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Abstract—In this paper we consider existence and uniqueness of the three-dimensional static
boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elas-
ticity. We call the strain-gradient elasticity model gradient-incomplete such model where the con-
sidered strain energy density depends on displacements and only on some specific partial derivatives
of displacements of first- and second-order. Such models appear as a result of homogenization of
pantographic beam lattices and in some physical models. Using anisotropic Sobolev spaces we
analyze the mathematical properties of weak solutions. Null-energy solutions are discussed.
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1. INTRODUCTION

Recent progress in technologies including additive ones results in appearance of new classes of
materials called metamaterials or architectured materials. Among these it is worth to mention so-called
pantographic beam lattices discussed in [11, 12]. Such material consists of few families of long elastic
beams connected through relatively small and soft pivots. The related continual description of such
materials results in a specific class of strain-gradient materials that is materials with a strain energy
density dependent on first and second gradients of displacements. The general framework of the strain-
gradient elasticity was established in the seminal papers by Toupin and Mindlin [26, 27, 33]. It is worth
also to mention that an origin of such models can be found in earlier works of the continuum mechanics
founders, see [3, 9, 10, 23, 24].

Following the Toupin–Mindlin approach a strain energy density has the form

W = W(e,k), (1)

where

e = 1
2(∇u+ (∇u)T ), k = ∇∇u

is the strain tensor and the second gradient of u, u = (u1, u2, u3) is the vector of displacements, and ∇
is the three-dimensional (3D) nabla-operator [15, 32].

In the framework of infinitesimal deformations W is a quadratic form of e and k

W = 1
2e : C : e+ 1

2k
...D

...k, (2)
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where C and D are forth- and six-order tensors of elastic moduli, respectively. Here “:” and “
...” stand

for scalar (inner) products in the spaces of second- and third-order tensors, respectively. The standard
assumption is that C and D to be positive definite

e : C : e ≥ C1 e : e, k
...D

...k ≥ C2 k
...k (3)

with C1 > 0, C2 > 0. This assumption leads to the existence and uniqueness of weak solutions of the
corresponding boundary-value problems [20, 22].

The homogenization of pantographic lattices leads to a strain energy density given by (2) but without
positive definiteness. Here we have only

k
...D

...k ≥ 0. (4)

As a result, the standard definition of coercitivity is violated and should be modified properly. In order
to prove the existence and uniqueness of weak solutions for in-plane and out-of-plane deformations of
pantographic sheets in [16, 17] the anisotropic Sobolev spaces were used. This class of functional spaces
was introduced by Sergey Nikolskii [28], see also [4, 5, 34].

The aim of this paper is to extend the results of [16, 17] to three-dimensional pantographic beam
lattices with perfect pivots which undergo infinitesimal deformations. The paper is organized as follows.
First, we introduce a strain energy density in Section 2. In Section 3 we discuss null-energy solutions.
This class of deformations includes the rigid-body deformations and should be avoided in order to get
the uniqueness of solutions. Finally, in Section 4 we formulate and prove the theorems of uniqueness
and existence of weak solutions. Here we use the anisotropic Sobolev spaces as an energy functional
space.

2. STRAIN ENERGY DENSITY
Following [6, 16, 17, 30, 31] let us briefly introduce the strain energy density of a three-dimensional

pantographic lattice. It consists of three orthogonal families of elastic beams connected through small
soft pivots, see Fig. 1. In what follows we neglect bending and torsional deformations of the pivots. Such
pivots we call perfect ones. In addition we neglect torsional deformations of beams.
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Figure 1. Three-dimensional pantographic beam lattice.

Using an approach similar to [17] we come to a strain energy density in the following form

W =
K

(1)
e

2
u21,1 +

K
(2)
e

2
u22,2 +

K
(3)
e

2
u23,3

+
K

(1)
b

2

(

u22,11 + u23,11
)

+
K

(2)
b

2

(

u21,22 + u23,22
)

+
K

(3)
b

2

(

u21,33 + u22,33
)

, (5)
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where the stiffness parameters K
(i)
e > 0 and K

(i)
b > 0, u1, u2, u3 are Cartesian components of u,

i = 1, 2, 3, are related to the extensional and bending stiffnesses of the beams at the interpivot scale,
respectively. Hereinafter indices after comma denote derivatives with respect to xi, i = 1, 2, 3, where
xi are Cartesian coordinates. So, for example, u1,1 is the partial derivative of u1 with respect to x1,

u1,22 =
∂2u1

∂x2
2

, etc. Eq. (5) is a straightforward 3D generalization of 2D models of pantographic sheets

[17].
Let us underline some similarities of (5) with other physical models known in the literature. Eq. (5) is

a 3D analog of a strain energy of an extensible beams undergoing in-plane deformations

W = 1
2Ke(u

′

1)
2 + 1

2Kb(u
′′

2)
2, (6)

where Ke > 0 and Kb > 0 are the extensional and bending stiffnesses, u1 = u1(x) and u2 = u2(x) are
longitudinal and transverse displacements, respectively, x is the coordinate along the beam axis, and the
prime stands for derivative with respect to x.

