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ABSTRACT 

Large deformations and stress analyses in two types of space structures that are intended 

for people to live in space have been studied in this research. The structure under analysis is 

assumed to rotate around the central axis to create artificial gravitational acceleration equal to 

the gravity on the Earth's surface. The analysis is fully dynamic, which is formulated based on 

the energy method by using the first-order shear deformation shell theory in two systems, 

cylindrical and torus. Also, the nonlinear von Kármán strain field has been assumed. The 

obtained set of partial differential equations has been solved using the semi-analytical 

polynomial solution method (SAPM). The main purpose of this paper is to study the effects of 

unusual conditions in the space outside the Earth's atmosphere (which is a complete vacuum 
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environment without pressure) on the strength of the analyzed structure. The numerical results 

of the governing equations have been evaluated using those of other studies and the simulation 

efficiency performed in this research has been proven. Finally, the effect of important 

parameters on the numerical results, including the angular velocity of the structure (which 

causes artificial gravity), the amount of imposed mechanical and hygro-thermal loads, the 

structure size and material specifications have been investigated in more detail. 

Keywords: Torus-shaped and cylindrical space structures, Artificial gravity, First-order shear 

deformation theory (FSDT), Functionally graded materials 

1. Introduction 

A spacecraft is a vehicle or device designed to fly in space and is used in a variety of fields, 

including communications, ground surveillance, meteorology, navigation, planetary 

exploration, and human and cargo transportation. Not all space crafts, except single-stage 

models, can reach space alone and require a launch vehicle or carrier rocket to do so. Several 

important attached bodies compose a spacecraft including communication antennas, solar 

arrays, and living chambers, etc. The focal point in designing space crafts can be their 

lightweight structures, stability, equilibrium in dynamic movements and structures including 

hot and cold parts. To manage these vital conditions in the design particularly manufacturing, 

novel experimental techniques emerged leading to high-quality parts. The passive mechanical 

loads, internal pressures, effects of meteoroids, inner humidity, variations of temperature, 

oscillations, passive and active noises, etc. can be witnessed in a spacecraft during working [1-

4].   

The harmful effects of prolonged weightlessness in spaceflight for astronauts have been 

expressed as a serious discussion. These detrimental impacts can be, for example, weakening 

of muscles and reduction in bone density of people. One of the tackling ways for this problem 
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can be the creation of artificial gravity that is sometimes named as pseudo-gravity. This can 

happen by exerting rotational movement and creating inertia forces. This means, in a frame due 

to its rotation, a produced centrifugal force can provide artificial gravity [5]. To envisage such 

a frame, a torus and or a cylindrical shape have been contemplating by aerospace engineers for 

decades. 

In a spacecraft cabin, when astronauts breathe, it can generate moisture. The sweating 

or breathing of an astronaut establishes moisture. In fact, perspiration and respiration shifts to 

the spacecraft parts and finally may destruct them. Thus, the humidity influence is noteworthy 

to be predicted while designing the space crafts. Accordingly, the astronauts, equipment, and 

spacecraft remain safe. This way, by means of forecasting the hygral impacts on a spacecraft, 

it can aid us to keep everything secure. It can lead to problems for both astronauts and spacecraft 

structure if the humidity value increases. In a point of fact, internal pressure can be appeared in 

the spacecraft resulted from the hygral percentage. Physically, when the air condenses, there 

would be a mechanical pressure [6]. So, as the influence of the moisture on the spacecraft would 

be crucial, this paper will address this effect as well. 

In terms of the mechanism function of space, space would be entirely unpredictable in 

comparison with the Earth due to several situations that affect it. There is a complete vacuum, 

weightlessness, extremely variable temperature, and all kinds of radiation. Sun radiation can 

heat up the spacecraft components confronted with the sun. Also, the same parts can withstand 

cold below zero when moving in the shadow part of the Earth. Consequently, the spacecraft is 

exposed to the thermal changes due to the solar flux and spacecraft itself [7-8]. Thus, the thermal 

environment of the space can harm the flexible structures of the spacecraft and it can be stated 

that the spacecraft is susceptible to be seriously damaged by sunlight and thermal radiation 

during a maneuver in orbit [9]. Moreover, as this temperature variation is a time-dependent one, 
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it would induce oscillations into the section of the solar arrays originated from periodic sunlight 

[10-17]. So, temperature-time dependent coupling dynamic analysis is an earnestly request 

addressed in this paper. 

Knowledge of the dynamics of the basic structures of the spacecraft seriously requires 

further studies. This led us to prepare this research study. We model the cylinder and torus parts 

of the spacecraft based on the computational dynamic and theoretical investigations. To assign 

material for the parts, we develop the functionally graded (FG) properties for the material. The 

first-order shear deformation theory sets out the theoretical time-dependent relations. We 

assume an artificial gravity into mathematical modeling and assess its effect on the problem in 

detail. We investigated abnormal situations of the space on the dimensions of spacecraft 

structures. In other words, under what conditions can one be completely sure of its design in 

terms of material and geometric dimensions. Because the necessary measures to save the lives 

of people living in the space, which is a vital issue, must be considered. As mentioned before, 

temperature variations and overload hygral cause serious effects on the parts of the spacecraft. 

Hence, such effects are implemented in theoretical dynamic modeling. We present and indicate 

the theoretical modeling based on general media in order to be able to have various strain fields 

originated from the media. Numerical outcomes are obtained by means of SAPM technique 

which is a semi-analytical solution [18-20]. Graphical results are demonstrated for the two 

mentioned chamber geometries, namely cylindrical and torus on the basis of the stress 

evaluation. We intend to display the numerical results in an optimized way. In doing so, the 

admissible tolerances beside critical factors are defined and determined. It is guessed that the 

chamber parts of the spacecraft can be affected remarkably by the internal pressure. This point 

brings us to measure the internal pressure on the cylindrical and torus living sections. In addition 

to these, another eminent factor would be the rotational speed in the dynamics of the spacecraft. 

The rotational velocity is estimated for both geometries with the difference that the cylinder has 
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one and the torus structure has two independent axes. Ultimately, we reveal numerically impacts 

of essential factors established pictorially. This research can provide very interesting scientific 

perspectives for researchers who examine the artificial gravity analysis of torus and cylindrical 

shaped space station structures. 

In mentioning the highlights of the present research, one can state that for the first time 

on the basis of a mathematical modelling, we analyze the residence structures of a spacecraft. 

Moreover, we simulate the effects of artificial gravity in the residence structures. On the other 

side, we also consider the temperature variation on the space structures and its impact on the 

created stresses in the structures. These are the most significant achieved items of the present 

study. 

2. Artificial gravity 

The lives of astronauts in weightless conditions have far-reaching consequences for their 

health, especially if they are considered long-term. Muscles gradually weaken and even heart 

problems, vascular diseases, muscle shrinkage, and dysfunction of internal organs will be 

inevitable. To solve these problems, astronauts usually exercise regularly at the space station so 

as not to be exposed to the adverse effects of weightlessness, and these risks are minimized. 

Another way is to create artificial gravity conditions. According to Einstein's theory of general 

relativity, the gravity field is nothing but relative acceleration. For example, if a satellite (Fig. 

1) orbits the Earth, Newton's second law can be written according to the equation 

𝑚(𝑅𝐸 + 𝐷)𝜔
2 = 𝑚𝑔 → 𝜔 = √

𝑔

(𝑅𝐸+𝐷)
, 𝑉𝐿𝑖𝑛 = √(𝑅𝐸 + 𝐷)𝑔 so that the satellite orbits the 

Earth at that particular altitude (𝑅𝐸,D and g are the radius of Earth, distance of rotating object 

from the Earth's surface and the gravitational acceleration on the Earth's surface at equator 

equals to 𝑔 = 9.806
𝑚

𝑠2
) 
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Fig. 1. Rotating object in an orbit around the Earth 

Parameters ω (
𝑅𝑎𝑑

𝑠
) and 𝑉𝐿𝑖𝑛 (

𝑚

𝑠
) are the angular and linear (tangential) velocities 

respectively. According to Fig. 1, it can be concluded that with the rotation of an object at a 

certain angular velocity around the center of rotation, a gravitational acceleration will occur that 

could be equal to 𝑔 = 9.806
𝑚

𝑠2
. According to the acceleration equation 𝑎 =  𝑟𝜔2, it can be 

concluded that by selecting the appropriate angular velocity at a specific orbit, a gravitational 

acceleration equal to the gravitational acceleration on the Earth's surface is created. Fig. 2 shows 

the relationship between the radius (R) and the rotational angular velocity ω (in terms of 

revolutions per minute 
𝑟𝑒𝑣

𝑚𝑖𝑛
) so that the obtained gravitational acceleration in the rotating 

doughnut will be equal to 9.806. Also, Fig. 3 demonstrates the equivalent tangential velocity 

(𝑉𝐿𝑖𝑛  
𝑚

𝑠
) for radius (r) changes. 
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Fig. 2. Variation of angular velocity of a rotating doughnut (ω 
𝑟𝑒𝑣

𝑚𝑖𝑛
) versus the radius of 

rotation (r) 
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Fig. 3. Tangential velocity (𝑉𝐿𝑖𝑛  
𝑚

𝑠
) due to the respected radius change 

It is observed that (Fig. 2) whatever the radius increases the angular velocity which is 

required for constant amount of gravitational acceleration equal to 𝑔 = 9.806
𝑚

𝑠2
 decreases, 

however, the variation is nonlinear with descending slope. Figs. 2 and 3 give theoretical 

information in regard to the suitable radius (r) and angular velocity (ω) for providing 𝑔 =

9.806
𝑚

𝑠2
 on the rotating vehicle. However, there are some physical limitations for r and ω. For 

example, high amounts of 𝑉𝐿𝑖𝑛 and ω causes serious health problem and inconvenient for 

astronauts. The appropriate ω is in the range of 𝜔 ≤ 10
𝑟𝑒𝑣

𝑚𝑖𝑛
. In the scale of huge space stations, 

the large amount of radius is expected. According to Fig. 2, if the radius of doughnut-shape 

space station is equal to 1000 meters, the angular velocity should be about 1
𝑟𝑒𝑣

𝑚𝑖𝑛
, however, the 

tangential velocity will be 𝑉𝐿𝑖𝑛 = 100
𝑚

𝑠
 𝑜𝑟 360 

𝑘𝑚

ℎ𝑟
 which is too high. Consequently, it is 
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preferred to create for example 70 percentage of 𝑔 = 9.806
𝑚

𝑠2
 that causes a reduction in needed 

angular velocity and in therefore 𝑉𝐿𝑖𝑛. 

