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ABSTRACT In this article, the usefulness of the Generalised Additive Model for mean path loss estimation
in Body Area Networks is investigated. The research concerns a narrow-band indoor off-body network
operating at 2.45 GHz, being based on measurements performed with four different users. The mean path
loss is modelled as a sum of four components that depend on path length, antenna orientation angle, absolute
difference between transmitting and receiving antenna heights and relative polarisation of both antennas. It is
proved that the Generalised Additive Model allows for mean path loss estimation with a higher accuracy in
comparison with Linear Regression. The obtained mean error is 0 dB, the root mean square error is 5.52 dB
and the adjusted coefficient of determination is 61.2%.

INDEX TERMS Body area networks, generalised additive model, mean path loss modelling, statistical
analysis.

I. INTRODUCTION
The design of a wireless system should be preceded by a deep
analysis of radio channel properties in the target frequency
band, environment and scenario. For this reason, there is
an unceasing need for elaborating radio channel models for
new types of radio systems working in new frequency bands
and/or in new types of environments.

Nowadays, Body Area Networks (BANs), which refer to
body centric wireless communications where at least one of
the communication devices is attached to the human body,
play a very important role in the next generation of wireless
systems [1]. In this article, off-body communications are
considered between a fixed (off-body) device and a wearable
(on-body) one. Placing the antenna on the user’s body causes
many disadvantageous phenomena, e.g., near-field coupling
or radiation pattern distortion. Moreover, significant varia-
tions of the received signal may be caused by shadowing and
scattering from the body as well as from the environment.
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Therefore, in order to boost the overall system performance,
a good understanding of the radio channel is required.

One of the commonly analysed components of the radio
channel characteristics, beside fast and slow fading ones,
is the mean path loss [2]. In the literature, one can find
many different approaches for mean path loss modelling in
various types of wireless systems working at a wide range
of possible frequencies. The most common statistical tool
used for developing empirical models for mean path loss
estimation is Linear Regression (LR) with the Least Square
Method (LSM) [3] approach, which has been used, e.g., in [4]
for path loss modelling at 28 and 38 GHz in indoor envi-
ronment. The more complex Multivariate Linear Regression
(MLR) [5] approach has been applied in [6] for mean path
loss estimation for mobile systems operating in a containers
terminal environment, or in [7] for ground reflection path
loss estimation. If the relationship between path loss and one
of the independent variables is not linear, one can use the
logarithmic function for its linearisation or use a non-linear
regression, e.g., in [8] a non-linear multi-regression with the
pseudo gradient search approach has been used for path loss
estimation in mobile communication systems.
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In the last few years, one can also find more sophisticated
methods for radio channel modelling. In [9], path loss predic-
tion models for aircraft cabin environments are created with
the use of different machine learningmethods, like back prop-
agation neural network, support vector regression, or random
forest. The authors of [10] have applied a deep learning tech-
nique for path loss prediction in mobile communication sys-
tems at 2.6 GHz and compared the proposed approach with
traditional channel models. The neural network approach has
been proposed in [11] for path lossmodelling in urban areas at
900, 1800 and 2100 MHz. Even fuzzy-logic techniques may
be useful for building path loss models, as it has been done in
[12] for metropolitan environments at 900 and 1800 MHz.

Some researchers also use a kind of hybrid methods. For
instance, in [13] a heuristic approach has been applied for
penetration and path losses modelling at 677 MHz; a neural
network combined with multiple regression have been used
for the elaboration of an indoor prediction model. In [14],
a linear fitting has been used for elaborating a log-distance
path loss model, but the authors have also used a Fourier
series in order to model a non-linear dependence of the path
loss exponent on the transmitter distance to the closest wall.

