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Abstract. Deep Neural Networks (DNN) are state of the art algorithms for image 

classification. Although significant achievements and perspectives, deep neural 

networks and accompanying learning algorithms have some important challenges 

to tackle. However, it appears that it is relatively easy to attack and fool with 

well-designed input samples called adversarial examples. Adversarial perturba-

tions are unnoticeable for humans. Such attacks are a severe threat to the devel-

opment of these systems in critical applications, such as medical or military sys-

tems. Hence, it is necessary to develop methods of counteracting these attacks. 

These methods are called defense strategies and aim at increasing the neural mod-

el's robustness against adversarial attacks. In this paper, we reviewed the recent 

findings in adversarial attacks and defense strategies. We also analyzed the ef-

fects of attacks and defense strategies applied, using the local and global analyz-

ing methods from the family of explainable artificial intelligence.   

Keywords: Deep Neural Networks, Explainable Artificial Intelligence, Adver-

sarial Attacks, Convolutional Neural Networks.  

1  Introduction 

These days deep learning is the fastest-growing field in the field of image analysis and 

classification. Deep Neural Networks (DNN) are considered state of the art algorithms 

for image classification, [1], [2]. Despite great achievements and perspectives, deep 

neural networks and accompanying learning algorithms have some crucial challenges 

to tackle [3], [4]. DNNs are data-hungry [5], [6], it is challenging to select the optimal 

network structure [7], [8], and to understand neural networks reasoning process [9]. 

Another essential concern is the subject of attacks on neural networks. Regarding image 

classification, neural model designing is based on learning a given structure from data 

and then analyzing the input-output relation, on the pixel-level. This makes it relatively 

easy to cause such a system to perform incorrectly by changing these values so that 

these changes are not noticeable to the system user. Such fragile black-box deep neural 

network models are used to solve very sensitive and critical tasks. Modification of the 

input pixel that causes system malfunction is called an adversarial attack. The adver-

sarial attack is carefully selected and is a severe threat to the development of these 

systems in critical-safety applications, such as medicine, military, and even urban scene 
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recognition used in autonomous vehicles. To ensure the safety of this technology and 

make it widely usable, it is necessary to develop methods of detecting, understanding, 

and counteracting these attacks.  

To address those challenges, we employ the methods of Explainable Artificial Intel-

ligence (XAI) which have a wide range of tools that can be used to tackle mentioned 

problems, in particular in detecting and identifying the types of attacks. Knowing the 

kind of attack, we can more easily counteract it. Following [10] we review and explain 

the recent findings in adversarial attacks, including white-box and black-box attacks, 

targeted and non-targeted attacks as well as one-time and iterative attacks. In the case 

study, we test the white-box Fast Gradient Sign Method (FGSM) and black box One-

pixel attack.  

We applied XAI local and global explanations methods to analyze the attacks. The 

local analysis aims to explain a single prediction of a model, e.g. one input image. In 

contrast, the global one tries to explain how the whole model works in general, i.e. it 

shows how a particular machine learning model analyzes a given set of data. In the 

paper, we have shown how selected attacks affect the process of classification of indi-

vidual images, and how this process looks globally, i.e. we try to conduct a qualitative 

analysis of the features of data sets that are more and less vulnerable to attacks. We use 

Layer-wise Relevance Propagation (LRP) method for the local analysis and XAI sig-

natures supported by Uniform Manifold Approximation and Projection (UMAP) for a 

global one. Finally, we describe the most popular methods that aim at increasing neural 

model’s robustness against adversarial attacks. We implement an Adversarial retraining 

approach to investigate the DNN robustifying process.  

2 Adversarial attacks and defenses 

Most often, the adversarial attacks are targeted against AI-based computer vision sys-

tems. Those systems are mainly based on deep neural models trained on raw data, which 

capture the input-output relations, on the pixel-level. It turns out that it is relatively easy 

to fool such systems to perform incorrectly, just by carefully modifying those pixels in 

a way that these changes are not visible to the unaided eye of the average system user. 