3. Space accommodation and challenges 

As mentioned earlier, the lack of gravity in long-distance space travel will cause serious 

physical problems for astronauts. Fig. 4 shows a space station with two places for astronauts to 

live. The first part is a rotating cylindrical structure and the second part is a torus structure 

rotating around the central axis. In this study, two structures, a cylindrical and a torus one, have 

been studied in terms of mechanical forces that cause deformation and stress in the body of the 

structure. In the previous section, it was explained under what conditions a gravitational force 

can occur in a structure under rotation equal to what is felt on the Earth's surface. The conditions 

that prevail in space are very different from the environmental conditions on the Earth's surface. 

For example, in space outside the Earth's atmosphere, the external imposed pressure on the 

spacecraft's surface is zero. But inside the spacecraft, a pressure of about 105𝑃𝑎 must be 

created, which is felt on the surface of the Earth. Also, considerations related to astronauts’ 

normally breathing should be considered. In addition, the temperature inside the spacecraft must 

be set to the same pleasant temperature as the Earth's surface. Similar to the discussion of 

temperature, considerations must be given to proper humidity inside the spacecraft. Therefore, 

in this study, the effects related to the hygro-thermal environment in the mechanical simulation 

have been considered to make the obtained results more reliable. In general, by knowing the 

stresses established in the structure of the spacecraft as well as the deformations created in it, it 

is possible to make more appropriate decisions about the use of suitable materials in the 

structure of the spacecraft. In this study, for the first time, the use of functionally graded 

materials (FGM) in the structure of spacecraft has been studied. Functionally graded materials 

are relatively new materials that are used in sensitive industries today [21-37]. Therefore, the 
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space industry will not be an exception to this rule, and structures made of FGM can be 

substituted instead of the common materials used so far in the structure of space crafts. 

Moreover, there are other metamaterials that would be appropriate choices for the future of 

space industries [38-41]. Consequently, the present study can be a good reference for 

researchers who will study in this field (mechanical analysis of space crafts) and are looking 

for a suitable alternative to the common materials used in space structures. In the following 

sections, the dynamic governing equations of the cylindrical and torus rotating structures made 

of functionally graded materials will be explained in detail. 

 

Fig. 4. Spacecraft with two rotating cylindrical and torus living chambers 

4. Mechanical simulation of space chambers 

4.1. Definition of geometries 

In this section, the dynamic governing equations of a rotating cylinder [42-46] and torus 

[20] structures will be obtained. A schematic view of a slice of a doughnut as well as a rotating 
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cylinder are shown in Fig. 5a and 5b, respectively. The doughnut-shaped structure with 

thickness h, the radius of torus 𝑅𝑑, and the radius of tube R is under mechanical load 𝑞𝑧 and 

heat-humidity loads with the difference in temperature ΔT and moisture percentage ΔH. The 

parameters related to the cylindrical structure are similar to the doughnut-shaped structure (Fig. 

5a). It is worth noting to state that for analysis of both geometries, the internal pressure is applied 

circumferentially. According to Fig. 5, the conversion of a Cartesian coordinate system to 

cylindrical and torus coordinate systems can be defined based on the following equations: 

 

(a) 
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(b) 

Fig. 5. Schematic view of (a) Torus (b) Cylindrical space structures 

Torus coordinates {

𝑥 = 𝑅 𝑐𝑜𝑠(𝜃)

𝑦 = (𝑅𝑑 + 𝑅 𝑠𝑖𝑛(𝜃)) 𝑐𝑜𝑠(𝛼)

𝑧 = (𝑅𝑑 + 𝑅 𝑠𝑖𝑛(𝜃)) 𝑠𝑖𝑛(𝛼)
  Cylindrical coordinates {

𝑥 = 𝑅 𝑐𝑜𝑠(𝜃)

𝑦 = 𝑅 𝑠𝑖𝑛(𝜃)
𝑧 = 𝑧

 (1) 

By performing mathematical calculations, the gradient vector (∇) in torus and cylindrical 

coordinate systems can be defined as follows: 

𝛻Torus = [
𝜕

𝜕𝑟

1

𝑅

𝜕

𝜕𝜃

1

(𝑅𝑑+𝑅 𝑠𝑖𝑛(𝜃))

𝜕

𝜕𝛼
] , 𝛻Cylinder = [

𝜕

𝜕𝑟

1

𝑅

𝜕

𝜕𝜃

𝜕

𝜕𝑧
] (2) 

Also, the conversion of the unit vectors in the cylindrical and torus coordinate systems to 

the Cartesian coordinate system will be according to the following equations: 
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Torus {

𝑒�̂� = 𝑒�̂�(𝑐𝑜𝑠(𝜃)) + 𝑒�̂�(𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝛼)) + 𝑒�̂�(𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝛼))

𝑒�̂� = 𝑒�̂�(− 𝑠𝑖𝑛(𝜃)) + 𝑒�̂�(𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛼)) + 𝑒�̂�(𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛼))

𝑒�̂� = 𝑒�̂�(− 𝑠𝑖𝑛(𝛼)) + 𝑒�̂�(𝑐𝑜𝑠(𝛼))

 

Cylinder {

𝑒�̂� = 𝑒�̂�(𝑐𝑜𝑠(𝜃)) + 𝑒�̂�(𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝛼)) + 𝑒�̂�(𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝛼))

𝑒�̂� = 𝑒�̂�(− 𝑠𝑖𝑛(𝜃)) + 𝑒�̂�(𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛼)) + 𝑒�̂�(𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛼))

𝑒�̂� = 𝑒�̂�

 (3) 

Since the purpose of this study is to investigate the dynamic behavior of the structure, the 

analysis of the velocity and acceleration of the structure should also be considered. According 

to the above equations, acceleration can be formulated in two systems of cylindrical and torus 

according to the following equations (�̇� =
𝑑𝜃

𝑑𝑡
, �̈� =

𝑑2𝜃

𝑑𝑡2
, 𝛼 =

𝑑𝛼

𝑑𝑡
, �̈� =

𝑑2𝛼

𝑑𝑡2
) 

Torus {

𝑎𝑟 = �̈� − 𝑟�̇�
2 − 𝑟 𝑠𝑖𝑛2(𝜃) �̇�2

𝑎𝜃 = 𝑟�̈� + 2�̇��̇� − 𝑟�̇�
2 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

𝑎𝛼 = 𝑟�̈� 𝑠𝑖𝑛(𝜃) + 2�̇��̇� 𝑠𝑖𝑛(𝜃) + 2𝑟�̇��̇� 𝑐𝑜𝑠(𝜃)

Cylinder {

𝑎𝑟 = �̈� − 𝑟�̇�
2

𝑎𝜃 = 𝑟�̈� + 2�̇��̇�
𝑎𝑧 = �̈�

 (4) 

4.2. Strain field 

The tensor relation according to which the strains will be obtained in each system of 

assumed coordinates is introduced in general according to the following equation 

𝜀 =
1

2
[𝛻𝑈 + 𝛻𝑈𝑇 + 𝛻𝑈 ⋅ 𝛻𝑈𝑇] (5) 

In the above equation, U will have three components in the assumed coordinate system 

and the operator ∇ is the gradient in the same coordinate system. In continue, the displacement 

field components will be obtained for the cylindrical coordinate system, and similar calculations 

can be performed to extract the strain field components in the torus coordinates. The U vector 

in the cylindrical coordinate system will be as follows: 

�⃗⃗� = 𝑈𝑟𝑒�̂� + 𝑈𝜃𝑒�̂� + 𝑈𝑧𝑒�̂� (6) 
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Next, according to the definition of ∇ in the cylindrical coordinate system, the expansion 

of Eq. (5) can be rewritten as follow 

𝛻𝑈 = [
𝜕

𝜕𝑟
𝑒�̂�

1

𝑅

𝜕

𝜕𝜃
𝑒�̂�

𝜕

𝜕𝑧
𝑒�̂�] [

𝑈𝑟𝑒�̂�
𝑈𝜃𝑒�̂�
𝑈𝑧𝑒�̂�

] =

[
 
 
 
 
 

𝜕𝑈𝑟
𝜕𝑟

𝜕𝑈𝜃
𝜕𝑟

𝜕𝑈𝑧
𝜕𝑟

1

𝑅
(
𝜕𝑈𝑟
𝜕𝜃

− 𝑈𝜃)
1

𝑅
(
𝜕𝑈𝜃
𝜕𝜃

+ 𝑈𝑟)
1

𝑅

𝜕𝑈𝑧
𝜕𝜃

𝜕𝑈𝑟
𝜕𝑧

𝜕𝑈𝜃
𝜕𝑧

𝜕𝑈𝑧
𝜕𝑧 ]

 
 
 
 
 

 

𝛻𝑈𝑇 =

[
 
 
 
 
𝜕𝑈𝑟

𝜕𝑟

1

𝑅
(
𝜕𝑈𝑟

𝜕𝜃
− 𝑈𝜃)

𝜕𝑈𝑟

𝜕𝑧
𝜕𝑈𝜃

𝜕𝑟

1

𝑅
(
𝜕𝑈𝜃

𝜕𝜃
+ 𝑈𝑟)

𝜕𝑈𝜃

𝜕𝑧
𝜕𝑈𝑧

𝜕𝑟

1

𝑅

𝜕𝑈𝑧

𝜕𝜃

𝜕𝑈𝑧

𝜕𝑧 ]
 
 
 
 

 (7) 

In Eq. (5), it should be noted that the expression ∇𝑈 ∙ ∇𝑈𝑇 will represent the nonlinear 

part of the strain field, which is usually omitted due to a significant increase in the number of 

calculations. But sometimes this nonlinear expression cannot be ignored and ignoring it will 

cause serious errors in the numerical results. For example, if the mechanical load on the 

structure is high and the deformation of the structure occurs in the range of large deformations, 

the mentioned nonlinear expression must also be considered. Of course, if it is aimed to find 

the maximum deformation in direction of the applied loading, von Kármán's assumptions can 

be considered to simplify the extracted equations in order to obtain large deformations. 

