air contaminants or food flavours and 

odours, so it can be used to verify its quality [7, 13-16]. 

Gas detection and classification is a major problem in 

many industries. One method that works well with these 

types of tasks is to use a neuro-fuzzy network [17]. The 

modified Takagi-Sugeno-Kang network structure 

proposed by Osowski, Brudzewski and Tran Hoai is 

suitable for solving regression and classification problems 

with multidimensional data. 

*e-mail: marta.dmitrzak@pmecology.com 
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Amperometric sensors are more selective and stable, 

and have a fast recovery time. This type of gas sensor 

consists of an electrolyte and three electrodes. The gas 

molecules are reduced or oxidised at the working 

electrode, while the opposite reaction takes place at the 

counter electrode. The output signal is measured as a 

current generated by a reaction between the gas and an 

analyte [18].  

A very important parameter of gas sensors is cross-

sensitivity caused by interfering gases. Information 

provided by manufacturers in data sheets is declared only 

for selected conditions and often differ from the real-life 

properties of the sensors. Cross-interference is often a 

cause of false sensor readings [19]. That is why a 

laboratory evaluation of sensor properties is needed. For 

example, it is very hard to differentiate nitrogen dioxide 

and ozone because these types of molecules get reduced at 

electrodes that are made of gold or carbon at much the 

same potentials [20].  

Interpretation of the responses of a gas sensor is 

usually done using a simple method, hereinafter referred 

to as Single Gas Sensor Response Interpretation (SGS). In 

this approach, the gas concentration is calculated only on 

the basis of the target sensor and its declared sensitivity to 

this gas type. This method does not give accurate results, 

because the presence of other gases often increases or 

reduces the target sensor response. Therefore, in order to 

do the calibration properly, we should also use sensors of 

other gas types and take into account their interaction. 

Presumably, better performance can be achieved by 

setting up algorithms such as Multiple Linear Regression 

or Artificial Neural Networks and training them in 

multicomponent mixtures.   

The first objective of this study was to determine how 

gas sensors react to the presence of the gases they are 

constructed to detect, including in other gases including 

multicomponent gas mixtures. The second task of the 

work was to prove that due to the sensors’ cross-

sensitivities, calibration of sensors in gas mixtures rather 

than in single gases provides better results. The main goal 

was to study different interactions between sensors and 

gases in multicomponent gas mixtures and show that it is 

insufficient to calibrate sensors in only a single gas. The 

text contains exemplary results for SO2 and NO2. 

 

2. Experimental 

The measurements were performed in a custom-designed 

chamber having a volume of 240 cm3. Six commercially 

available amperometric gas sensors were placed in this 

chamber. The results for sensors manufactured by one of 

the leaders in gas sensing technology, namely S1-H2S, 

S2-O3, S3-NO, S4-SO2, S5-NO2 and S6-CO which 

detect H2S, O3 and NO2, NO, SO2, NO2 and CO, 

respectively, are described in this text. Amperometric 

sensors have to be controlled by a potentiostatic circuit to 

work properly at a fixed potential. Ten custom-designed 

electronic modules forming the measuring system were 

used for sensor response acquisition. More details of the 

developed systems were presented elsewhere [21, 22]. 

The sensor response was measured by custom-written PC 

software once per minute and saved to a text file. 

The gas-delivery system consisted of four Brooks 

GF40 mass flow controllers (MFCs) connected to the 

computer via an RS-485 interface (Fig. 1). The flow rate 

range of MFCs was: 250 sccm, 250 sccm, 12 sccm and 12 

sccm with accuracy ±1% of set point at 35–100% of its 

range, or ±0.35% of full scale at 2–35% of its range. The 

flow of gas was programmed with the Medson software. 

The desired gas mixture was obtained by mixing and 

diluting gases from reference cylinders with synthetic air. 

In order to make the gas mixtures, four ALPHAGAZ™ 

cylinders containing high-purity gases were used  

(Table 1). The measurements were carried out under 

controlled gas concentrations, a constant air flow rate of 

100 ml/min and 50% relative humidity conditions.  