One of the reasons is that even if the network classifies input data correctly, it does not 

understand its meaning in the same way as a human. Therefore, classification is not 

always made based on the relevant premises. A common situation is when the network 

has correctly classified a given input but based on inappropriate premises. Such model 

behavior cannot be regarded as correct. Szegedy et al. [11] showed that an unnoticeable 

change of pixels in the input image can completely change the label assigned to it ear-

lier. The modified images have been called adversarial examples, and the process that 

aims to mislead the neural network has been called an adversarial attack. In [12], it was 

demonstrated that the system could recognize with 99.99% accuracy objects in the input 

image. Other examples of adversarial attacks are also widely reported, e.g. failing to 

acknowledge the STOP sign by traffic sign recognition system [13], failing to recognize 

pedestrians by the scene segmentation system [14], changing medical diagnosis [15].  D
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2.1 Adversarial attacks 

Following [10], we present taxonomy related to adversarial attacks. In terms of the at-

tacker's knowledge of the system, attacks might be divided into a white-box and a 

black-box. In terms of the aim of the attack on targeted and untargeted.  

Adversary’s Knowledge. 

White-box attacks. In this type of attack, attackers know all elements related to a sys-

tem, i.e. training set, model’s architecture, hyper-parameters, number of layers, activa-

tions, and model weights. One of the methods is FGSM (Fast Gradient Sign Method) 

[10]. The idea is to modify the input e.g. image, in such a way that added perturbation 

is consistent with the gradient sign obtained in the process of backpropagation. In the 

most common case of images, the generated perturbation might look similar to a color 

noise. The magnitude of the perturbation can be weighted by the gain factor. When it 

is small, the change in the output image is not noticeable. As it increases, the change is 

more and more visible. Therefore, during the generation, an iterative approach is 

adopted to allow for a gradual increase in perturbation until the label of a class recog-

nized by the model changes. The effect of the one-time version of the FGSM algorithm 

is shown in Fig. 1. In this type of attack, the number of modified pixels is limited only 

to the image size. 

Black-box attacks. On the contrary to white-box attacks, here attackers have no 

knowledge about attacked neural networks, except the outputs of the neural model. An 

example of such an attack is the so-called one-pixel attack [10]. It consists of changing 

one pixel of an input image to obtain another DNN prediction. The generation of ad-

versarial examples is realized by solving a constrained optimization problem. The task 

is to find the optimal perturbation, namely to change just one pixel, causing a change 

of class by DNN. In this method, the differential evolution algorithm is used. It consists 

of comparing successive, generated children (in the form of pixels) with corresponding 

parents in each iteration, to check if the value of the class activation function has been 

increased. The effect of the one-pixel attack algorithm is shown in Fig. 1. 

Adversarial Specificity. 

Targeted attacks. These involve confusing the neural network by changing the input 

image in such a way that the input image is assigned a specific, defined class [10]. This 

type of attack is usually used in the problem of multi-class classification, and it aims to 

ensure that all attacked input images are classified as one class. In the case of a two-

class classification task, a targeted attack becomes a non-targeted attack. 

Non-targeted attacks. The goal of undirected attacks is to change the input in such a 

way that the predicted class also changes [10]. A real-world example of a non-targeted 

attack is placing the sticker on a road STOP that will make an autonomous car recognize 
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it as another sign. The generation of adverse examples for this type of attack usually 

takes place twofold. The first one consists of a series of targeted attacks and then se-

lecting the least modified image. The second consists in minimizing the probability of 

obtaining the correct label.  

Fig. 1. Illustration of the FGSM and one-pixel attacks. 

Attack Frequency. One-time attacks take a single trial to generate adversarial examples 

[10]. On the contrary, Iterative attacks take multiple trials to produce optimal adversar-

ial examples. The latter have higher efficiency, but due to the large computation effort, 

they can rarely be used in real-time applications.  

Adversarial Falsification. This category distinguishes attacks between False positives 

and False-negatives. The former generate hostile examples that are misclassified as 

positive ones, while the latter generates adverse examples that are misclassified as neg-

ative ones (Type I and Type II errors, respectively). 