Therefore, the final shape of the nonlinear strain field in the cylindrical coordinate system is 

formulated as a strain tensor below. It should be noted that the strain field tensor is symmetric 

or in other words the relation 𝜎𝑖𝑗 = 𝜎𝑗𝑖 will be established. Also, the strain created by hygro-

thermal effect is implemented in total strain tensor. Parameters 𝛼𝑇 and β are the thermal 

expansion and moisture coefficients respectively, 

𝜀𝑖𝑗 = [

𝜀𝑟𝑟 𝜀𝑟𝜃 𝜀𝑟𝑧
𝜀𝜃𝑟 𝜀𝜃𝜃 𝜀𝜃𝑧
𝜀𝑧𝑟 𝜀𝑧𝜃 𝜀𝑧𝑧

] − (𝛼𝑇𝛥𝑇 + 𝛽𝛥𝐻) [
1 0 0
0 1 0
0 0 1

] 
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𝜀𝑟𝑟 = (
𝜕𝑈𝑟
𝜕𝑟
) +

1

2
(
𝜕𝑈𝑟
𝜕𝑟
)
2

 

2𝜀𝑟𝜃 = 2𝜀𝜃𝑟 =
1

𝑅
(
𝜕𝑈𝑟
𝜕𝜃

− 𝑈𝜃) + (
𝜕𝑈𝜃
𝜕𝑟

) +
1

𝑅
(
𝜕𝑈𝑟
𝜕𝑟
) (
𝜕𝑈𝑟
𝜕𝜃

) 

2𝜀𝑟𝑧 = 2𝜀𝑧𝑟 = (
𝜕𝑈𝑟
𝜕𝑧

+
𝜕𝑈𝑧
𝜕𝑟
) 

𝜀𝜃𝜃 =
1

𝑅
(
𝜕𝑈𝜃
𝜕𝜃

+ 𝑈𝑟) +
1

2𝑅2
((
𝜕𝑈𝑟
𝜕𝜃

)
2

+ 𝑈𝑟
2) 

2𝜀𝜃𝑧 = 2𝜀𝑧𝜃 =
1

𝑅

𝜕𝑈𝑧
𝜕𝜃

+
𝜕𝑈𝜃
𝜕𝑧

 

𝜀𝑧𝑧 =
𝜕𝑈𝑧

𝜕𝑧
 (8) 

4.3. Extraction of dynamic equations of the cylindrical structure 

There are many advantages of using the principle of minimum potential energy to obtain 

the governing equations. One of them is the achievement of boundary conditions 

simultaneously with the derivation of the governing equations. According to the principle of 

minimum potential energy, the energy variations of the whole set should be equal to zero. The 

general equation of this theory is as follows 

𝛿𝛱 = 𝛿𝑈𝜀 + 𝛿𝐾𝑘𝑒𝑛 + 𝛿𝐹𝑒𝑥𝑡 = 0 

𝛿𝑈𝜀 = ∫ (∭𝜎𝑖𝑗𝛿𝜀𝑖𝑗
𝑉

)𝑑𝑡
𝑡

0

   𝑖, 𝑗 = 𝑟, 𝜃, 𝑧   (V is the volume)(𝑑𝑉 = 𝑅𝑑𝑟𝑑𝜃𝑑𝑧) 

𝛿𝐾𝑘𝑒𝑛 = −
𝛿

2
∫ (∭ 𝜌((

𝜕𝑈𝑟
𝜕𝑡
)
2

+ (
𝜕𝑈𝜃
𝜕𝑡
)
2

+ (
𝜕𝑈𝑧
𝜕𝑡
)
2

)
𝑉

𝑑𝑉)
𝑡

0

𝑑𝑡 

𝛿𝐹𝑒𝑥𝑡 = ∫ (−∬ 𝑞𝑧(𝛿𝑈𝑟)𝑑𝐴𝐴
)𝑑𝑡

𝑡

0
               (A is the area)(𝑑𝐴 = 𝑅𝑑𝜃𝑑𝑧) (9) 

In the above equation, 𝛿𝑈𝜀, 𝛿𝐾𝑘𝑒𝑛 and 𝛿𝐹𝑒𝑥𝑡 are the variation in strain energy, kinetic 

energy and work performed by external loads in the system. 𝜎𝑖𝑗 is the stress created in the 

structure that will be obtained according to Hooke's law (𝜎𝑖𝑗 = 𝐶: 𝜀𝑖𝑗). 
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Matrix C is the stiffness matrix of the material used, which in this study, the employed 

structure is considered as a functionally graded material (FGM). Recently, the use of FG 

materials is increased, but their manufacturing process is still a serious challenge. The aerospace 

industry needs to be progressed by using new and high-tech instruments and materials. So, the 

use of FG materials in the aerospace industry can be studied by researchers due to their special 

and unique properties. The mechanical properties of FGMs change in one or more different 

directions and their value will vary from the initial value to the secondary value. For example, 

the definition of Young's modulus (E(r)) can be formulated as an equation with changes in the 

structure thickness from 𝐸1 to 𝐸2. Parameter g defines the intensity of the rate of changes from 

𝐸1 to 𝐸2. The more value of parameter g, the rate of changes from 𝐸1 to 𝐸2 will be increased, 

𝐶 =
𝐸(𝑟)

1 − (𝜈(𝑟))
2

[
 
 
 
 
 
 
 
 
 
 
1 𝜈(𝑟) 0 0 0 0
𝜈(𝑟) 1 0 0 0 0

0 0
1 − 𝜈(𝑟)

2
0 0 0

0 0 0
1 − 𝜈(𝑟)

2
0 0

0 0 0 0
1 − 𝜈(𝑟)

2
0

0 0 0 0 0
1 − 𝜈(𝑟)

2 ]
 
 
 
 
 
 
 
 
 
 

 

𝐸(𝑟) = (𝐸1 − 𝐸2) (
𝑟

ℎ
+
1

2
)
𝑔
+ 𝐸2; 𝜈(𝑟) = (𝜈1 − 𝜈2) (

𝑟

ℎ
+
1

2
)
𝑔
+ 𝜈2    (−

ℎ

2
≤ 𝑟 ≤

ℎ

2
) (10) 

As the energy equations have been extracted before, it is observed that the displacement 

components based on the cylindrical coordinate system are considered as general expressions 

𝑈𝑟, 𝑈𝜃 and 𝑈𝑧. Here these components can be selected so that the results are more in line with 

reality and at the same time the calculations are reduced to a minimum. One of the popular 

displacement field theories that, while simple in equations, provides good results in the 

mechanical analysis of structures is Mindlin's first-order shear deformation theory (FSDT). In 

this theory, three transfer displacement functions 𝑢0, 𝑣0 and 𝑤0 as well as two rotation functions 
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𝜓1 and 𝜓2 around the two axes z and 𝜃 are introduced. The FSDT displacement field equations 

are defined as follows: 

𝑈𝜃(𝑟, 𝜃, 𝑧, 𝑡) = 𝑢0(𝜃, 𝑧, 𝑡) + 𝑟𝜓1 

𝑈𝑧(𝑟, 𝜃, 𝑧, 𝑡) = 𝑣0(𝜃, 𝑧, 𝑡) + 𝑟𝜓2(𝜃, 𝑧, 𝑡) 

𝑈𝑟(𝑟, 𝜃, 𝑧, 𝑡) = 𝑤0(𝜃, 𝑧, 𝑡) (11) 

The variable r indicates changes in the thickness direction. As can be seen, the changes 

𝑈𝑟, 𝑈𝜃 and 𝑈𝑧 are defined linearly. The application of the FSDT theory provides suitable results 

for relatively thick structures. Space structures are in the range of medium thicknesses, so it is 

predicted to provide good results using this theory. 

By applying the FSDT displacement field in the energy equations, their expansion will 

be rewritten as the following equations 

𝛿𝑈𝜀 = ∫ (∭(𝜎𝑟𝑟𝛿𝜀𝑟𝑟 + 𝜎𝑟𝜃𝛿𝜀𝑟𝜃 + 𝜎𝑟𝑧𝛿𝜀𝑟𝑧 + 𝜎𝜃𝑟𝛿𝜀𝜃𝑟 + 𝜎𝜃𝜃𝛿𝜀𝜃𝜃 + 𝜎𝜃𝑧𝛿𝜀𝜃𝑧
𝑉

𝑡

0

 

+𝜎𝑧𝑟𝛿𝜀𝑧𝑟 + 𝜎𝑧𝜃𝛿𝜀𝑧𝜃 + 𝜎𝑧𝑧𝛿𝜀𝑧𝑧)𝑑𝑉)𝑑𝑡 

= ∫ (∭(𝜎𝑟𝑟𝛿𝜀𝑟𝑟 + 𝜎𝑧𝑧𝛿𝜀𝑧𝑧 + 𝜎𝜃𝜃𝛿𝜀𝜃𝜃 + 2𝜎𝑟𝜃𝛿𝜀𝑟𝜃 + 2𝜎𝑟𝑧𝛿𝜀𝑟𝑧 + 2𝜎𝜃𝑧𝛿𝜀𝜃𝑧)
𝑉

𝑑𝑉)
𝑡

0

𝑑𝑡 

= ∫ (∫ ∫ ∫ (𝜎𝑧𝑧 (
𝜕𝛿𝑣0
𝜕𝑧

+ 𝑟
𝜕𝛿𝜓2
𝜕𝑧

+ (
𝜕𝛿𝑤0
𝜕𝑧

) (
𝜕𝑤0
𝜕𝑧

))

ℎ
2

−
ℎ
2

𝜃

0

𝐿

0

𝑡

0

+ 𝜎𝜃𝜃 (
1

𝑅
(
𝜕𝛿𝑢0
𝜕𝜃

+ 𝑟
𝜕𝛿𝜓1
𝜕𝜃

+ 𝛿𝑤0) 

+
1

𝑅2
((
𝜕𝛿𝑤0
𝜕𝜃

) (
𝜕𝑤0
𝜕𝜃

) + 𝑤0𝛿𝑤0)) + 𝜎𝑧𝜃 (
1

𝑅
(
𝜕𝛿𝑣0
𝜕𝜃

+ 𝑟
𝜕𝛿𝜓2
𝜕𝜃

) + (
𝜕𝛿𝑢0
𝜕𝑧

+ 𝑟
𝜕𝛿𝜓1
𝜕𝑧

) 

+
1

𝑅
((
𝜕𝛿𝑤0
𝜕𝜃

) (
𝜕𝑤0
𝜕𝑧

) + (
𝜕𝑤0
𝜕𝜃

) (
𝜕𝛿𝑤0
𝜕𝑧

))) + 𝜎𝑟𝑧 (
𝜕𝛿𝑤0
𝜕𝑧

+ 𝛿𝜓2) + 𝜎𝑟𝜃(𝛿𝜓1 

+
1

𝑅
(
𝜕𝛿𝑤0

𝜕𝜃
− 𝛿𝑢0 − 𝑟𝛿𝜓1)))𝑅𝑑𝑟𝑑𝑧𝑑𝜃)𝑑𝑡 (12) 

𝛿𝐾𝑘𝑒𝑛 = −
𝛿

2
∫ (∭ 𝜌((

𝜕𝑈𝜃
𝜕𝑡
)
2

+ (
𝜕𝑈𝑧
𝜕𝑡
)
2

+ (
𝜕𝑈𝑟
𝜕𝑡
)
2

)
𝑉

𝑑𝑉)
𝑡

0

𝑑𝑡 

= −∫ (∭ 𝜌((
𝜕𝑈𝜃
𝜕𝑡

𝜕𝛿𝑈𝜃
𝜕𝑡

) + (
𝜕𝑈𝑧
𝜕𝑡

𝜕𝛿𝑈𝑧
𝜕𝑡

) + (
𝜕𝑈𝑟
𝜕𝑡

𝜕𝛿𝑈𝑟
𝜕𝑡

))
𝑉

𝑑𝑉)
𝑡

0

𝑑𝑡 = 
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= −∫ (∭ 𝜌((
𝜕𝑢0
𝜕𝑡

+ 𝑟
𝜕𝜓1
𝜕𝑡
) (
𝜕𝛿𝑢0
𝜕𝑡

+ 𝑟
𝜕𝛿𝜓1
𝜕𝑡

)
𝑉

𝑡

0

+ (
𝜕𝑣0
𝜕𝑡

+ 𝑟
𝜕𝜓2
𝜕𝑡
) (
𝜕𝛿𝑣0
𝜕𝑡

+ 𝑟
𝜕𝛿𝜓2
𝜕𝑡

) 

+(
𝜕𝑤0
𝜕𝑡

𝜕𝛿𝑤0
𝜕𝑡

))𝑑𝑉)𝑑𝑡 = −∫ (∬ (𝐼1 (
𝜕𝑢0
𝜕𝑡

𝜕𝛿𝑢0
𝜕𝑡

) + 𝐼2 (
𝜕𝑢0
𝜕𝑡

𝜕𝛿𝜓1
𝜕𝑡

+
𝜕𝜓1
𝜕𝑡

𝜕𝛿𝑢0
𝜕𝑡

)
𝐴

𝑡

0

 

+𝐼3 (
𝜕𝜓1
𝜕𝑡

𝜕𝛿𝜓1
𝜕𝑡

) + 𝐼1 (
𝜕𝑣0
𝜕𝑡

𝜕𝛿𝑣0
𝜕𝑡

) + 𝐼2 (
𝜕𝑣0
𝜕𝑡

𝜕𝛿𝜓2
𝜕𝑡

+
𝜕𝜓2
𝜕𝑡

𝜕𝛿𝑣0
𝜕𝑡

) + 𝐼3 (
𝜕𝜓2
𝜕𝑡

𝜕𝛿𝜓2
𝜕𝑡

) 

+ 𝐼1 (
𝜕𝑤0

𝜕𝑡

𝜕𝛿𝑤0

𝜕𝑡
))𝑅𝑑𝜃𝑑𝑧) 𝑑𝑡       (𝐼1, 𝐼2, 𝐼3) = ∫ 𝜌(1, 𝑟, 𝑟2)𝑑𝑟

ℎ

2

−
ℎ

2

 (13) 

𝛿𝐾𝑎𝑐𝑐𝑒𝑙 = −∫ (∭𝜌𝑟 ((�̈�)𝛿𝑈𝜃
𝑣

𝑡

0

−(�̇�2)𝛿𝑈𝑟)𝑑𝑉)𝑑𝑡 

= −∫ (∬ 𝐼1𝑅 ((�̈�)𝛿𝑢0𝐴

𝑡

0
−(�̇�2)𝛿𝑤0)𝑅𝑑𝜃𝑑𝑧)𝑑𝑡 (14) 

By integrating in the direction of thickness (r) and defining the stress results as follows, 

the strain energy variations can be rewritten, 

{
 
 

 
 (𝑁𝑧𝑧, 𝑁𝑧𝜃 , 𝑁𝜃𝜃 , 𝑁𝑟𝜃 , 𝑁𝑟𝑧) = ∫ (𝜎𝑧𝑧, 𝜎𝑧𝜃 , 𝜎𝜃𝜃, 𝜎𝑟𝜃, 𝜎𝑟𝑧)𝑑𝑟

ℎ

2

−
ℎ

2

(𝑀𝑧𝑧, 𝑀𝑧𝜃 , 𝑀𝜃𝜃 , 𝑀𝑟𝜃) = ∫ (𝜎𝑧𝑧, 𝜎𝑧𝜃 , 𝜎𝜃𝜃, 𝜎𝑟𝜃)𝑟𝑑𝑟
ℎ

2

−
ℎ

2

 (15) 

𝛿𝑈𝜀 = ∫ (∫ ∫ (𝑁𝑧𝑧
𝜕𝛿𝑣0
𝜕𝑧

+ 𝑀𝑧𝑧
𝜕𝛿𝜓2
𝜕𝑧

+ 𝑁𝑧𝑧 (
𝜕𝛿𝑤0
𝜕𝑧

) (
𝜕𝑤0
𝜕𝑧

) +
𝑁𝜃𝜃
𝑅
(
𝜕𝛿𝑢0
𝜕𝜃

) +
𝑀𝜃𝜃
𝑅

(
𝜕𝛿𝜓1
𝜕𝜃

)
𝜃

0

𝐿

0

𝑡

0

 

𝑁𝜃𝜃
𝑅
(𝛿𝑤0) +

𝑁𝜃𝜃
𝑅2

((
𝜕𝛿𝑤0
𝜕𝜃

) (
𝜕𝑤0
𝜕𝜃

) + 𝑤0𝛿𝑤0) +
𝑁𝑧𝜃
𝑅
(
𝜕𝛿𝑣0
𝜕𝜃

) +
𝑀𝑧𝜃
𝑅
(
𝜕𝛿𝜓2
𝜕𝜃

) + 𝑁𝑧𝜃 (
𝜕𝛿𝑢0
𝜕𝑧

) 

+𝑀𝑧𝜃 (
𝜕𝛿𝜓1
𝜕𝑧

) +
𝑁𝑧𝜃
𝑅
((
𝜕𝛿𝑤0
𝜕𝜃

) (
𝜕𝑤0
𝜕𝑧

) + (
𝜕𝑤0
𝜕𝜃

) (
𝜕𝛿𝑤0
𝜕𝑧

)) 

+𝑁𝑟𝑧 (
𝜕𝛿𝑤0

𝜕𝑧
+ 𝛿𝜓2) + 𝑁𝑟𝜃(𝛿𝜓1) +

𝑁𝑟𝜃

𝑅
(
𝜕𝛿𝑤0

𝜕𝜃
) −

𝑁𝑟𝜃

𝑅
(𝛿𝑢0) −

𝑀𝑟𝜃

𝑅
(𝛿𝜓1)) 𝑅𝑑𝑧𝑑𝜃)𝑑𝑡 (16) 

Now, by calculating the integrals, some of which are integrals by part, and adding the 

corresponding values of 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0, 𝛿𝜓1 and 𝛿𝜓2, the dynamic governing equations of 

space cylindrical structure (that rotates around the central axis) can be obtained below: 

𝛿𝑢0: 𝑁𝑟𝜃 +
𝜕𝑁𝜃𝜃

𝜕𝜃
+ 𝑅

𝜕𝑁𝑧𝜃

𝜕𝑧
+ 𝐼1𝑅

2�̈� − 𝑅 (𝐼1
𝜕2𝑢0

𝜕𝑡2
+ 𝐼2

𝜕2𝜓1

𝜕𝑡2
) = 0 (17) 
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𝛿𝑣0:
𝜕𝑁𝑧𝜃

𝜕𝜃
− 𝑅

𝜕𝑁𝑧𝑧

𝜕𝑧
− 𝑅 (𝐼1

𝜕2𝑣0

𝜕𝑡2
+ 𝐼2

𝜕2𝜓2

𝜕𝑡2
) = 0 (18) 

𝛿𝑤0:
𝜕𝑁𝑟𝜃
𝜕𝜃

− 𝑁𝜃𝜃 + 𝑅
𝜕𝑁𝑟𝑧
𝜕𝑧

+
1

𝑅

𝜕

𝜕𝜃
(𝑁𝜃𝜃

𝜕𝑤0
𝜕𝜃

) −
1

𝑅
(𝑁𝜃𝜃𝑤0) +

𝜕

𝜕𝜃
(𝑁𝑧𝜃

𝜕𝑤0
𝜕𝑧

) 