Another example is the strain energy of small deformations of the smectics A given by [7, 19, 29]

W = 1
2B(u,3)

2 + 1
2K (u,11 + u,22)

2
, (7)

where B and K are elastic moduli describing the longitudinal stiffness along x3-direction and the
bending stiffness of the smectic layers, respectively. Here the displacement vector has the simple form
u = (0, 0, u(x1, x2, x3).

Obviously, Eqs. (6) and (7) give 1D and 3D scalar examples of (5). Other physical models with
non-symmetric appearance of second-order derivatives are discussed in [13]. We call the model based
on (5) gradient-incomplete as W does not contain all second-order derivatives. Indeed, for example, W
contains only u1,1, u1,22, and u1,22 while u1,11 and mixed derivatives are absent.

3. NULL-ENERGY SOLUTIONS

Let us recall that for classic linear elasticity there is an energy null-space which reduces to the so-
called infinitesimal rigid-body deformations. The energy null-space is a set of admissible functions
for which the given strain energy density is vanishing. The analysis of these null-energy solutions is
important element of the analysis of existence and uniqueness of weak solutions, see [8, 14, 18]. Let us
find null-energy solutions considering solutions of

W = 0. (8)

In classic linear elasticity it is known that such solutions are so-called rigid-body deformations given by
[14]

u = a+ b× x, (9)

where a and b are constant vectors, x = (x1, x2, x3) is the position vector, and × is the cross-product.
So in the linear elasticity the null-energy solutions constitute a six-dimensional subspace.

For the constitutive equation (5) we also have finite-dimensional null-space. Indeed, considering (8)
we get the solutions

u1 =a1yz + b1z + c1z + d1, (10)

u2 =a2xz + b1x+ c2z + d2, (11)

u3 =a3xy + b3x+ c3y + d3, (12)

where ai, bi, ci, and di, i = 1, 2, 3, are constants. So for the considered model we again have finite-
dimensional null-energy subspace. Unlike (9) here we have 12 additional parameters so the null-space
is 12-dimensional. Obviously, (10)–(12) includes rigid-body deformations (9). Thus, the gradient-
incompleteness of (5) results in a number of solutions with zero energy.D
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4. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

Let us consider an elastic solid body B with the strain energy density (5). B occupies a bounded
volume V with smooth enough boundary S = ∂V , see, e.g., [2, 21, 25] for the detailed requirements to
S. Equilibrium conditions of B follow from the virtual principle

δ

∫

V

W dV − δA = 0, (13)

where δA is a work of external loads, see [1, 3] and references therein for virtual work principle in the
framework of the higher gradient elasticity models.

For simplicity we consider δA as in the case of linear elasticity [8, 14, 18]

δA =

∫

V

f · δu dV +

∫

S1

t · δu dS, (14)

where f and t are given vector functions of body and surface forces, respectively, “·” stands for scalar
product of vectors, and S1 ⊂ S is a part of S where a traction t is given.

In the following we consider dimensionless form of W and other introduced quantities. Moreover,
without loss of generality we use the following dimensionless form of W

2W = u21,1 + u22,2 + u23,3 + u22,11 + u23,11 + u21,22 + u23,22 + u21,33 + u22,33. (15)

Let us consider the quadratic functional N(u) given by

N(u) =

∫

V

2W dV. (16)

Obviously, N(u) constitutes a seminorm, as N(u) = 0 results in (10)–(12).

Let us recall the definitions of norms and seminorms in the anisotropic Sobolev spaces H1 = H
(1,2,2)
2 ,

H2 = H
(2,1,2)
2 , and H3 = H

(2,2,1)
2 . Here we have [28, 34]

‖u‖21 ≡‖u‖2
H

(1,2,2)
2

=

∫

V

(

u2 + u2,1 + u2,22 + u2,33
)

dV,

‖u‖22 ≡‖u‖2
H

(2,1,2)
2

=

∫

V

(

u2 + u2,2 + u2,11 + u2,33
)

dV,

‖u‖23 ≡‖u‖2
H

(2,2,1)
2

=

∫

V

(

u2 + u2,3 + u2,22 + u2,11
)

dV,

|u|21 ≡|u|2
H

(1,2,2)
2

=

∫

V

(

u2,1 + u2,22 + u2,33
)

dV,

|u|22 ≡|u|2
H

(2,1,2)
2

=

∫

V

(

u2,2 + u2,11 + u2,33
)

dV,

|u|23 ≡|u|2
H

(2,2,1)
2

=

∫

V

(

u2,3 + u2,22 + u2,11
)

dV.