For the sensitivity calculation, the synthetic air gas 

was used for about 3 hours, then the sensors were flushed 

alternately with synthetic air and a fixed value of specific 

toxic gas concentration (from 50 ppb to 1 ppm) for 4 

hours. Multicomponent gas mixtures were measured for 2 

pairs of two toxic gases, SO2 and NO2, SO2 and NO, NO2 

and NO. Between changes of the type of the toxic gases, 

the sensors were flushed with synthetic air to clear any 

residual toxic gas from the measurement chamber.  

Two experimental sequences were used. The first 

sequence consisted of synthetic air alternately with 1 ppm 

of the first toxic gas, 1 ppm of the second toxic gas, and 1 

ppm of both gases at the same time. The second sequence 

consisted of synthetic air alternately with the first and 

second toxic gas in a balance of 250 ppb : 750 ppb, 500 

ppb : 500 ppb, and 750 ppb : 250 ppb. These sequences 

were repeated two times. Concentrations of SO2 and NO2 

have been determined, NO was used as a disturbing gas. 

 

 

 

Fig. 1. Structure of the measuring stand. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3 

Table 1 

Data of used gas cylinders. 

 

3. Methods 

After dispensing a gas into the chamber, it was 

possible to set up training algorithms to quantify the 

components of the mixture. Prediction of the gas 

concentration was carried out by three methods: Single 

Gas Sensor Response Interpretation (SGS), Multiple 

Linear Regression (MLR), and Artificial Neural Networks 

(ANN). Scripts written in Python and MATLAB were 

used to make such analyses.  

 The total dataset consisted of 900 measurement points 

which was divided into 60% for the training set, with the 

remaining 40% being a testing set. The training set 

contained 540 points: 180 and 360 points were measured 

in single and binary gases, respectively. The test data was 

collected a few months after the training data. 

 

3.1. Single Gas Sensor Response Interpretation (SGS). 

The first method allowed us to predict the ‘ideal sensor’ 

toxic gas concentration, namely, assuming that the sensor 

is ideal and reacts only with the target gas. Values were 

obtained by (1): 

 𝐶𝑆𝐺𝑆 =
𝐼𝑠𝑒𝑛𝑠

𝑆𝑐𝑎𝑙𝑐
 () 

where Isens - sensor response in nA; Scalc - calculated 

sensitivity. 

 

This model uses only one independent variable, which is 

the response of the sensor, divided by its sensitivity. 

 

3.2. Multiple Linear Regression (MLR). This is very 

similar to Simple Linear Regression, but it takes more 

than one explanatory variable. It includes all sensor 

responses with calibration parameters according to (2): 

 𝐶𝑀𝐿𝑅 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +  𝛽6𝑥6 () 

where 𝛽0…6 - calibration parameters; 𝑥1…6 - sensor 

response (independent variables). 

 

The performance of prediction can be significantly 

improved by finding the linear relationship between one 

dependent variable, which represents the gas 

concentration and several independent variables (sensor 

responses). 

3.3. Artificial Neural Networks (ANN). In this work, a 

Multi-layer Perceptron model was used to quantify the 

toxic gas concentration. The number of neurons in the 

input layer was equal to the number of sensors (N = 6), 

and output layer consisted of 1 neuron (target gas 

concentration). The number of hidden layers (l = 2) and 

hidden neurons (n = 7) was experimentally chosen to 

achieve the best accuracy determined by performance 

metrics, however similar results were obtained for other 

network architectures.  

 The Levenberg-Marquardt backpropagation algorithm 

was used to train the networks. The initial weights have 

been selected randomly. Tanh transfer function was used 

to activate neurons. 

 

3.4. Model performance. The performances of all of the 

algorithms were determined by several criteria, such as 

coefficient of determination (R2), Root Mean Squared 

Error (RMSE) and Mean Absolute Error (MAE), which 

are shown in Table 2. The higher R2, the better the model, 

in contrast to RMSE and MAE (which is less sensitive to 

outliers than RMSE) values.  

Table 2 

Evaluation metrics of model performance; 𝑛 is a number of 

measurement points, 𝑦 is a vector of reference values, 𝑝 is a vector of 

values of predicted concentrations, and 𝑖 is an actual measurement point 

 

 

4. Results 

The sensitivity of the sensors was investigated by 

measuring their response with a gradually increased 

concentration of target gases. Fig. 2 and Fig. 3 present 

time courses of sensors’ responses to different SO2 and 

NO2 concentrations. Usually, for most sensors, an 

increased presence of each gas caused an increased 

response of all sensors. For example, the presence of SO2 

resulted in a significant response from the SO2 sensor, but 

also from the H2S sensor. Such behaviour confirms the 

lack of selectivity of this kind of sensors. 

 15-minute averages of the curve parts once the 

response stabilised (i.e. before the new gas concentration 

was introduced into the chamber) were used to calculate 

the response of the sensors to a given concentration of 

SO2 and NO2 according to (1), which is graphically 

presented in Fig. 4 and Fig 5, respectively. The 

Type of gas 
Components / Nominal 

concentration  

Uncertainty ± 

[%] Quality 

Synthetic air 80% N2, 20% O2 1 N 50 

SO2 10 ppm SO2 3 N 45 

NO2 10 ppm NO2 3 N 25 

NO 50 ppm NO 3 N 25 

Metric Symbol Formula 

Coefficient of 

determination 
R2 1 − 

∑ (𝑦𝑖 −  𝑝𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

Root Mean 

Squared Error 
RMSE √(

1

𝑛
) ∗ ∑ (𝑦𝑖 −  𝑝𝑖)2

𝑛

𝑖=1
 

Mean Absolute 

Error 
MAE (

1

𝑛
) ∗ ∑ |𝑦𝑖 − 𝑝𝑖|

𝑛

𝑖=1
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experiment was repeated for all toxic gases (not shown 

here). The sensors' response almost linearly depended on 

the concentration of the measured gases. The slope of the 

response was used to calculate the sensor's sensitivity 

(Table 3). Generally, the obtained numbers are within the 

range declared by the manufacturer. As can be seen, the 

measured sensitivity of S1-H2S and S5-NO2 slightly 

differ from the information on their datasheets. 

 

 

Fig. 2. Sensors response to different concentrations of SO2. 

 

Fig. 3. Sensors response in given concentrations of NO2. 

 

Table 3 

Comparison of calculated sensors’ sensitivity values and sensitivities 

provided by datasheets. 

 Fig. 6 represents sensors’ response to the alternating 

presence of synthetic air and toxic gases. Calibration of 

the sensor is necessary to find a correlation between the 

concentration level and sensor output. The calculated 

sensitivities from Table 3 allowed the current responses of 

sensors to toxic gas concentration levels to be converted, 

which is illustrated in Fig. 7. The obtained curves show 

cross-sensitivity of sensors to the presence of NO2 or SO2. 

 

 

Fig. 4. Sensors responses in given concentrations of SO2. 

Fig. 5. Sensors responses in given concentrations of NO2. 

 

 Table 4 

Sensors’ responses to SO2, only NO2 alone and to mixture of them. 
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A
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Sensor model 

Response 

to 1 ppm of 

SO2 [ppm] 

Response 

to 1 ppm of 

NO2 [ppm] 

Response to 

1 ppm of SO2 

and 1 ppm of 

NO2 [ppm] 

Calculated 

response to 1 

ppm of SO2 

and 1 ppm of 

NO2 [ppm] 

S1-H2S 0.15 -0.16 -0.01   -0.01 

S2-O3 0.00 0.70 0.76 0.70 

S3-NO 0.04 0.23 0.27 0.27 

S4-SO2 0.91 -0.75 0.11 0.16 

S5-NO2 0.00 0.92 1.03 0.92 

S6-CO 0.00 0.01 0.01 0.01 

Sensor model 
Calculated sensitivity 

[nA/ppm] 