2.2 Countermeasures for adversarial attacks 

Quick emergence of attacks, begun a new category of methods appear: adversarial de-

fense strategies. These strategies can be divided into two categories: reactive and pro-

active. Reactive defenses focus on the detection of adversarial examples after the deep 

neural network has already been built, while the proactive strategies aim to increase the 

resistance (robustness) of the network to attacks by proper design of the training process 

or model’s architecture. 
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Reactive. Reactive methods are used to defend an already trained neural network. One 

of the main methods is to prepare an additional model to check if an attack modified 

the input image. The second approach uses denoising autoencoder acting as a dedicated 

filter that removes adversarial perturbations from the input. 

Adversarial detecting. In this method, an auxiliary binary classifier is designed to rec-

ognize whether the input image is an adversarial example. This model uses the solutions 

provided by probability theories, such as Bayes's theorem [16]. Bayesian networks use 

a set of neural networks, in which each network is described by a parameter vector w 

(weights and bias). This set enables finding the probability density for the entire weights 

space, instead of choosing a set of weights describing a single neural network. The final 

output from the Bayesian network is obtained by calculating the average of the outputs 

from all the created networks. It has been proven that the uncertainty obtained by the 

Bayesian network classifier is higher in the case of adverse examples than in the case 

of clean images, thus making it possible to identify such examples even before they are 

fed into the neural network. There are many other approaches in this category, details 

can be found in [10].  

Input reconstruction. The method employs an autoencoder acting as a dedicated filter, 

to eliminate from the adverse example, intentionally introduced perturbations. After 

such input image transformation, it no longer significantly affects the prediction of the 

network. One of the tools allowing to recreate a perturbation-free image is Denoising 

autoencoder or its improved version - Deep Contractive Autoencoder [17]. The objec-

tive function of this network is to minimize the difference between the input image and 

the target one. As a result of learning, its outputs become the reconstructed version of 

the input. Because the middle layer has fewer neurons than the input and output layers, 

hence the latent representation is smaller, the network learns the most important fea-

tures of the image so that the output image is as close as possible to the input image. 

Because of that AE is often used for dimensionality or noise reduction. In this case, it 

ensures that the network through training will learn the input features that are not related 

to perturbations, so that the original input image will be correctly restored.  

Proactive. Proactive strategies involve training the neural network to increase its ro-

bustness against adverse attacks. The main defense strategy is to train the network using 

adversarial examples to increase its robustness. Another approach is network distilla-

tion which consists of creating several neural networks and transferring knowledge be-

tween them so that the final network becomes less sensitive to small changes in the 

image.  

Adversarial (Re)training. The method is relatively simple yet effective. It is based on 

complementing the training set with adverse examples, and then, retraining the net-

work. Network retraining consists in transferring the weights of the previously trained 

network and starting the training with such initial weights. By adding a set with adverse 

input to the training set, the network is forced to recognize also adverse examples as 
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belonging to the correct class [18]. The robustness of the network against a given type 

of attack depends on whether it was included in the training stage.  

Knowledge Distillation. Knowledge distillation [19] method was developed to reduce 

the size of the network by transferring knowledge from so-called teacher (larger) net-

work to a student (smaller) one while maintaining its accuracy. In application to defense 

against adverse examples, this method aims to reduce the sensitivity of the network to 

small input perturbations.  

Probability obtained at the output of a teacher network by using the softmax function 

becomes the soft-labels for the inputs of a student network. The method takes advantage 

of the fact that the knowledge acquired by the deep neural network during training is 

contained not only in the weights and thresholds but also in the probability vectors 

generated by the network. The teacher network uses the vector of similar probabilities 

as a set of new labels for images from the original set. In this vector, the information 

about the similarity between the classes is stored. The student network is trained on an 

original training set, but with labels generated by the teacher network. The student net-

work achieves a similar predictive efficiency as the original model but provides lower 

calculation costs. By training the network on labels with coded similarities between the 

classes, it prevents overtraining. This also results in a better generalization of the net-

work around the training points, hence the network becomes more robust to small image 

disturbances.  

For the descriptions of other approaches to counteract the attacks, like: Classifier 

robustifying, Network verification, Ensembling defenses we refer the readers to [10]. 