Obviously, with these definitions we have

N(u) = |u1|
2
1 + |u2|

2
2 + |u3|

2
3. (17)

In other words, N(u) is a sum of squared seminorms in the corresponding Sobolev’s spaces.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The total energy functional is given by

E(u) =
1

2
N(u)−A(u), A(u) =

∫

V

f · u dV +

∫

S1

t · u dS. (18)

In what follows we introduce a weak solution as a minimizer of E(u) on the given energy space H . First,
let us consider Dirichlet-type boundary conditions.

4.1. Dirichlet-type Boundary Conditions.

Let us consider the case when S is clamped

u
∣

∣

S
= 0. (19)

Boundary condition (19) prevents the appearance of null-energy solutions (10)–(12). Thus, N(u) is a
squared norm. We introduce the energy space H0 as follows

Definition 1. The space H0 is the completion with respect to the norm

‖u‖2H = N(u)

of a set of vector functions u that are continuously differentiable on V and satisfy (19).

There exists the inner product in H0

(u,v)H =

∫

V

(u1,1v1,1 + u2,2v2,2 + u3,3v3,3

+ u2,11v2,11 + u3,11v3,11 + u1,22v1,22

+u3,22v3,22 + u1,33v1,33 + u2,33v2,33) dV. (20)

So H0 is a Hilbert space. Moreover, here

H0 =
◦

H
(1,2,2)
2 (V )⊕

◦

H
(2,1,2)
2 (V )⊕

◦

H
(2,2,1)
2 (V ),

where
◦

H ℓ
2(V ) is the completion with the norm ‖ · ‖Hℓ

2(V ) od a set of functions that satisfy (19), and ℓ is a

multi-index, ℓ = (1, 2, 2), (2, 1, 2), (2, 2, 1).
Now we introduce a weak (generalized) solution.

Definition 2. The element u ∈ H0 is a weak of the equilibrium problem for the body B with
external loads f if it minimizes E(u) on the energy space H0.

Calculating the first variation of E(u) we conclude that a weak solution satisfies the equation

(u,v)H −

∫

V

f · v dV = 0, ∀ v ∈ H0. (21)

For simplicity we assume that f ∈ L2(V ). Then we have

Theorem 1. A weak solution u ∈ H0 to equation (23) exists and unique.

Proof. The proof mimics one given in [16, 17] and we omit it for brevity.
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4.2. Mixed Boundary Conditions

Let us now relax the kinematic constraints assuming that only a part S2 ⊂ S is clamped while on the
rest S1 = S\S2 a traction t is given:

u
∣

∣

S2
= 0. (22)

For simplicity we assume that t ∈ L2(S2).
Unlike linear elasticity where (22) prevents rigid-body deformations, this is not the case in the

framework of the gradient-incomplete strain-gradient elasticity, see few examples in [17]. Following
[16, 17] we assume that assumed boundary conditions are non-singular. In other words we apply such
kinematical constraints (22) that are sufficient for absence of null-energy deformations. In this case
we define again a weak solution u ∈ H as a minimizer of the total energy functional E(u). Here the
energy space H the completion of a set of differentiable functions, with respect to the norm ‖ · ‖H , that

satisfy (22). H is a Hilbert space with inner product (20). Moreover, H = H
(1,2,2)
2 (V )⊕H

(2,1,2)
2 (V )⊕

H
(2,2,1)
2 (V ). Similarly to [14, 17] we can prove

Theorem 2. Suppose the boundary conditions are non-singular. There exists a weak solution
u ∈ H to the equilibrium problem that minimizes the total energy functional E(u) in H and
satisfies the integral equation

(u,v)H −

∫

V

f · v dV −

∫

S1

t · v dS = 0, ∀ v ∈ H. (23)

The weak solution is unique.

5. CONCLUSIONS

Following [16, 17] we discussed the existence and uniqueness of weak solutions in the framework
of the spatial gradient-incomplete strain-gradient elasticity. To this end we used the anisotropic
Sobolev spaces. In this paper we considered non-singular boundary conditions that prevent null-energy
solutions. The case of singular boundary conditions and free bodies can be also studied as in [14]. Clearly,
in this case a weak solution is unique up to arbitrary rigid-body deformations given by (10)–(12) whereas
external loadings including hyper stresses should be orthogonal to these deformations.
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D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl



