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Abstract—A combination of mode matching, finite element
methods and generalized impedance matrix is presented in a
context of propagation problems for open guiding structures.
The computational domain is divided into two regions: the first
one is a circular cylinder containing whole guiding structure and
the second one surrounds this artificial cylinder. The impedance
matrix is calculated with the use of finite element method in
the first region and fields outside are expressed by analytical
functions. As a last step propagation coefficients are obtained
with the use of global roots and poles finding algorithm. The
results for simple dielectric ridge waveguides are presented and
compared with alternative solutions.

Index Terms—finite element method, open waveguides, gener-
alized impedance matrix, mode matching method

I. INTRODUCTION

Analysis of propagation problems is a relevant topic in
microwaves and optical design process. The complexity of
the issue increases if the guiding structure is open and leaky
or complex modes are an object of interest. There are many
methods of analyzing such unshielded guides, depending on
their geometrical complexity. For very simple structures such
as guides with circular or elliptical cross sections fields outside
the rod can be described by Hankel or Mathieu functions. In
these particular cases the problem can be solved by utilizing
the mode matching (MM) technique [1]–[5]. The main ad-
vantage of this method is its high efficiency (low computer
resources requirements). However, it is limited to very few
cases of simple geometries. Guides with an arbitrary but
convex cross section can be analyzed with the use of field
matching method [6], [7]. The efficiency and accuracy of this
technique is lower than in the previous method, however, the
spectrum of different shapes is much wider. More universal
techniques are integral equation methods [8]–[11] which can
be utilized to analyze rods with arbitrary cross sections. Their
efficiency strongly depends on a choice of proper current
bases. Furthermore, the usage of Green’s functions can be
problematic due to singularity points in computational domain.
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For arbitrary cross sections discrete methods can also be ap-
plied. Although methods such as finite element method (FEM)
or finite difference (FD) method are predisposed to solve these
kinds of problems, modeling of infinite space can be very
problematic and affect accuracy. There are many different
ways of ”proper” domain truncation. The most famous ones
are transparent boundary conditions (TBC) [12], [13] and
a perfectly matched layer (PML) [13], [14]. However, both
have their disadvantages. First one gives much less accurate
results than the other, however, the PML requires an additional
domain extension. Moreover, utilization of the PML may result
in appearance of artificial modes (Berenger’s modes [15]),
which can be difficult to identify. To decrease numerical costs
and increase accuracy hybrid techniques can be utilized [16].
They combine advantages of discrete techniques such as their
versatility and advantages of analytical methods such as high
accuracy and short computation time. Recently, a method
that merges FEM, impedance matrix and MM method was
proposed in a context of scattering problems [17].

In this article similar hybrid technique (a combination of
impedance matrix, FEM and MM method) is developed to
analyze propagation problems. The computational domain is
divided into two regions: the first one is a circular cylinder
containing the whole guiding structure and the second one
surrounds this artificial cylinder. In the inner region the FEM
is utilized and generalized impedance matrix is obtained on
the surface of the cylinder. The MM is applied in the outer
region of the domain. Eventually, global roots and poles
finding algorithm is utilized to calculate complex propagation
coefficients. The approach has been verified with alternative
methods and has been deemed compatible.

II. FORMULATION OF THE PROBLEM

The considered structure is a dielectric guide with an
arbitrary cross section. Let us assume that the object is
homogeneous in one direction so it can be analyzed as a
2.5D problem (Fig. 1). In this approach an artificial surface is
added, which separates two regions. In the first region the
FEM is utilized to calculate the impedance matrix on the
artificial surface and in the next step it is combined with
external field expressed by a series of Hankel functions. Then,
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Fig. 1. A dielectric waveguide (a) the geometry (b) cross section.

a homogeneous system of equations is created and propagation
coefficients can be obtained from its nontrivial solution.

A. Definition of impedance matrix
The aforementioned impedance matrix is defined on the

boundary of region I and describes a relation between tan-
gential components of electric and magnetic fields. Individual
components of fields are defined as follows

~Ez(R,ϕ, z) =
M∑

m=−m
Vzm~ezm(ϕ, z), (1)

~Eϕ(R,ϕ, z) =
M∑

m=−m
Vϕm~eϕm(ϕ, z), (2)

~Hϕ(R,ϕ, z) =
M∑

m=−m
Iϕm~hϕm(ϕ, z), (3)

~Hz(R,ϕ, z) =
M∑

m=−m
Izm~hzm(ϕ, z). (4)

Each field can take a form of a sum of weights and following
basis functions:

~ezm(ϕ, z) = e−γzejmϕ~iz, ~eϕm(ϕ, z) = −e−γzejmϕ~iϕ,
~hzm(ϕ, z) = e−γzejmϕ~iz, ~hϕm(ϕ, z) = e−γzejmϕ~iϕ.

A correlation between fields can be written as follows:[
Vz

Vϕ

]
= Z

[
Iϕ
Iz

]
=

[
ZTM,TM ZTM,TE

ZTE,TM ZTE,TE

] [
Iϕ
Iz

]
, (5)

where Vz, Vϕ, Iz, Iϕ are coefficients of electric and magnetic
fields, respectively. All the coefficients are the weights of the
aforementioned basis functions. The matrix defined in this
way has size 2M × 2M , where M is a number of modes
under consideration. Such approach can also be applied for
anisotropic media.