+
𝜕

𝜕𝑧
(𝑁𝑧𝜃

𝜕𝑤0

𝜕𝜃
) + 𝑅

𝜕

𝜕𝑧
(𝑁𝑧𝑧

𝜕𝑤0

𝜕𝑧
) + 𝑅𝑞𝑧 − 𝐼1𝑅

2�̇�2 − 𝐼1𝑅
𝜕2𝑤0

𝜕𝑡2
= 0 (19) 

𝛿𝜓1:𝑀𝑟𝜃 − 𝑅𝑁𝑟𝜃 +
𝜕𝑀𝜃𝜃

𝜕𝜃
+ 𝑅

𝜕𝑀𝑧𝜃

𝜕𝑧
− 𝑅 (𝐼2

𝜕2𝑢0

𝜕𝑡2
+ 𝐼3

𝜕2𝜓1

𝜕𝑡2
) = 0 (20) 

𝛿𝜓2:
𝜕𝑀𝑧𝜃

𝜕𝜃
− 𝑅𝑁𝑟𝑧 + 𝑅

𝜕𝑀𝑧𝑧

𝜕𝑧
− 𝑅 (𝐼2

𝜕2𝑣0

𝜕𝑡2
+ 𝐼3

𝜕2𝜓2

𝜕𝑡2
) = 0 (21) 

To study several boundary conditions for the cylinderical structure, the following conditions 

are considered, 

𝐶𝑙𝑎𝑚𝑝𝑒𝑑 (𝐶): 𝑢0 = 𝑣0 = 𝑤0 = 𝜓1 = 𝜓2 = 0    𝑧 = 0, 𝐿 (22) 

𝑆𝑖𝑚𝑝𝑙𝑦 − 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 (𝑆): 𝑢0 = 𝑣0 = 𝑤0 = 𝜓1 = 𝑀𝑧𝑧 = 0    𝑧 = 0, 𝐿 (23) 

𝐹𝑟𝑒𝑒 𝑒𝑑𝑔𝑒 (𝐹): 𝑁𝑧𝑧 = 𝑁𝑧𝜃 = 𝑁𝑟𝑧 = 𝑀𝑧𝑧 = 𝑀𝑧𝜃 = 0    𝑧 = 0, 𝐿 (24) 

If the cylindrical structure is uniform under mechanical loading and the environmental 

conditions (temperature and humidity) are evenly distributed throughout the structure, there will 

be no change in θ direction (
𝜕

𝜕𝜃
(𝑓) =  0). If the angular acceleration is omitted, or in other 

words �̇� = 0, the principle of uniformity of the dynamic load on the set is observed and 𝑈𝜃 = 0 

in the displacement field. This assumed principle is not far from reality. Because in practice, 

variable angular velocity will cause many problems on the health of the inhabitants of the space 

structure and will cause significant stress in structure and this category should be avoided as 

much as possible. As mentioned earlier, the angular velocity of the structure must be determined 

in a way that residents feel the equal gravitational force as on the Earth's surface. Finally, the 

displacement field will be rewritten simpler according to the following equations 

{

𝑈𝜃(𝑟, 𝑧, 𝑡) = 0

𝑈𝑧(𝑟, 𝑧, 𝑡) = 𝑣0(𝑧, 𝑡) + 𝑟𝜓2(𝑧, 𝑡)

𝑈𝑟(𝑟, 𝑧, 𝑡) = 𝑤0(𝑧, 𝑡)
 (25) 
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As can be seen, the obtained equations of the space cylindrical structure (under uniform 

loading) is a set of nonlinear second-order partial differential equations as follow: 

𝛿𝑣0:
𝜕𝑁𝑧𝑧

𝜕𝑧
+ (𝐼1

𝜕2𝑣0

𝜕𝑡2
+ 𝐼2

𝜕2𝜓2

𝜕𝑡2
) = 0 (26) 

𝛿𝑤0: 𝑅
𝜕𝑁𝑟𝑧

𝜕𝑧
− 𝑁𝜃𝜃 −

1

𝑅
(𝑁𝜃𝜃𝑤0) + 𝑅

𝜕

𝜕𝑧
(𝑁𝑧𝑧

𝜕𝑤0

𝜕𝑧
) + 𝑅𝑞𝑧 − 𝐼1𝑅

2�̇�2 − 𝐼1𝑅
𝜕2𝑤0

𝜕𝑡2
= 0 (27) 

𝛿𝜓2: 𝑁𝑟𝑧 −
𝜕𝑀𝑧𝑧

𝜕𝑧
+ (𝐼2

𝜕2𝑣0

𝜕𝑡2
+ 𝐼3

𝜕2𝜓2

𝜕𝑡2
) = 0 (28) 

4.4. Governing equations of the rotating doughnut-shaped structure 

In the previous section, the dynamic equations of the structure of space cylinders were 

obtained using the principle of minimum energy. It is now possible to derive the governing 

equations for the doughnut-shaped structure as well. The procedure is the same as extracting 

the governing equations of the cylindrical structure, and the only thing to note is that there are 

changes in both α and θ directions (Fig. 5a), even if the mechanical and environmental loads 

are applied to the system uniformly. Assuming constant angular velocities (�̈� = �̈� = 0), due to 

the special geometric shape of the doughnut, changes will occur in both directions and 
𝜕

𝜕𝜃
(𝑓) 

cannot be ignored like a cylindrical structure and also 𝑈𝜃 will no longer be equal to zero. 

After applying the method similar to the previous section and considering the hypotheses 

expressed, finally (due to the avoidance of reprocessing) the nonlinear dynamic governing 

equations of the space doughnut-shaped structure that rotates around its central axis (axis x in 

Fig. 5a, also �̇� = �̈� = 0) will be formulated as the following equations, which is a set of 

nonlinear third-order partial differential equations. The related solving process in doughnut-

shaped structure is dramatically more complex than the cylindrical one, 

𝛿𝑢0:
𝜕𝑁𝛼𝛼
𝜕𝛼

+ 𝑠𝑖𝑛(𝜃)𝑄𝑟𝛼 + 2𝑐𝑜𝑠(𝜃)𝑁𝜃𝛼 + (
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))

𝜕𝑁𝜃𝛼
𝜕𝜃
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+(𝑅𝑡 + 𝑅 𝑠𝑖𝑛(𝜃)) ((𝐼1
𝜕2𝑢0

𝜕𝑡2
+ 𝐼2

𝜕2𝜓1

𝜕𝑡2
)) = 0 (29) 

𝛿𝑣0: (
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))𝑄𝑟𝜃 + 𝑐𝑜𝑠(𝜃) (𝑁𝜃𝜃 − 𝑁𝛼𝛼) + (

𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))

𝜕𝑁𝜃𝜃
𝜕𝜃

+
𝜕𝑁𝜃𝛼
𝜕𝛼

 

+(𝑅𝑡 + 𝑅 𝑠𝑖𝑛(𝜃)) (𝐼1𝑅�̈� 𝑠𝑖𝑛(𝜃) + (𝐼1
𝜕2𝑣0

𝜕𝑡2
+ 𝐼2

𝜕2𝜓2

𝜕𝑡2
)) = 0 (30) 

𝛿𝑤0: 𝑐𝑜𝑠(𝜃)𝑄𝑟𝜃 + (
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))

𝜕𝑄𝑟𝜃
𝜕𝜃

+
𝜕𝑄𝑟𝛼
𝜕𝛼

− (
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))𝑁𝜃𝜃 − 𝑠𝑖𝑛(𝜃)𝑁𝛼𝛼 

+
1

𝑅

𝜕

𝜕𝜃
((
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))𝑁𝜃𝜃

𝜕𝑁𝜃𝜃
𝜕𝜃

) −
1

𝑅
(
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))𝑁𝜃𝜃𝑤0 +

1

𝑅

𝜕

𝜕𝜃
(𝑁𝜃𝛼

𝜕𝑤0
𝜕𝛼

) 

+
1

𝑅

𝜕

𝜕𝛼
(𝑁𝜃𝛼

𝜕𝑤0
𝜕𝜃

) +
1

𝑅 (
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))

𝜕

𝜕𝛼
(𝑁𝛼𝛼

𝜕𝑤0
𝜕𝛼

) −
1

𝑅 (
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))

(𝑁𝛼𝛼𝑤0(𝑠𝑖𝑛(𝜃))
2) 

+(𝑅𝑡 + 𝑅 𝑠𝑖𝑛(𝜃)) (𝑞𝑧 − 𝐼1𝑅�̇�
2 𝑠𝑖𝑛2(𝜃) + 𝐼1

𝜕2𝑤0

𝜕𝑡2
) = 0 (31) 

𝛿𝜓1:
𝜕𝑀𝛼𝛼

𝜕𝛼
− (𝑅𝑡 + 𝑅 𝑠𝑖𝑛(𝜃))𝑄𝑟𝛼 + 2𝑐𝑜𝑠(𝜃)𝑀𝜃𝛼 + (

𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))

𝜕𝑀𝜃𝛼

𝜕𝜃
+ 𝑠𝑖𝑛(𝜃)𝑀𝑟𝛼 

+(𝑅𝑡 + 𝑅 𝑠𝑖𝑛(𝜃)) (𝐼2
𝜕2𝑢0

𝜕𝑡2
+ 𝐼3

𝜕2𝜓1

𝜕𝑡2
) = 0 (32) 

𝛿𝜓2: (
𝑅𝑡
𝑅
+ 𝑠𝑖𝑛(𝜃))𝑀𝑟𝜃 + 𝑐𝑜𝑠(𝜃) (𝑀𝜃𝜃 −𝑀𝛼𝛼) + (𝑅𝑡 + 𝑅 𝑠𝑖𝑛(𝜃))𝑄𝑟𝜃 

+(
𝑅𝑡

𝑅
+𝑠𝑖𝑛(𝜃))