Unfortunately, all defense strategies make the network robust only to a certain extent 

and to specific types of attacks. Additionally, these strategies do not work on new at-

tacks. Moreover, it is unknown what type of attack will be used against a given neural 

network, making it extremely difficult to choose the right strategy [20].  

3 XAI methods of inspecting adversarial attacks 

Explainable Artificial Intelligence is a field of artificial intelligence that focuses on re-

search and development of tools that allow the user to understand the decisions made 

by complex black-box ML models. With such tools, the user can better understand the 

premises underlying the model's decisions by trusting their credibility and accepting 

them. In case when XAI analyses indicate that the inference process is not in line with 

reality, the AI system can be improved, which contributes to the development of these 

models. In addition, recent papers report that XAI allows the detection and elimination 

of data biases that affect model performance [9]. Understanding how different attacks 

affect the model allows one to choose the right ways to increase its robustness. XAI 

methods can be divided into local and global explanations. Local analysis tries to ex-

plain a single prediction of a model, while the global approach shows the global model 

behavior. In this paper, we applied XAI methods to the analysis of the attacks and their 

influence on the neural model's predictions. D
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3.1 Local explanations  

There are several approaches realizing the idea of local explanations SHAP [21], LRP 

[22], LIME [23], Anchors [24]. In the paper, we decided to apply a method that allows 

generating visual explanation in the form of attention maps. In case of problems related 

to image analysis, the attention map visualizes how important each pixel in the input 

image is for the final DNN prediction. There is a wide range of approaches under this 

type of analysis e.g. Gradient SmoothGrad [25], DeConvNet [26], Guided Backpropa-

gation [27], Input*Gradient [28]. After initial testing, for further analysis, we employed 

the Layer-wise Relevance Propagation method (LRP), more precisely its variant LRP 

present A flat. The LRP explains a neural network decision by decomposing the output 

of the model (prediction) at the pixel-level. The goal is to find the relevance scores of 

each input image pixels to a corresponding prediction, positive or negative. Those rel-
evance sores might be visualized in the form of heatmaps. Simplifying the matter, heat 

maps indicate the pixels (areas) of the input image that affect the corresponding output 

value of the model most and least. A detailed description of the method can be found 

e.g. in [29]. The effect of employing this method to analysis of Convolution DNN 

model applied to image classification problem is shown in Fig. 2. In the upper row, one 

can find original images, and in the lower row the corresponding heatmaps. The red 

color indicates the pixels that most strongly correspond to the model output, while the 

blue color indicates the pixels that have the least influence on the model output. Such a 

visual analysis enables the end-user, or the developer of the model/system, to verify its 

correctness.  

 

 

Fig. 2. Examples of attention maps (lower) generated by LRP present A flat. 

 

In the case of the first image, we do not doubt that the model relies on rational premises 

when it generates the decision (dog’s shape). In the next case, the situation is not so 

obvious anymore. The model takes into account the cat, but it focuses mostly on the 

text placed on the picture. Such behavior of the model, despite its correct classification, 

makes the trustworthiness of the model questionable. Analyzing the heatmaps of the 
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third image, we can clearly see that the network pays attention only to the bars behind 

which the dog is placed. The reason for this obviously incorrect reasoning of the model 

is the fact that in the database used to learn the model [30], in the pictures with bars, 

there were mostly dogs, which suggested to the network that as there are bars in the 

picture, therefore the result of classification should be a ‘dog’. 

3.2 Global explanations  

XAI tools from the family of Global analyzers, are used for analyzing both ML models 

and datasets. Most of them are semi-supervised ones. They enable to analyze the ML 

models decisions learned from the large datasets, as well as to find the bias in the da-

taset. One of the most important method of global explanations is Spectral Relevance 

Analysis (SpRAy) [31]. It takes advantage of the results of local analysis, namely the 

LRP attention maps, to extract knowledge about the overall behavior of the analyzed 

model, in the form of clusters representing data-driven model features, from the global 

perspective. Authors of [9] proposed improved version of SpRAy, in which they em-

ploy both original images and heatmaps for analysis, which has significantly improved 

the method's efficiency in the problem of identifying the data bias. In this paper, as a 

global analyzer we exploit another effective method based on XAI signatures [32]. We 

approached the problem with LRP signatures instead of SHAP ones and applied the 

LRP on the last layer instead of the penultimate layer. Next, we reduced its dimension-

ality with algorithm Uniform Manifold Approximation and Projection [33]. UMAP is 

a manifold learning technique for dimension reduction of large-scale multidimensional 

data. It utilizes mathematical foundations related to Laplacian eigenmaps and Riemann-

ian geometry.  