As for other wireless networks, in BANs (in the majority
of cases) the mean path loss models are developed with the
use of LR. In [15], this tool has been used for elaborating
an experimental path loss model for in-body communica-
tions within 2.36 to 2.5 GHz. A similar approach has been
proposed in [16], where LR with LSM has been used for
path loss estimation in the localisation of an endoscopic
capsule. LR has also been used in [17] for investigations
of different approaches for path loss exponent estimation in
off-body channels. Also, in [18], the analysis of themean path
loss for narrow and ultra-wide band off-body networks in a
ferryboat environment is based on LR. Additionally, in [19]
linear modelling is used for investigations of the impact of
frequency dependence of human tissues on the path loss in
ultra-wideband in-body channels in the range from 3.1 to
5.1 GHz. In-body channels are also considered in [20] and
[21], where LSM is used to obtain path loss parameters for
homogeneous human tissues, such as muscle, brain, fat and
skin. In [22], an off-body channel at 6-8.5 GHz is studied
and a linear path loss model for a hospital environment is
proposed, using LSM, with a height-dependent and a body
obstruction attenuation factors. One can also find research on
the usage of mm-waves for BAN applications, e.g., in [23],
where LR is used for elaborating a path loss model for
on-body channels at 94 GHz, whereas in [24] and [25] the
same statistical tool is used for calculating path loss models
for line of sight (LoS) and non-LoS (NLoS) off-body chan-
nels at 60GHzwithin indoor environments. Although the cur-
rent article addresses mean path loss modelling methods, it is
worthwhile to mention that LR can also be used for modelling
the influence of the user’s body on channel characteristics,
e.g., in [26], for the calculation the parameters of a maximum
body-shadowing loss model, which is a component of a more
general model for off- and body-to-body communications.

The Generalised Additive Model (GAM) - described in
Section II - is a statistical tool that uses smooth functions
of predictor variables, which allows to see the contributions
of each of the variables toward the composite model, and to
model nonlinearities [27]. It is commonly used for elaborat-
ing statistical models in a wide scope of applications, like
forecasting gas usage [28], marine power systems analysis
[27], computer-aided diagnosis systems [29], multi-objective
programming [30], modelling of hospital admissions [31],
managing high-speed railways [32], selection of optimal
conditions for wine grapes analysis [33], analysis of solar
irradiances for solar energy production [34], or even for
spatio-temporal modelling for criminal incidents [35], just to
mention a few. However, to the best of the authors’ knowl-
edge, there is no research on the usage of GAM for radio
channel modelling, especially for the development of mean
path loss models for BANs, which determines the novelty of
the presented work.

The rest of the article is structured as follows. Section II
consists of the description of GAM, which has been used to
develop a new mean path loss model for an off-body chan-
nel. In Section III, the measurement campaign is described,
including equipment, environment and scenarios being inves-
tigated. In Section IV, the general mean path loss model is
formulated, and a comparison between models obtained with
the use of LR and GAM is addressed. The final mean path
loss model is presented in Section V. Section VI concludes
the article.

II. BRIEF DESCRIPTION OF THE GENERALISED
ADDITIVE MODEL
Assume that there is a relationship between random variable
Y ∈ R and random variable X ∈ RP, given by [36], [37]:

Y = f (X )+ ε, (1)

where f is an unknown function describing the relationship
between X and Y , ε is a random error independent from X
with the expected value equal to 0. Random variable Y is
called the response or dependent variable [36], while ran-
dom vector X = (X1,X2, · · · ,XP) contains the predictors,
called independent variables, features or sometimes just vari-
ables [36].

Currently, the linear statistical model that is used most
often is LR, which is given by [3], [38]:

f (X ) = β0 + β1X1 + · · · + βPXP, (2)

where β0 is an intercept and β1, β2, · · · ,βP are the slopes
corresponding to the components of vector X accordingly.
The benefit of using (2) is the fact that one needs to calculate
only P + 1 coefficients (β0, β1, β2, · · · , βP) by using the
method of least squares [37]. Unfortunately, in many real-life
scenarios, (2) is not a proper approach, which results in low
accuracy [36], [37], therefore somemethods to fit a non-linear
function have been proposed, e.g., polynomial regression.
However, the disadvantage of this method, and others that
belong to the same group called basis functions, is the need
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to assume a priori the form of f (X ) in (1) (e.g., a degree of
a polynomial). The quality of the calculated model highly
depends on whether f (X ) can be approximated by a polyno-
mial or not. Additionally, there is a problemwith polynomials
with degree higher than 4, because the polynomial curve can
become overflexible and take very unsuitable shapes [36].

In this article, one proposes the usage of a statistical model
given by [37], [39], [40]:

f (X ) = β0 + f1(X1)+ f2(X2)+ · · · + fP(XP), (3)

which is called the Generalised Additive Model, where
each linear component βKXK in (2) may be replaced by a
non-linear function fK (XK ), which are unspecified smooth
functions fitted by using scatterplot smoothers (e.g., a spline
function) [37]. One should notice that not all of the fK func-
tions need to be non-linear, being possible that fK is linear
or has other parametric forms (e.g., when XK is a qualitative
variable).