𝜕𝑀𝜃𝜃

𝜕𝜃
−
𝜕𝑀𝜃𝛼

𝜕𝛼
+ (𝑅𝑡 + 𝑅 𝑠𝑖𝑛(𝜃)) (𝐼2

𝜕2𝑣0

𝜕𝑡2
+ 𝐼3

𝜕2𝜓2

𝜕𝑡2
) = 0 (33) 

The stress-moment resultants are defined in above equations as follows: 

(𝑁𝛼𝛼 , 𝑁𝛼𝜃 , 𝑁𝜃𝜃) = ∫ (𝜎𝛼𝛼 , 𝜎𝛼𝜃, 𝜎𝜃𝜃)𝑑𝑟;

ℎ
2

−
ℎ
2

(𝑄𝑟𝜃, 𝑄𝑟𝛼) = ∫ (𝜎𝑟𝜃 , 𝜎𝑟𝛼)𝑑𝑟

ℎ
2

−
ℎ
2

 

(𝑀𝛼𝛼 , 𝑀𝛼𝜃, 𝑀𝜃𝜃 , 𝑀𝑟𝜃 , 𝑀𝑟𝛼) = ∫ (𝜎𝛼𝛼 , 𝜎𝛼𝜃, 𝜎𝜃𝜃, 𝜎𝑟𝜃 , 𝜎𝑟𝛼)𝑟𝑑𝑟
ℎ

2

−
ℎ

2

 (34) 

          The result of differential equations obtained from a nonlinear analysis is very complex 

and sometimes unsolvable. There have been various methods available to facilitate the solution 
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of this model of equations. Hither we address this matter in the following based on the SAPM 

method tested and verified before [18-20, 27].  

Moreover, the following boundary conditions are considered for the torus structure, 

𝐶𝑙𝑎𝑚𝑝𝑒𝑑 (𝐶): 𝑢0 = 𝑣0 = 𝑤0 = 𝜓1 = 𝜓2 = 0    𝛼 = 0, 𝛼𝑇 (35) 

𝑆𝑖𝑚𝑝𝑙𝑦 − 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 (𝑆): 𝑢0 = 𝑣0 = 𝑤0 = 𝜓1 = 𝑀𝛼𝛼 = 0    𝛼 = 0, 𝛼𝑇 (36) 

𝐹𝑟𝑒𝑒 𝑒𝑑𝑔𝑒 (𝐹): 𝑁𝛼𝛼 = 𝑁𝛼𝜃 = 𝑄𝑟𝛼 = 𝑀𝛼𝛼 = 𝑀𝛼𝜃 = 0    𝛼 = 0, 𝛼𝑇 (37) 

5. Numerical results 

5.1. Validation 

To consider the reliability of the governing equations, it is necessary to dedicate this 

subsection. In this regard, with the help of the ABAQUS commercial program and take into 

account a typical cylindrical specimen, the results are tabulated according to Table 1. In so 

doing, we examine the following specifications for the aforesaid structure 

190 0.29; 0.01 3 1 5     E GPa; h m; rpm;R m;L m  . 

Herein, two factors, namely the von Mises stress and the maximum deflection are 

estimated to attain the results whilst there are variations in the applied load. As mentioned 

earlier, we can convert the torus geometry into a cylindrical one in order to obtain the results of 

the cylinder structure. 

Regarding the considered specifications for the cylinder structure, it is assumed that the 

torus radius (Rt) is infinite, in view of this, the  Rt = 10000 𝑚 is employed. In the following 

the cylinder radius would be R = 1 m and the angle α =
5

10000
 (rad) is utilized. Table 1 assesses 

both the aforementioned geometries, torus-shaped and cylindrical structures. It is observed the 

simulated cylinder which is originated from torus geometry gives almost similar results vis-a-

vis the common cylinder. More importantly, the difference between the results of these two 
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cylindrical geometries is in good agreement with those of ABAQUS. In this way, the 

correctness of the governing equations, as well as the solving process, can be confirmed. 

Therefore, the problem can be developed further with high confidence.  

Moreover, it can be seen that the increase of the internal pressure leads to an increase of 

the stress and the deformations. It is interesting to note that while the load reaches 0.4 MPa, the 

von Mises stress would be as same as the yield stress and thereupon, the structure will elastically 

fail and undesirably goes into the plastic region. Hence, the permissible limit for the value of 

internal pressure could be 0.4 MPa if we consider the assumed conditions on the problem. 

Table 1. Validations for results the present article with ABAQUS for various values of loading.  

𝑞𝑧 

(MPa) 

Present Present ABAQUS 

w (mm) 𝜎𝑣𝑜𝑛 (MPa) 
w (mm) 

𝜎𝑣𝑜𝑛 

(MPa) Torus Cylinder Torus Cylinder 

0.1 24.39 24.27 51.83 51.67 24.30 51.72 

1 243.9 242.8 518.3 516.7 243.0 517.2 

10 2439 2427 5183 5167 2430 5172 

It may seem that the first comparison is not enough and further verification is required. In 

response to this problem, Table 2 is prepared through [47]. It is apparent that when the radius 

of the cylinder increases, the dimensionless deflections resulted from the reference and the 

present solution are going to be in the same amounts. The large difference between deflections 

obtained by the reference and current article can be seen for lower radiuses as well as the small 

amounts of g. In general, with the help of this tabulated comparison, one can approve the present 

solution particularly the present formulation which leads to considering the main problem of 

the work without any concern. 

Table 2. Dimensionless displacement �̅� for FGM cylinder. 
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�̅� =
104𝐸2

𝑞𝑧ℎ(𝑅/ℎ)
4
𝑤 

𝑔 

𝑅/ℎ 

4 10 100 

[47] Present  [47] Present  [47] Present  

0.5 330.64 325.08 53.333 52.650 0.5213 0.5155 

1 408.20 402.36 65.503 64.861 0.6391 0.6337 

2 528.56 523.70 84.692 83.997 0.8257 0.8203 

5.2. Nonlinear vs. linear analyses 

First, it is momentous to present the differences in structural response in a nonlinear analysis 

compared with a linear one. This will aid us to know about the importance of nonlinear analysis 

for the considered structures. To obtain this, we intend to analyze cylindrical structure in both 

nonlinear and linear cases resulted in Figs. 6 and 7. In Fig. 6, one can observe the 

nondimensional deflection for the vertical axis and in the following for the horizontal axis the 

changes in the applied load. These states for Fig. 7 are respectively von Mises stress and also 

applied load. To make nondimensional deflection relation, we divide the dimensional deflection 

by the thickness. It should be noted that the loading is applied to the internal surface of the 

structure as an interior surface pressure. As it is seen by Fig. 6, when the values of deflections 

are more than those of thickness, it is significant that the analysis is linear or nonlinear and the 

linear study results are wrong for when the deflections amounts are further than the thickness 

values. On the other side, by looking at Fig. 7, one can see that while the amounts of the von 

Mises stress into the material of the cylinder are higher than 5 GPa, the linear analysis outcomes 

are going to be inaccurate. These two illustrated figures can entirely confirm the importance of 

the nonlinear analysis versus the linear one. 
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Fig. 6. Dimensionless deflection of the cylindrical structure vs. applied loading 

 

Fig. 7. von Mises stress into the cylindrical structure vs. applied loading 

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000

D
im

en
si

o
n
le

ss
 D

ef
le

ct
io

n

q (MPa)

Nonlinear Analysis

Linear Analysis

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

V
o

n
 M

is
es

 S
tr

es
s 

(G
P

a)

q (MPa)

Nonlinear Analysis

Linear Analysis

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5.3. Study of effective parameters 

As mentioned earlier, in this study two space structures with different geometric shapes, 

namely cylindrical and torus, have been investigated. The geometric shape of the torus has 

variations in both θ and α directions independently. As a result, the torus structure will not be 

like the cylindrical structure in which the change in the results is only in the θ-direction and 

constant (if the applied loads are constant). Even if the applied loads to the structure are 

constant, changes in the θ-direction must be considered for torus structures. Thus, the 

mechanical simulation of torus structures is more complex. Fig. 8 shows the deflection changes 

in the torus space structure with the following characteristics relative to the changes in the two 

variables θ and α. 

𝑅𝑑 = 50𝑚; 𝑅 = 5𝑚;𝐸 = 190𝐺𝑃𝑎; 𝜈 = 0.29; 𝑛 = 4.23𝑟𝑝𝑚; ℎ = 0.1𝑚 (38) 

Note that the changes θ and α will be in the interval 0 < 𝛼, 𝜃 < 2𝜋. A schematic diagram 

of the torus structure under analysis can be seen in Fig. 5a. The changes in the direction of θ 

starts from the maximum value of about 60 mm and the trend of changes decreases up to θ = π. 

Then from θ = π to θ = 2π the deflection (w) increases and at θ = 2π (which is actually the result 

as same for θ = π) the deformation value will again be equal to 60 mm. It is observed that for 

𝜃 =  
𝜋

2
,
3𝜋

2
 the value of w will be equal to zero. In this diagram, the initial value of angle α is 

approximately equal to zero and its final value is about 2π. Boundary conditions at these two 

edges are considered clamped. Depending on the characteristics of clamped end condition, it is 

predicted that the deflection value is equal to zero at α = 0, 2π and the maximum displacement 

occurs at the midpoint of the structure (α = π). This situation can be seen in Fig. 8. A negative 

value of w means a deformation of the structure in the opposite direction to the applied load. 