4 Case study 

4.1 Case study description 

Our research aimed to analyze the influence of two representative types of attacks, i.e. 

FGSM and one-pixel attack on the performance of the attacked deep, convolutional 

neural network. For this purpose, we took advantage of local and global tools from the 

XAI family. We analyzed whether, normally unnoticed by the naked eye, the attack can 

be detected using appropriate XAI tools. In the case of individual images, a local anal-

ysis approach using heatmaps, namely the LRP present A flat method, was used for this 

purpose. To demonstrate the impact of these attacks convincingly and to be able to 

conclude, a database containing well-known figures, namely cats and dogs, was used. 

Fig. 3 contains exemplary images, original and attacked. The upper row contains the 

input images that are given to the input of the neural network, while the lower row 

depicts the corresponding heatmaps, generated by LRP method. As mentioned, red 

color indicates the pixels that most strongly correspond to the model output, while the 

blue one shows the pixels that have the least influence on the model output. Fig. 3 

illustrate the effect of FGSM and one-pixel attacks onto the network. In both cases, it 

appears that the effectiveness of the prediction has decreased significantly after attack. 
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Despite the previous proper classification of the image (‘cat’), after the attack, the net-

work classified the image incorrectly (‘dog’), with high accuracy. Before the attack, the 

heatmap indicating the significance of the input image pixels appeared as in Fig 3a. 

After the FGSM attack, the colors of the map, and thus the pixel significance, have 

practically reversed (Fig 3b). This is due to the nature of this method, a white-box 

method, i.e. it uses the full knowledge of the network and dataset to change the predic-

tion. In case of one pixel attack (Fig 3d), it is clearly visible that the network is focusing 

its attention on this single, adverse pixel, which unfortunately results in a change of 

classification result. Similar results and effects were achieved for the whole analyzed 

dataset (see Table 1). This clearly proves how fragile deep models are these days, and 

that much attention needs to be paid to proper learning, improving the generalization 

abilities and robustness of these models, as well as to cybersecurity issues, especially 

for critical applications.  

     a)                            b)                          c)                             d)                            e) 

Fig. 3. FGSM and one-pixel attacks effect visualization. The arrows indicate the adverse pixel. 

This problem can be partially remedied by the defense methods against attacks, de-

scribed in section II.B. In this paper, the Adversarial retraining approach was used. For 

this purpose, a new training set was supplemented with successfully attacked with 

FGSM images. The extended training set was then used for retraining the 

‘FGSM_immune’ model. Then it was checked whether the previously generated, ex-

tended testing set containing adversarial examples still affects the predictions. Using 

different testing images, it was then verified how many images can be attacked for 

‘clear’ and ‘FGSM_immune’ models. The same procedure was applied to the one-pixel 

attack (‘One-pixel_immune model’). The averaged results for the entire dataset were 

gathered in Table 1. The effects of the applied approach can also be observed in Fig. 3. 

In the case of both FGSM (Fig. 3c) and One-pixel attacks (Fig. 3e), the network proved 

to be robust against them. In the case of One-pixel attack, the attention map looks sim-

ilar to the one from before the attack (adverse pixel was ignored). The attention map 

for FGSM type attack looks a little different. Noises on the map are caused by their 

appearance in the training set utilized during retraining. Despite different heatmaps, the 
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classification result is correct. The differences in effects observed on heatmaps caused 

by different attacks can be used to detect and identify the types of attacks and to select 

the appropriate defensive strategy. The analysis of other images allows concluding that 

the described effects are representative. The results for the whole analyzed dataset are 

gathered in Table 1. It can be seen that such an approach has turned out to be successful 

in this case.  