GAM has the following advantages [36]:
1) it allows to fit a non-linear function, fK , to each XK ,

which can be hardly accomplished by LR;
2) it maintains much of its interpretability, while being

much more flexible than LR;
3) it is an additive model, which allows to analyse and

infer each variable XK separately.
By virtue of all these advantages, GAM may decrease the
mean square error significantly in comparison to Linear and
Polynomial Regressions.

However, as all statistical learning methods, GAM has also
some disadvantages and limitations, which can be described
as:

1) propensity for overfitting;
2) relatively higher computational complexity, compared

to LR;
3) unstable behaviours at the boundaries of smooth

splines;
4) propensity for missing important interactions between

variables.
However, the majority of these disadvantages can be over-
come by proper validation techniques and data analysis.

In this article, for the discussion about the quality of
prediction models, the most commonly used measures of
accuracy have been applied, i.e., mean error (µe) and root
mean square error (σe). In practice, one has access to col-
lected N measurements, which are fixed sets of predictors
X = (x[0], x[1], . . . , x[N − 1]) and response variables
Y = (y[0], y[1], . . . , y[N − 1]), and f̂ estimation based on
measurements (with the use of a certain model). Therefore,
the mean error can be calculated as [41]:

µe =
1
N

N−1∑
n=0

(
y[n]− f̂ (x[n])

)
, (4)

where n denotes the measurement number and N denotes the
sample size (size of data set). In the case when µe (often

called bias) is equal to 0, on average the prediction model
yields the true value [3].

The second parameter, root mean square error, is given
by [41]:

σe =

√√√√ 1
N

N−1∑
n=0

(
y[n]− f̂ (x[n])

)2
. (5)

In addition, for model evaluation, it is common practice
to use the coefficient of determination (R2), which can be
expressed by [5]:

R2 = 1−

∑N−1
n=0

(
y[n]− f̂ (x[n])

)2
∑N−1

n=0 (y[n]− y)
2

, (6)

where y denotes the mean value of y, being given by:

y =
1
N

N−1∑
n=0

y[n]. (7)

It should be noted that R2 ∈ [0, 1]: when R2 = 1, σe
equals to 0, which means that the model perfectly fits the
measurement data, whereas in the case of R2 = 0, there is no
relationship between the response and predictors. In general,
the R2 value gives the percentage of the variance in the
dependent variable that can be explained by the independent
variables used in the model.

However, one should keep in mind that adding new inde-
pendent variables to an existing model always increases the
coefficient of determination, but results in a decrease in the
reliability of the model assessment. Therefore, in practice
the so-called adjusted coefficient of determination (R2adj) is
used [42]:

R2adj = 1− (1− R2)
N − 1

N − P− 1
, (8)

where P is the number of predictors. It is assumed that, for a
positive verification of the model, the adjusted coefficient of
determination should be greater than 0.6.

In order to evaluate the statistical significance of particular
components of both LR and GAM models, the significance
level (α), i.e., threshold probability that certain component
is statistically significant, has been calculated. It is assumed
that the obtained significance level should be lower than the
conventional one, i.e., 0.05 [39].

III. MEASUREMENT CAMPAIGN
Measurements were performed in an actual 7 × 5 × 3 m3

indoor office environment (see Fig. 1), containing typical
scatterers, such as tables, chairs, and computers, using the
methodology described in [43] and the measurement stand
presented in [2].

The transmitting (Tx) section consists of a vector signal
generator R&S SMBV100A [44] and an on-body transmit-
ting patch antenna (with a rectangular radiator and linear
polarisation), operating in the 2.45 GHz band. This antenna
has a 3 dBi gain, and half-power beamwidths of 115◦ and
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FIGURE 1. Floor plan of the investigated environment.

140◦ in the H- and E-planes, respectively. The genera-
tor is connected to the antenna with a flexible 7 m long
RG174 cable [45] (this length was the shortest one fitting
the measurement scenario), having an attenuation of 12.1 dB,
which was taken into account during the calibration process.