Comparing the results of the torus and cylindrical structures, it can be concluded that the 

considerations related to the design of the structure in terms of its ability to withstand external 
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loads on the torus structure should be paid more attention. The oscillation of changes in the 

torus-shaped space structure is much greater than the cylindrical one. As a result, the complexity 

of the torus structure design is greater and it also has less capacity than the cylindrical structure 

for the long-term normal life of residents 

 

Fig. 8. Deflection (w in mm) of rotating torus-shaped structure in space due to α and θ 

directions 

One of the most important issues that should be considered in the design of any instrument 

is the strength and bearing capacity of the designed structure against applied loads. The applied 

loads on the structure can be categorized as follows: 

1) The internal uniform load caused by artificial pressure is equal to the atmospheric 

pressure on the Earth's surface. This pressure is estimated at about 100 kPa. At 

this pressure, residents no longer need to wear astronauts' clothing and will be able 

to wear normal clothing. 
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2) The pressure is caused by loads from residents and tools and equipment in the 

structure to the wall. 

3) Centrifugal force due to the rotation of the structure around its central axis (to 

simulate and create gravitational acceleration equal to the acceleration of gravity 

on the Earth's surface about 9.806 
𝑚

𝑠2
). 

4) Stresses created due to environmental conditions due to the prevailing conditions 

of absolute vacuum in space, which should be considered temperature and 

humidity conditions similar to the Earth's surface for the normal life of space 

inhabitants. 

5) Other effective loads that can cause stress in the structure, although their impact 

is small. 

From the above-mentioned factors 1 to 4 are the cases whose effects have been studied. 

Also, the material of the structure has a very important effect on its resistance to applied loads. 

First, the effect of geometric factors on the strength of the structure will be investigated. Figs. 

9 and 10 show the diagrams of maximum deflection and von Mises stresses of a cylindrical 

space structure with the following characteristics against uniform thickness changes of the 

structure, which are considered uniform for two different values of temperature changes ΔT = 

0 and 50℃. 

𝑅 = 25𝑚; 𝐿 = 100𝑚;𝐸 = 190𝐺𝑃𝑎; 𝜈 = 0.29; 𝑛 = 6𝑟𝑝𝑚; 𝛼𝑇 = 1.73 × 10
−5 (39) 

It is well-known that a more rigid structure can be obtained with the increasing thickness 

of the structure. As can be seen from Figs. 9 and 10, as the thickness of the structure increases, 

the resistance to applied loads increases, and the stresses and deformations created in the 

structure decrease by an increment in the thickness of the structure. The slope of the changes at 

the beginning of the increase in thickness is very sharp and remarkable drop in stress and 
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deformation values is observed. However, from the thickness of approximately h = 0.1 m 

onwards, the slope of the changes is significantly reduced, and in practice, from a thickness of 

about h = 0.2 m onwards, the increase in thickness will no longer significantly change the 

deformation and the von Mises stress. Therefore, increasing the thickness of the structure will 

only increase the mass and consequently the cost of constructing the structure. Finding the 

appropriate thickness for a structure is a very important issue because choosing a small 

thickness will cause it to collapse against the applied loads and also choosing a high thickness 

will increase the cost of the project, which is uneconomical. So there is an ideal thickness that 

defines the boundary between the two explained conditions. Here, according to Fig 9, if a 

thickness of 5 cm is selected, the von Mises stress created in the structure will be equal to 60 

MPa for temperature condition ΔT = 0 and about 170 MPa for ΔT = 50℃, which is less than 

the yield stress of the selected material (206 MPa). Another point that can be deduced from two 

diagrams (Figs. 9 and 10), is the significant effect of temperature difference on the strength of 

the structure. It is observed that increasing the temperature difference by about 50 degrees 

Celsius (50℃) will triple the stress and about six times increase the deformation of the structure, 

which is very considerable. Therefore, the effects of temperature on determining the strength 

of the structure are much more effective than the effects of applied mechanical loads. However, 

the behavior of the structure in the two cases of considering or not considering the temperature 

difference conditions is almost the same but with a very large difference in values. According 

to the characteristics of the structure and the results of Figs. 9 and 10 as the design point (without 

considering the safety factor), a thickness of 5 cm can be considered as the base thickness of 

the design. 
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Fig. 9. Deformation variation versus thickness changes for different values of temperature 

differences 
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Fig. 10. von Mises stress variation versus thickness changes for different values of 

temperature differences 

In Figs. 9 and 10, the effect of thickness on the strength of the structure was investigated. 

In a cylindrical structure, the three parameters of the structure radius, thickness, and length 

(height) determine the geometric dimensions. The higher the R and L, the more capacity the 

structure will have to accommodate residents and the equipment they need. In Figs. 11 and 12, 

the effect of the length of the space cylinder on the amount of deformation (w) and the stress of 

von Mises (𝜎𝑣𝑜𝑛) can be observed. The effects of temperature changes within the structure are 

also considered. According to Fig. 11, it is observed that at the beginning of the changes, the 

longer the length (L), the more the deformations in the structure will be (with a relatively upward 

slope). But only after a slight increase in L, its increase will no longer affect the results 

(deformation and von Mises stress). The initial rate of increase of the deformation for the 

increase of the L parameter for the case where temperature changes are considered (ΔT = 50℃) 

will be approximately equal to the other case (ΔT = 0). The shorter the length of the structure, 

the greater the effect of boundary conditions on the two edges of the beginning and end of the 

structure, and the less deformation will occur in the structure against the applied loads. 

However, with increasing L length, the effects of boundary conditions are reduced and the 

structure is less resistant to applied loads (mechanical and temperature) and as a result, the 

deformations increase. Of course, it should be noted that in this study, the loads applied to the 

structure are considered uniform. In Fig. 12, it is noteworthy that the temperature changes equal 

to zero (ΔT = 0) with increasing L, von Mises stress initially increased and then equalized to a 

fixed number. The resulting stress will not notice a considerable change in structure (as 

described in Fig. 11). However, in the case where the temperature change is equal to 50℃, it is 

observed that with increasing L von Mises stress has a downward trend (unlike the case ΔT = 
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0) and after reaching a certain value and then the changes will be uniform and similar. It can be 

argued that when L has a small amount (structure with small size), the effects of boundary 

conditions will increase the strength of the structure and the structure will be more resistant to 

deformation. But at the same time, there are thermal stresses in the structure, which can reduce 

its strength, and according to the trend of changes in Fig. 12, it can be concluded that thermal 

stresses have a significant effect, and due to the increase in L (because of the constant 

temperature difference and consequently thermal stresses) the effects of the structure's 

resistance to boundary conditions are reduced. In general, the result of these two parameters 

(thermal effects and size) will reduce the von Mises stress in the structure. However, this trend 

continues to converge to a certain value as the two effects reach equilibrium, as mentioned 

earlier. The general result of Figs. 11 and 12 can be stated that the length of the structure of 

space cylinders (L) has no effect on the strength of the structure and only by increasing it can 

create more capacity for residents and their needs. However, with the growth of L, the costs of 

the project will also increase. 
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Fig. 11. Deflection changes due to increase of the length (L) of structure for different values 

of temperature differences 

 

Fig. 12. von Mises changes due to increase of the length (L) of structure for different values of 

temperature differences 

One of the most important issues that will make life comfortable and similar to the surface 

of the Earth in space is the existence of gravity, which has already been explained about its 

importance and how. In this section, the numerical results on the effects of simulated rotation 

and artificial gravity on the strength of the structure (in the form of two graphs of deflection 

and stress variation of the space structure) along the z-axis are investigated. The results are 

presented for different values of cylindrical structure radius and rotational angular velocity. 
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The values of R and n are calculated so that based on the selected radius R, the 

corresponding angular velocity is obtained in a way that the generated gravitational acceleration 

equal to 9.806 
𝑚

𝑠2
 (according to the equation 𝑔 =  𝑅 (

2𝜋𝑛

60
)
2
). As the values of R and n increase, 

the resulting deformation will increase. The upward trend of changes for both Figs. 13 and 14 

will be ascending, although this is more evident for stress changes. Increasing the rotational 

angular velocity and radius of the structure will also reduce its strength. Because here the 

thickness of the structure is considered constant. In other words, as the radius of the structure 

increases, the 
𝑅

ℎ
 ratio will increase (because h is assumed to be constant) and the so-called 

structure will weaken. Also, the structure angular rotation causes the creation of centrifugal 

forces and consequently, the dynamic load on the structure will be added to the static load 

(internal pressure). According to values R and n, it is observed that the changes in the rotational 

angular velocity are less than the structure radius. Therefore, the resulting dynamic centrifugal 

forces will not be very significant. Looking at Fig. 14, it can be seen that the amount of von 

Mises stress up to 𝑛2 and 𝑅2 is in the allowable range. But from now on, for 𝑛3 and 𝑅3, the von 

Mises stress generated in the structure will be approximately equal to the allowable yield stress 

point of the material, which causes insufficient uncertainty in the dimensions and design 

conditions of the structure. In the case of 𝑛4 and 𝑅4 conditions, the design is not acceptable at 

all and is rejected because 𝜎𝑣𝑜𝑛 has exceeded the allowable yield stress (206 MPa). The practical 

solution to this problem is to choose a structure with a smaller radius. If this is not possible and 

the size of the designed structure should be in the range of 𝑛4 and 𝑅4, some refines should be 

considered on other items that can be changed so that the structure can tolerate the loading 

conditions. One possible solution is to increase the thickness of the structure and examine the 

conditions analyzed in Figs. 9 and 10. In other words, by selecting the new thickness, the steps 

must be repeated for Figs. 9 and 10, and if validated, Figs. 13 and 14 should be redrawn for the 
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new conditions. If it is not possible to increase the thickness, the desired conditions can be 

achieved by reinforcing the material used in the structure or replacing it with a material capable 

of withstanding high loads. This issue will be analyzed in the continuation of the numerical 

discussion. But first, the subject that is briefly studied in Figs. 13 and 14 (the effect of angular 

rotation on the results) will be studied in more detail. 