Datasheet sensitivity 

[nA/ppm] 

S1-H2S 1120.08 ± 26.92 1450 ÷ 2150 

S2-O3 -322.47 ± 5.74 -650 ÷ -225 

S3-NO 544.55 ± 78.53 500 ÷ 850 

S4-SO2 278.70 ± 4.08 275 ÷ 475 

S5-NO2 -166.13 ± 20.05 -450 ÷ -175 

S6-CO 278.73 ± 9.89 220 ÷ 375 
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It can be observed that sensors reacted slower to 

NO2 than to SO2. Every sensor except for the S6-CO 

reacted to the toxic gases used in the experiment. The 

difference between S2-O3, S4-SO2 and S5-NO2 

responses to SO2 and NO2 gas should be equal to the 

response of the sensors to a mixture of these gases with 

identical concentrations, but it is not equivalent, as it is 

presented in Table 4. 
 

 
 

Fig. 6.  Raw sensor responses to SO2 and NO2. 

 
 

Fig. 7. Sensors’ responses converted to concentrations. 

5. Discussion 

In section 4, it was shown that the sensors also react to 

non-target gases. For example, the sensors’ responses to a 

mixture of 1 ppm of SO2 and 1 ppm of NO2 is not equal to 

the sum of responses to such concentrations of these gases 

separately. Usually the sensors are calibrated in individual 

gases only. It can be assumed that this approach does not 

guarantee an accurate estimation of concentrations. This 

approach does not take into account the different 

interactions between gases and sensors. Therefore, it can 

be assumed that much better results can be obtained by 

calibration also in mixtures, which will be demonstrated 

later. 
Table 5 

MLR regression summary done from single gas measurement data. 

 

 

Fig. 8. Predictions of gas concentrations made on a test dataset with the 

use of SGS, MLR and ANN methods against reference concentrations 
of: a) SO2, b) NO2 with linear regression lines. The training set consisted 

of only measurements in one toxic gas and synthetic air. 
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Parameter 

SO2 NO2 

Value 
Standard 

Error 
Value 

Standard 

Error 

𝛽0 0.01 0.00 -0.01 0.00 

𝛽1 0.79 0.15 -0.43 0.24 

𝛽2 -1.43 0.46 -17.54 0.75 

𝛽3 -0.16 0.02 -0.74 0.03 

𝛽4 3.22 0.13 0.53 0.22 

𝛽5 -3.59 0.66 18.22 1.08 

𝛽6 -0.16 0.08 0.17 0.12 
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 Two analyses were made to verify this assumption. 

The first was obtained by teaching algorithms on learning 

data only consisting of sensor responses to individual 

gases. In the second case, responses to single gas as well 

as mixtures were used as training data. All algorithms 

were tested on data, measured later than the calibration 

data, but using identical measuring sequences. 

 

5.1. Calibration in single gas. In this analysis, the 

training dataset consisted of a part of total training set: 

180 points measured in synthetic air alternately with 1 

ppm of one toxic gas. The total test dataset was used for 

testing the models. To determine the parameters of 

Multiple Linear Regression, (2) was used on training 

dataset, where independent variables 𝑥1…6 were the 

responses of the sensors in the following order: S1-H2S, 

S2-O3, S3-NO, S4-SO2, S5-NO2, S6-CO. 

 

 The extracted parameters are included in Table 5. The 

higher value of the parameter, the more important is the 

sensor response by which it is multiplied. In the case of 

the prediction of the SO2 concentration, response of the 

SO2 and NO2 sensors id the most significant. Similarly, O3 

and NO2 sensors provide the most information about the 

NO2 concentration. 

 Fig. 8 shows scatterplots of the predicted versus 

reference concentrations using SGS, MLR and ANN 

algorithms on the test dataset. Dispersion of points at all 

concentrations is similar for all methods except for ANN. 