Table 1. Effectiveness of prediction depending on model and validation set type. 

Model 

name/dataset 

Clear Clear Clear FGSM immune One-pixel immune 

Testing set 
clear_test clear+fgsm

_test 

clear+OP

_test 

clear+fgsm_test clear+OP_test 

Accuracy [%] 85.80 58.37 64.62 84.15 86.09 

Fig. 4. Global UMAP visualization of local LRP signatures for examples of ‘cat’ and ‘dog’ im-

ages. 
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Fig. 5. Global UMAP visualization of local LRP signatures for examples and adversarial exam-

ples of ‘cat’ images – FGSM type of attack. 

Fig. 6. Global UMAP visualization of local LRP signatures for examples and adversarial exam-

ples of ‘dog’ images – FGSM type of attack. 

We have also attempted to analyze how the considered attacks affect the analyzed da-

tasets globally, whether there are any specific patterns related to the type of attack and 

the dataset. Analyzed original and perturbed by FGSM and one-pixel attacks datasets 

were explored by taking advantage of the local explanation approach – LRP generating 

the attention maps, becoming the XAI signatures, and UMAP dimensionality reducer. 

To visualize the datasets before and after the attack was executed, we project these onto 

2d space, via UMAP. The results for the FGSM type of attack are illustrated in Figs. 4-

6. Fig. 4 shows the placement of images belonging to the class 'dogs' and 'cats', before

the attack. Taking into account the correction for the fact that this is a projection of a

multidimensional space into just 2 dimensions, please notice that some of the images
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belonging to both classes have a small topological distance from each other. Intuitively, 

it can be expected that those images will be the easiest to effectively attack. Fig. 5 shows 

which images from the class of 'dogs' changed their class affiliation into ‘cats’, as a 

result of the FGSM attack. Note that as predicted, most of the successfully attacked 

images are grouped in the first quarter of the coordinate system, which is where both 

classes have the most common features. A similar effect can be observed in Fig. 6, for 

the class representing 'cats'. In this case, most of the effectively attacked images are 

located in the first quarter of the coordinate system, near the center of the system. The 

aforementioned results are only qualitative for the moment, and further much deeper 

research is needed to draw detailed and convincing conclusions. 

4.2 Implementation details 

During the research Kaggle dataset was used [30]. The images resolution is 112x112 

px,. The training dataset (‘clear’- before the attack) consists of 8000 images (4000 cats 

and dogs); original testing set - ‘clear_test’: 2000 images (1000 cats and dogs); new 

(extended) training dataset for defense against FGSM –‘clear+FGSM’: 6078 cats 5878 

dogs; new testing dataset-‘clear+FGSM_test’: 1408 cats 1532 dogs; new (extended) 

training dataset for defense against one-pixel attack –‘clear+OP’: 5178 cats 5454 dogs; 

new testing dataset–‘clear+ OP_test’: 1244 cats 1416 dogs. 

CNN model: VGG16, with binary crossentropy loos function. SGD optimizer with: 

lr=0.001, decay=1e-6, was used during the training. Software libraries used: LRP at-

tention maps [34]; FGSM [35]; one-pixel attack [36]; UMAP [37].   

5 Summary and Concluding remarks 

In this paper, we reviewed the recent findings in adversarial attacks and defense strate-

gies. We also analyzed the effects of the attacks and the defense strategies applied, 

using recent XAI local and global approaches. We proposed to take advantage of the 

LRP attention maps and UMAP methods.  

The results shown are preliminary, can be used for exploring the effects of adverse 

attacks, and allow to draw qualitative conclusions, only. However, undertaken analyses 

have confirmed that deep models are still fragile and are often not robust to well-pre-

pared, intentional input perturbation.  

Conducted research show that much attention needs to be paid to proper learning, 

improving the generalization and robustness of deep models, as well as to cybersecurity 

issues, especially for critical applications. It has also been demonstrated how valuable 

for process analysis XAI tools can be.   
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