B. FEM in impedance matrix calculations
The relation between electric and magnetic fields, pre-

viously named as a generalized impedance matrix, can be
obtained with the use of the FEM. All the steps were described
in [17]. However, this approach was applied only for scattering
problems, where the propagation coefficient γ was known. In
propagation issues this coefficient is a point of interest, which
implies necessary modifications.

C. Utilization of MM method

Consideration of unshielded structures is associated with
modeling of field radiation to infinite space. To model such
outgoing waves in second region, fields can be written in
following forms

EIIz (ρ, ϕ, z) =
M∑

m=−M
bEmH

(2)
m (κρ)e−γzejmϕ (6)

and

HII
Z (ρ, ϕ, z) =

M∑
m=−M

bHmH
(2)
m (κρ)e−γzejmϕ, (7)

where bEm, bHm are unknown coefficients, H(2)
m (·) is Hankel

function of the second kind and mth order, whereas parameter
κ2 = ω2µ0ε0 + γ2. To ensure the continuity of the tangential
components for both inner and outer regions the relation takes
the following form:

(ME
B − ZMH

B )B = N(γ)B = 0, (8)

where the matrices are expressed by

ME
B =

[
H 0

−Hβ −Hµ

]
, MH

B =

[
Hε Hβ

0 H

]
(9)

and the submatrices are defined as

H = diag(H
(2)
−M (κR), ...,H

(2)
M (κR)),

Hβ = diag(
jγM

Rκ2
H

(2)
−M (κR), ...,

−jγM

Rκ2
H

(2)
M (κR)),

Hµ =
jωµ0

κ
diag(H ′

(2)
−M (κR), ...,H ′

(2)
M (κR)),

Hε = − jωε0
κ1

diag(H ′
(2)
−M (κR), ...,H ′

(2)
M (κR))

and R is a radius of the artificial surface surrounding the
waveguide, B =

[
bE−M , . . . , bEM , bH−M , . . . , bHM

]T
and Z is an impedance matrix. Nontrivial solutions exist only
if the determinant of N matrix vanishes for γ representing a
propagation coefficient of the considered mode

det(N(γ)) = 0. (10)

The roots of the determinant can be found with the use of
global complex roots and poles finding algorithm [18].

D. Global complex roots and poles finding algorithm

The algorithm [18] is flexible and can be applied even for
functions with branch cuts and singularities. Moreover, it does
not require any preliminary knowledge about a root or a pole.
It consists of two stages: preliminary estimation and self-
adaptive mesh refinement. In the first step the whole domain
is covered by a triangular mesh and function is discretized in
the vertices of the triangles. In this step each edge is analyzed
and has proper quadrant difference assigned; candidates are
also evaluated and verified. The last step of the algorithm is
mesh refinement, which prevents an improper convergence.
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Fig. 2. A dielectric H-structure (a) the geometry (b) cross section.

The algorithm was recently improved [19] and can reduce
computational time. Both previous and improved algorithms
are easy to parallelize.

III. NUMERICAL RESULTS

In order to verify the validity of the presented approach a
few numerical examples are demonstrated. Firstly, a rectan-
gular waveguide with dimensions a = 6 cm, b = h = 1.5
cm and relative permittivity εr = 4 is analyzed at frequency
6 GHz. The convergence of two modes (leaky and guided) is
tested and the results are presented in Table I.

TABLE I
CONVERGENCE OF THE METHOD FOR THE STRUCTURE FROM FIG. 2 FOR

h = b

M leaky mode guided mode
5 0.13751 + 0.77479i 1.27030i
7 0.14122 + 0.77562i 1.27069i
9 0.14258 + 0.77598i 1.27073i

11 0.14303 + 0.77603i 1.27072i
13 0.14312 + 0.77603i 1.27072i
15 0.14310 + 0.77604i 1.27070i

According to the convergence table sufficient accuracy is
obtained for M = 11 and in further simulations this number
of modes is set. Four different modes found with the use of
current algorithm are confirmed with use of field matching
method [6] and two of them are compared to results obtained
with commercial software. All the results are collected in
Table II.

TABLE II
NORMALIZED COEFFICIENTS OF THE INVESTIGATED WAVES

FEM+MM FM HFSS
mode A (guided) 1.270i 1.264i 1.281i
mode B (guided) 1.428i 1.432i 1.434i
mode C (leaky) 0.143 + 0.776i 0.146 + 0.761i
mode D (leaky) 0.197 + 1.062i 0.193 + 1.053i

As a second example a structure presented in Fig. 2 is inves-
tigated. The results are obtained for a guide with dimensions
a = 6 cm and b = 1.5 cm as in a previous example and
d = 1.5 cm with different length h. The relative permittivity
is εr = 4 and all the simulations are performed at frequency
6 GHz. The attenuation and phase coefficients are shown in
Fig. 4 and Fig. 3, respectively. It can be observed that the
propagation coefficients change as a function of length h. The
biggest impact on the propagation coefficients can be seen for
leaky modes, so they can be considered as the most sensitive.
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Fig. 3. Normalized phase coefficients of the modes presented in Table II.
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Fig. 4. Normalized attenuation coefficients of the modes presented in Table II.

IV. CONCLUSION

The combination of the generalized impedance matrix,
FEM, MM technique and global roots/poles finding algorithm
has been applied to find propagation coefficients for open
guiding structures of arbitrary cross sections. The discrete
domain is limited only to close vicinity of the waveguide and
there is no need for any absorbing conditions, which is the
main advantage of this method. Furthermore, this method is
free from problems of integral equation methods, i.e. it does
not require neither current basis functions nor an integration of
Green’s functions. Obtained results are compatible with those
obtained with field matching technique.
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