The receiving (Rx) section consists of a spectrum analyser
Anritsu MS2724B [46] with a control computer. Measure-
ments were done asynchronously, with the average sample
period of 150 ms, and 40 ms standard deviation. The off-body
fixed antenna is a dual polarised quad-ridged horn LB-OSJ-
0760 [47], operating in the frequency range of [0.7,6] GHz,
with a gain of 10 dBi, and half-power beamwidths of 58◦

and 46◦ in the H- and E-planes, respectively. The height
of the antenna (hRx) was 1.4 m. It should be noted that
measurements were carried out along the axis of the room,
which means that the body as well as the Tx antenna were
within the main beam of the Rx one in the majority of the
investigated cases. Only for small distances (i.e., 1 m and 2m)
there was the need to compensate the characteristics of the Rx
antenna, which has been done accordingly.

Switching between vertical (V) and horizontal (H) polar-
isations of the Rx antenna was performed via a Tesoel
TS121 RF switch [48]. Considering the V polarisation
of the Tx antenna allowed to perform measurements for
co-polarised (CP) and cross-polarised (XP) channels, respec-
tively. All RF connections in the Rx section are done by using
Huber+Suhner Sucoflex104 3 m long cables [49].
Measurements have been performed with four users,

whose characteristics are detailed in Tab. 1. The following
three antenna locations were analysed: front side of the torso
(TOF), head’s left side (HEL), and bottom part of the right
arm (ABR). Depending on the user and antenna placement,
the height of the Tx antenna (hTx) took different values,
as presented in Tab. 1.

During measurements, six distances between Tx and Rx
antenna were investigated, from 1 m to 6 m, with a 1 m
step. At each point, the user performed full body rotation

TABLE 1. Tx antenna heights for different users and antenna placements.

with a 45◦ counter-clockwise increment. For each distance
and rotation, measurements were performed with 50 samples,
and a median value of the path loss was calculated. Globally,
33 600 instantaneous and 672 median path loss values have
been collected during measurements.

IV. GENERALISED ADDITIVE MODEL VS. LINEAR
REGRESSION
On the basis of theoretical premises that enable the selection
of independent variables (predictors) affecting the mean path
loss, the general mean path loss model (LGp ), which is consid-
ered as a dependent variable, can be formulated as follows:

LGp[dB] = β0[dB] + fd
(
log

( d
d0

))
[dB]

+f1h

(
1h

)
[dB]
+ fϕ

(
ϕ
)
[dB]
+ P[dB] (9)

where:
• β0 - model intercept;
• d[m] - distance between user and off-body (Rx) antenna;
• d0[m] - reference distance, i.e., 1 m;
• 1h[m] =

∣∣hTx[m]−hRx[m]
∣∣ - absolute difference between

Tx and Rx antennas heights;
• ϕ[◦] - on-body (Tx) antenna orientation angle, i.e., the
angle between the main directions of the on-body (Tx)
and the off-body (Rx) antennas (counter clockwise);

• P - polarisation component (variable with two possible
values, for CP and XP channels).

In order to check the collinearity of predictors, the corre-
lation coefficient [37] between each of them has been cal-
culated - the correlation between particular variables is not
significant (≈ 0), which allows to use predictors (without any
preprocessing) for GAM and LR models.

It is also essential to know the number of measurements
performed for each value of a particular predictor, Tab. 2,
which contains the numbers of empirical data for all indepen-
dent variables (predictors), corresponding to the description
of the measurements campaign.

One can notice that for the polarisation component (P)
both sets of measurements (for XP and CP) are equinu-
merous. For the antenna orientation angle (ϕ), the number
of measurements is 6 000 for each angle from the sub-
set {0◦, 90◦, 180◦, 270◦}, and 2 400 for each element of
{45◦, 135◦, 225◦, 315◦}, which is due to the time constrains
that have occurred during measurements, but the expected
impact of this difference on model results is not significant,
especially when one considers that the purpose of the work
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TABLE 2. Number of measurements performed for each value of
particular predictor.

is to compare two methods for mean path loss modelling.
For the absolute difference of Tx and Rx antennas heights,
the number of measurements obtained for particular 1h val-
ues is not uniform, and ranges from 2 400 for the majority of
the cases up to 12 000, which is due to different locations of
the on-body antenna and different heights of particular users.
On the other hand, the distribution for the distance is uniform,
and the number of measurements equals 5 600 for each value
of d .

For the comparison between the two models, LR in (2)
and GAM in (3), the values of specific components and the
obtained significance level (α) are shown in Tab. 3.