For ANN (blue triangles), in the case of both gases, the 

measurements for 0.25 ppm, and 0.75 ppm were identified 

as clearly underestimated and overstated concentrations, 

respectively. This might be the consequence of an 

overfitting caused by the relatively small training dataset. 

The ANN was trained on only 0 ppm and 1 ppm of toxic 

gas, so it tried to match the sensor responses with values 

that were known to this network. The network had 

difficulty correctly identifying the intermediate value.  

 Linear regression lines between reference values and 

model outputs show how close the model is to making 

perfect predictions. The slope of the ideal model should 

be equal to 1 (green line). The obtained values of the 

slopes for all methods are presented in Table 6. 

Table 6 

Slopes and their uncertainties of linear regression lines drawn between 

predicted and reference data after calibration in single gas. 

 

 Table 7 gives performance metrics for SGS, MLR and 

ANN methods. It has been proven that the SGS method is 

not accurate enough for calculating concentration of 

sulphur dioxide, because the S4-SO2 sensor reacts to 

other gas types, such as nitrogen dioxide (as shown in 

Table 4) and hence generates false signals. The use of the 

MLR and ANN methods achieves more precise results 

and their slope values are closer to 1. On the other hand, 

SGS is the best method for the determination of NO2. 

Table 7 

Statistics of error calculated to assess the performance of gas prediction 

methods with respect to the input dataset while algorithms were trained 

on single gas measurement data. 

 

 

5.2. Calibration in single gas and binary mixture. The 

calibration procedure was analogous to that presented in 

Section 5.1. The only difference was the use of training 

dataset enlarged by measurements made in binary 

mixtures. The test dataset has not been changed. 

 The extracted parameters of Multiple Linear 

Regression given by (2) are included in Table 8. They 

changed a bit compared to the previous calibration  

(Table 5). In the SO2 calculation, the S2-O3 sensor weight 

parameter increased significantly. This is the effect of 

calibration in a mixture, where nitrogen dioxide, was 

present at the same time. 

 Scatterplots of the predicted versus reference 

concentrations using SGS, MLR and ANN algorithms are 

shown in Fig. 9. The dispersion of points at all 

concentrations is narrower than in the approach from 

Section 5.2 (Fig. 6). For SO2, the regression for MLR and 

ANN lines overlap with the line predicted = reference 

(1:1), which means that these models except make perfect 

predictions. The obtained values of the slopes of 

regression lines for all methods are presented in Table 9. 

Table 8 

MLR regression summary done from single gas and binary mixture 

measurement data. 

Method SO2 Slope ± u NO2 Slope ± u 

SGS 0.71 ± 0.04 1.09 ± 0.01 

MLR 1.06 ± 0.00 1.19 ± 0.01 

ANN 1.13 ± 0.01 1.09 ± 0.01 

Gas Method R2 RMSE [ppm] MAE [ppm] 

SO2 

SGS 0.017 0.339 0.197 

MLR 0.971 0.057 0.036 

ANN 0.844 0.132 0.064 

NO2 

SGS 0.951 0.074 0.038 

MLR 0.906 0.103 0.059 

ANN 0.903 0.105 0.048 

Parameter 

SO2 NO2 

Value 
Standard 

Error 
Value 

Standard 

Error 

𝛽0 0.01 0.00 -0.01 0.00 

𝛽1 -0.33 0.13 0.74 0.32 

𝛽2 -5.44 0.31 -12.09 0.78 

𝛽3 -0.21 0.02 -0.70 0.04 

𝛽4 4.28 0.12 -0.48 0.29 

𝛽5 2.71 0.42 10.33 1.05 

𝛽6 -0.42 0.07 0.67 0.17 
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Fig.9. Predictions of gas concentrations made on test dataset with the 

use of SGS, MLR and ANN methods against reference concentrations 
of: a) SO2, b) NO2 with linear regression lines. The training set consisted 

of measurements in single gas, binary mixture and synthetic air. 

Table 9 

Slopes and their uncertainties of linear regression lines drawn between 

predicted and reference data after calibration in single gas and binary 

mixture. 

 

 The performance summary for the SGS, MLR and 

ANN models is shown in Table 10. Both the MLR and 

ANN gave similar predictions, but for NO2, the ANN 

slightly outperformed the MLR. Additional training data 

containing measurements in two toxic gases at once 

improved the results. This means that information about 

interfering gases is important and should be included in 

calibration processes. 

 The SGS algorithm showed the best results in NO2 

predictions. This may be related to the presence of an 

advanced filter in the S5-NO2 sensor. Such filter removes 

interfering gases, resulting in better selectivity. It 

chemically adsorbs some gas types and therefore has a 

limited lifetime, which is different from the gas cell 

lifetime. After this time, the sensor may show incorrect 

readings and it should be calibrated.  

Table 10 

Statistics of error calculated to assess the performance of gas prediction 

methods with respect to the input dataset while algorithms were trained 

on single gas and binary mixture measurement data. 

 

6. Conclusions 

In the present investigation, six electrochemical gas 

sensors were used in order to reveal their cross-

sensitivities. Two different types of gases - SO2 and NO2 -

were applied at a concentration of 1 ppm. Mixtures with 

different balances of these two gases were also taken into 

consideration. The results presented in the text confirm 

that electrochemical sensors do not only react to the 

presence of the gases they are constructed to detect. For 

each sensor, the current response usually depends on the 

presence of several gases. The least selective were the S1-

H2S and S3-NO sensors, both responding to SO2 and 

NO2. 

When using the SGS method, the sensor responses in 

multicomponent gas mixtures showed that a concentration 

of 1 ppm of SO2 and 1 ppm of NO2 was misclassified as a 

mixture of 0.01 ppm H2S, 0.70 ppm O3, 0.27 ppm NO, 

0.16 ppm SO2, 0.92 ppm NO2 and 0.01 ppm CO. The 

results proved that analyses performed with amperometric 

sensors can be error prone in the presence of interfering 

gases. 

Cross-sensitivity caused by interfering gases is a very 

important parameter. It can mislead the user of the sensor 

that there is target gas present, or it may reduce the 

reported level of the target gas when in fact this is not true 

and the user does not know that they may be at risk. In 

order to improve the reliability of target gas 

measurements, further treatment of the data is required. 

Method SO2 Slope ± u NO2 Slope ± u 

SGS 0.71 ± 0.04 1.09 ± 0.01 

MLR 0.99 ± 0.00 1.15 ± 0.01 

ANN 1.00 ± 0.00 1.09 ± 0.01 

Gas Method R2 RMSE [ppm] MAE [ppm] 

SO2 

SGS 0.017 0.339 0.197 

MLR 0.995 0.023 0.017 

ANN 0.994 0.026 0.043 

NO2 

SGS 0.951 0.074 0.038 

MLR 0.937 0.084 0.054 

ANN 0.944 0.079 0.034 
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This can be carried out by application of machine learning 

algorithms, such as MLR and ANN.  

It was shown that calibration in mixtures provides 

better results than in single gases, because it takes into 

account information about how the sensor responds to 

interfering gases. This was presented in two calibration 

approaches with the use of the SGS, MLR and ANN 

algorithms. In the first, the algorithms were trained on 

data consisting of measurements only in a single gas or 

synthetic air. The second contained additional 

measurements in two gases at once.  

The R2 coefficient and RMSE and MAE error 

statistics were used to evaluate which model was the best. 

In SO2 predictions, Multiple Linear Regression and 

Artificial Neural Networks resulted in a much higher R2 

and lower RMSE and MAE than SGS, evidencing that the 

MLR and ANN are more effective methods. The case was 

different in NO2 calculations, because the SGS was found 

to be the best algorithm. This may be related to the 

presence of an advanced filter inside the S5-NO2 sensor. 
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