 

Fig. 13. Effect of radius and rotational speed of structure (𝑅𝑖 and 𝑛𝑖, i =1..4) on deflection 

versus z variations 
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Fig. 14. Effect of radius and rotational speed of structure (𝑅𝑖 and 𝑛𝑖, i =1..4) on von Mises 

stress versus z variations 

Increasing the rotational speed will reduce the strength of structure, which is shown in 

Figs. 15 and 16. The vertical axis parameters 𝑤𝑠 and 𝜎𝑠 are two dimensionless parameters that 

are introduced as 𝑤𝑠 = (
𝑤𝑛

𝑤0
− 1) × 100 and 𝜎𝑠 = (

𝜎𝑛

𝜎0
− 1) × 100. This ratio of deformation 

and stress in the case where the structure is rotating around a central axis with a certain rotational 

angular velocity (equal to n revolutions per minute) to deformation and stress in the case where 

the structure is stationary and without rotation (zero index). According to Figs. 15 and 16, as 

the angular velocity increases, the values of dimensionless deformation 𝑤𝑠 and the 

dimensionless stress 𝜎𝑠 increase. The increase in 𝑤𝑠 (Fig. 15) will be more significant than the 

increase in 𝜎𝑠 (Fig. 16). The two diagrams in Figs. 15 and 16 are plotted for three states without 

temperature changes (ΔT = 0), temperature changes equal to 50℃, and finally temperature 

changes equal to 100℃. It can be seen that the changes of 𝑤𝑠 and 𝜎𝑠 with ΔT = 0 have the 
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highest growth rate, in which the rate of change has an upward trend and with increasing the 

angular velocity, the values of 𝑤𝑠 and 𝜎𝑠  will grow significantly. In designing rotating space 

structures, it is tried to prevent unwanted rotational speeds. As can be seen in Figs. 15 and 16, 

high and unwanted rotational speeds will reduce the strength of the structure and there is a risk 

of its collapse and destruction in this case. Another result is that with increasing temperature 

changes (ΔT), the changes of 𝑤𝑠 and 𝜎𝑠 are significantly reduced and no longer have a 

remarkable increase in the rate of deflection and stress of the structure as in the case of ΔT = 0. 

Therefore, it can be concluded that if temperature effects are considered in the analysis, the 

effect of centrifugal forces due to the structure rotation will be reduced. For high-temperature 

differences (here ΔT = 100℃) even the effects of structural rotation can be ignored. For 

example, by increasing the rotational velocity from n = 12 rpm to n = 24 rpm for the mode ΔT 

= 0, the dimensionless deformation of the structure will increase by about 5 times. But the same 

thing (𝑤𝑠 increment rate) is much lower for ΔT = 100℃. Increasing the angular velocity 

increases the centrifugal forces and makes residents of the space structure feel uncomfortable. 

Here (Figs. 15 and 16), an angular velocity equal to n = 6 rpm creates an artificial gravitational 

acceleration in a structure equal to the gravitational acceleration at the Earth's surface. 

Increasing the angular velocity increases the gravitational acceleration exponentially. 

Therefore, as mentioned earlier, this increase in the rotational velocity must be prevented so 

that both the strength of the structure and the normal life of the inhabitants are not endangered. 
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Fig. 15. Nondimensional deflection results versus the rotational speed changes for different 

amounts of temperature differences (ΔT) 
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Fig. 16. Nondimensional von Mises stress results versus the rotational speed changes for 

different amounts of temperature differences (ΔT) 

In this study, the effect of use of FGMs on the strength of the space structures has been 

studied in which the gravity force has been simulated by rotating the structure around its central 

axis. Recently, the use of FGMs has been tested for their effectiveness in other industries, in 

consequence, it has the potential to be used in the field of space exploration. Figs. 17 and 18 

show the effects of the use of FGMs on deformation and stresses in the cylindrical space 

structure. Two graphs are plotted for different values of the g parameter to investigate the effect 

of material property changes. It is observed that with increasing the value of g, the intensity of 

changes is initially ascending, but gradually the slope of changes decreases, and increasing the 

value of g will not affect the results. By increasing the g parameter, the amount of deformation 

and stress in the structure decreases. For example, by increasing the g-parameter from zero to 

5, the deformation of the structure decreases approximately threefold, which is about twice the 

reduction for von Mises stress. Therefore, it is concluded that the use of FGMs increases the 

strength of the structure, which is very desirable. As a result, thinner FGMs (which are also 

lighter) can be used for a space structure. Research on the use of FGMs in space structures can 

be considered by researchers in theory and practice. Another issue that is of particular 

importance for FGMs is their excellent performance against heat and high temperatures. This 

issue is very important in space structures and in order not to raise the temperature of space 

structures too much. Consequently, a heat shield is usually used to repel heat radiation from the 

sun or very high heat (in the shape of plasma) when the spacecraft enters the Earth's atmosphere 

(due to friction between the molecules of the atmosphere and the spacecraft body at very high 

speed). Therefore, the use of FGMs will not only increase the strength of the structure but also 

cause the repulsion of high temperatures in outer space. 
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Fig. 17. Deformation results for different values of FGMs parameters (g) 

 

Fig. 18. von Mises stress results for different values of FGMs parameters (g) 
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As shown in Figs. 17 and 18, the use of FGM in the structure increases its resistance to 

applied mechanical loads. The results obtained for the deformation of the structure are now 

considered in Fig. 19 for increasing the g-parameter for conditions without temperature changes 

(ΔT = 0) and considering temperature changes equal to ΔT = 50℃. As can be expected, as the 

value of g increases, the deformation of the structure decreases and converges to a constant 

value (the result of which is also obtained in Figs. 17 and 18). It is observed that at the beginning 

of increasing the g parameter, the slope of the changes w is high and a very sharp drop can be 

observed. Therefore, selecting the value of g in the interval 0 < 𝑔 < 5 will cause the greatest 

changes in the mechanical response of the structure made of FGMs to the applied loads. A very 

important point according to Fig. 19 is the effect of thermal loads on the obtained results. 

It is observed that in conditions where the temperature difference is equal to ΔT = 50℃, 

the decrease in the amount of deformation w in the range of 0 < 𝑔 < 5  is much greater than in 

the case where the amount of temperature difference is zero (ΔT = 0). In other words, the use 

of FGMs will expel most of the adverse effects of temperature changes. To better understand 

the above result, Fig. 20 is drawn with the same conditions as in Fig. 19, except that the vertical 

axis is not a deformation of the structure and is in fact a dimensionless deformation as 𝑤𝑓. The 

value of 𝑤𝑓 indicates the ratio of changes in deflection for different values of the parameter g 

to the rise in the case where g = 0 (or in other words, the substance is isotropic and completely 

obeys the metal properties). 

According to Fig. 20, it is observed that for ΔT = 50℃, the use of FGMs will reduce the 

deformation in the structure by about 70%. The mentioned result for the case without 

temperature changes (ΔT = 0) is only about 35% decrease. Therefore, the use of FGMs for the 

purpose of constructing space structures generally have beneficial results against the 

temperature effects. 
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Fig. 19. Variations of deflection (w) versus parameter g in the FGM space structure for two 

types of temperature differences 
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Fig. 20. Variations of dimensionless deflection (𝑤𝑓) versus parameter g in the FGM space 

structure for two types of temperature differences 

5.4. Different boundary conditions 

In order to determine the behavior of different boundary conditions, Fig. 21 is plotted. In this 

three-dimensional presentation of results, one can see the nondimensional deflections for the 

vertical axis, dimensionless length for the longitudinal axis, and lateral axis is dedicated with 

the circumferential angle of the cylinder. To consider various boundary conditions, here 

clamped-clamped (C-C) and clamped-free (C-F) ones are investigated for the cylinder structure. 

First of all, as can be seen, deflections for all the circumferential nodes of the cylinder are 

obtained in the same values. Moreover, it is interesting to know that the maximum deflections 

are not related to the center of the length (for C-C) and one can observe two peaks in a 

symmetrical form. This is similar for both cases of boundaries. This may be because of the kind 

of loading. If we loaded the cylinder structure by a transverse line loading acted on the outer 

surface, the maximum deflections would be at the free edge (for C-F) and center of the length 

(for C-C). But as here the loading is applied as circumferential internal pressure, the case is 

different. Generally, this figure can present the fact that while the loading is an internal pressure 

acting in 360 degrees of the internal surface, the boundary conditions are less important. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 21. Variations of dimensionless deflection versus dimensionless length and cylinder 

rotation angle in the FGM space structure for two types of boundary conditions 

6. Conclusions and remarks 

Mechanical simulation of cylindrical and torus-shaped structures with regard to normal 

living conditions in space has been discussed in this study (which should be given more 

attention in the future). The effect of artificial gravity acceleration on the mechanical strength 

of space structures, which are generally torus and cylindrical in terms of geometric shape, is a 

category that has been considered. In addition to the mechanical loads due to internal pressure, 

the temperature difference conditions inside and outside the structure (ΔT) are also considered 

in the analysis. The governing equations of the torus and cylindrical structures, which are 

intended to house individuals in outer space, have been derived based on the first-order shear 

deformation shell theory. The resulting governing equations (which are a set of partial 

differential equations) are then solved by the efficient SAPM solution method, and the 
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displacement field unknowns are obtained as functions of the problem variables. Some 

important results obtained from this study can be categorized as follows: 

 Choosing the optimal and appropriate thickness of a rotating space structure that 

provides the required strength to maintain the integrity of the structure is the first 

important step for design. Deformation and stresses due to temperature differences 

(ΔT) strongly affect the results. 

 The length of the cylindrical space structure (or 𝑅𝑑 in torus structure), which 

rotates around its central axis, does not play an important role in determining the 

strength of the structure and only increases the internal capacity and, 

consequently, increases the cost of construction. 

 The space structure according to its radius must rotate at a certain rotational speed 

to achieve the desired gravitational acceleration (equal to the gravitational 

acceleration on the Earth's surface) in the structure artificially. The greater the 

radius of rotation and the speed of rotation, the lower the strength of the structure 

to applied loads (mechanical and environmental loadings). 

 Enhancement of the rotational speed increases the percentage of dimensionless 

deformation and stress 𝑤𝑠 and 𝜎𝑠 created in the structure. However, the effect of 

this category on the results decreases with the development of the temperature 

difference (ΔT). 

 The use of FG materials in space structures increases its strength against applied 

mechanical and especially thermal loads. 
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