TABLE 3. Model components obtained with the use of LR and GAM.

The formulation of the model via LR is then given by:

f̂ (X ) = β̂0 + β̂1X1 + · · · + β̂PXP

= 53.59+ 12.69 log
(
d
d0

)
− 3.851h

+0.02ϕ +

{
7.75, for XP
0, for CP

(10)

where β̂P is an estimation of real βP assumed in (2). Similarly,
the model obtained via GAM is given by:

f̂ (X ) = β̂0 + f̂1(X1)+ f̂2(X2)+ · · · + f̂P(XP)

= 45.22+ 12.69 log
(
d
d0

)
− 3.991h

+ 12.57 sin
(ϕ
2

)
+

{
7.75, for XP
0, for CP

(11)

where f̂P(XP) is an estimate of real fP(XP) assumed in (3).
Fig. 2 presents plots of the specific components of LR

(β̂PXP), which correspond to f̂P(XP) for GAM.One can notice
that for the antenna angle variable there is a non-linear func-
tion, its shape resulting from the smooth spline functions [37];
it can be approximated by the sine of half angle (this estima-
tion is shown in Tab. 3). For other variables, there are linear
functions, for both LR and GAM. The shape of the given
functions was confirmed by the resampling method (cross-
validation), which (on the basis of many probes) estimates the
degree of non-linearity for a particular function f̂P(XP) [39].

On the basis of Tab. 4, containing the fitting comparison
evaluation of LR and GAM, one can conclude, based on
µe = 0, that both models are not biased (they do not contain
systematic errors). Due to the fact that the antenna angle
variable is modelled by a non-linear function (see Fig. 2) σe
is lower for GAM (5.52 dB) in comparison to LR (6.90 dB).
This also results in higher R2 (and accordingly higher R2adj)
for GAM than for LR, which is 0.615 (0.612), and 0.396
(0.392), respectively. Considering that for a positive verifi-
cation of the model the adjusted coefficient of determination
should be greater than 0.6, only GAM seems to estimate the
mean path loss values with the required accuracy.

TABLE 4. Comparison of LR and GAM models’ fit to the measured data.

From the analysis of Fig. 2d, which depicts the relation-
ship between antenna orientation angle and mean path loss,
one can conclude that LR does not map the mean path loss
properly, which influences the performance of the model. For
the remaining variables there are no significant differences
between models.

The performance of the model can be also visualised by the
scatter plots, where in the abscissa axis there is a measured
mean path loss, while in the ordinate one there is a mean path
loss predicted by models, Fig. 3. For the perfectly predicting
model, the points on the scatter plot should be concentrated
on the line with a 45◦ slope. It can be proved that the slope
of the regression line between measured and predicted points
is equal to R2 [5]. The analysis of scatter plots (for fixed
value of the measured path loss) allows for the comparison
of the spread of estimated points for the proposed model. For
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FIGURE 2. Comparison of model components obtained with the use of GAM and LR.

example, if one compares the spread of points for measured
path loss equals 60 dB, it can be seen that GAM has better
performance (the predicted points are more concentrated).
Therefore, one can conclude that for GAM there is a lower
dispersion of the predicted values than for LR, which empha-
sises the advantage of GAM over LR.

V. MEAN PATH LOSS MODEL FOR OFF-BODY CHANNELS
After the comparison of the LR and GAM approaches, and
the analysis of their fit to the empirical data, the choice of the
final model has been done.

It may be formulated as follows:

Lp[dB] = L0[dB] + fd
(
log

( d
d0

))
[dB]︸ ︷︷ ︸

=0|d=d0=1m

+ f1h

(
1h

)
[dB]︸ ︷︷ ︸

=0|1h=0

+ fϕ
(
ϕ
)
[dB]︸ ︷︷ ︸

=0|ϕ=0

+P[dB]︸︷︷︸
=0|CP

(12)

where

L0[dB] = Lp|d=d0,1h=0,ϕ=0,CP = 44.71 (13)

is a mean path loss for the reference scenario, in which the
user is at the reference distance of 1 m, Rx and Tx antennas
are at the same heights, the on-body antenna is facing the
fixed one, and both are with the same polarisation.

The path length dependent component

fd
(
log

( d
d0

))
[dB]
= 12.69 · log

( d[m]

d0[m]

)
(14)

is a log-linear function of distance (expressed in m) between
the user and the off-body antenna, in relation to the reference
distance of 1 m. As one can see, the path loss exponent equals
1.269, which is expected in an indoor environment like the
investigated one.

The negative slope of the f1h function, expressed by

f1h

(
1h

)
[dB]
= −3.99 ·1h[m], (15)

means that the higher the difference between Tx and Rx
antennas heights (expressed in m) the lower the mean path
loss. This may be caused by the fact that for 1h = 0 the
on-body antenna is placed on the torso, which has the biggest
size in comparison with the wrist or the head, resulting in a
higher impact of body shadowing.

The model component related to the antenna orientation
angle (expressed in degrees)

fϕ(ϕ)[dB] = 12.57 · sin(
ϕ[◦]

2
) (16)

is a sine function of the half of this angle and with the
amplitude equal to 12.57, which means that the maximum
attenuation occurs for ϕ = 180◦, which should be expected,
since for this angle the on-body antenna is in the opposite
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FIGURE 3. Scatter plots of measured and predicted path loss for LR and GAM.

FIGURE 4. Measured vs. predicted mean path loss as a function of d for
U3, ϕ = 45◦, 1h = 0.1 m and XP channel.

direction to the off-body one, and the received signal is a
combination of many multi-path components without the
direct one (except a small contribution of the creeping wave
component).

According to expectations, when the polarisation of Tx and
Rx antennas are the same (CP channel) there is no additional
loss related to the polarisation mismatch. The opposite situa-
tion occurs for the XP channel, in which the two polarisations
are orthogonal, resulting in P = 7.75 dB, as it is expressed
by

P[dB] =

{
0.00 for CP
7.75 for XP

(17)

FIGURE 5. Measured vs. predicted mean path loss as a function of 1h for
U1, d = 4 m, ϕ = 0◦ and XP channel.

Fig. 4 shows a comparison between measured (red cross
label) and predicted (green circle label) mean path loss values
as a function of distance for U3, ϕ = 45◦, 1h = 0.1 m and
XP channel. In addition, a 95% prediction interval for GAM
(which is the interval that covers the true value of the path
loss for 95% of cases [37], [38]) is presented with the use of
a dashed line in order to show the accuracy of the prediction.
As one can see, the model fits well to the empirical data and
all estimated mean path loss values are within the prediction
interval.
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FIGURE 6. Measured vs. predicted mean path loss as a function of ϕ for
U3, d = 4 m, 1h = 0.1 m and CP channel.

Similar graphs of mean path loss as a function of the
absolute difference between Tx and Rx antennas heights (for
U1, d = 4m, ϕ = 0◦ andXP channel) and as a function of the
antenna orientation angle (for U3, d = 4 m,1h = 0.1 m and
CP channel) are presented in Fig. 5 and Fig. 6, respectively.
Also in these examples all estimated values are very close to
the measured ones, being within the 95% prediction interval
as well.

VI. CONCLUSION
In this article, the usefulness of the Generalised Additive
Model for mean path loss estimation in BANs based on
measured data is investigated. To the best of the authors’
knowledge, this is the first approach to the usage of GAM
for this kind of application.

Initially, a description of GAM is presented, followed by
the measurement campaign, including equipment, environ-
ment and scenarios being investigated. The measurements
have been performed for a narrow-band indoor off-body net-
work operating at 2.45 GHz, and for four different users.

In the main part of this article, the general mean path
loss model is formulated and a comparison between models
obtained with the use of LR and GAM is presented. The mean
path loss is modelled as a sum of four components depending
on path length, antenna orientation angle, absolute difference
between transmitting and receiving antennas heights and rel-
ative polarisation of both antennas. All metrics that have been
used for the evaluation of the models’ fit to the empirical
data show better values for GAM. In particular, the root mean
square error is 5.52 dB, being 1.38 dB lower than for LR, and
the adjusted coefficient of determination is 0.22 higher for
GAM, being equal to 0.61.

GAM proves to be a better method, because of the
non-linear relationship between the mean path loss and the
antenna orientation angle. In such situations, when one or
more independent variables have a non-linear nature, GAM
allows for mean path loss prediction with a higher accuracy
in comparison with LR.

Future work will focus on exploring more variables with
non-linear relationships with the dependent variable, per-
forming measurement campaigns in different environments
(both indoor and outdoor) and introducing dynamic scenarios
(i.e., user’s movement).
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