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Abstract. The paper investigates parallel data processing in a hybrid CPU+GPU(s) system
using multiple CUDA streams for overlapping communication and computations. This is
crucial for efficient processing of data, in particular incoming data stream processing that
would naturally be forwarded using multiple CUDA streams to GPUs. Performance is
evaluated for various compute time to host-device communication time ratios, numbers of
CUDA streams, for various numbers of threads managing computations on GPUs. Tests
also reveal benefits of using CUDA MPS for overlapping communication and computa-
tions when using multiple processes. Furthermore, using standard memory allocation on a
GPU and Unified Memory versions are compared, the latter including programmer added
prefetching. Performance of a hybrid CPU+GPU version as well as scaling across multiple
GPUs are demonstrated showing good speed-ups of the approach. Finally, performance
per power consumption of selected configurations are presented for various numbers of
streams and various relative performances of GPUs and CPUs.
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1 INTRODUCTION

In today’s high performance computing (HPC) systems, several computing devices are
typically used – multi- and many-core CPUs, GPUs, FPGAs. All have their advantages
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and disadvantages depending on particular types of codes and applications [9]. Most of
HPC systems nowadays feature either traditional multicore CPU + accelerator (GPU, In-
tel Xeon Phi x100) or manycore CPUs (such as Intel Xeon Phi x200 or Sunway manycore
CPUs in the Sunway TaihuLight cluster). Selected application examples of applications
running on such systems include data encryption and decryption algorithms [32], pat-
tern matching for deep packet inspection [26], RNA secondary structure prediction [27],
parallel implementation for a DVB-RCS2 receiver [46], parallelization of large vector
similarity computations [14, 11], stitching large scale optical microscopy images [4] etc.
For this reason, efficient management of computations among these processors is a key to
achieving high throughput, especially for incoming data streams that must be processed
under time constraints. GPGPU has become very popular for processing large data sets
in the Single Instruction Multiple Threads fashion. As long as processing in threads does
not result in too much divergence, one can achieve very high processing throughput. Es-
pecially important is also fast delivering of input data from host memory to GPU memory
and results back from GPU memory to the host. This can be achieved through overlap-
ping communication and GPU and CPU computations by using multiple streams. This
topic is investigated in this paper in detail, in terms of performance for various numbers
of streams, threads managing computations in a CPU+GPU setting, using the standard
GPU memory management and Unified Memory [34] approaches. Furthermore, as to-
day’s HPC is not only about performance, power consumption is also considered, in the
context of performance to power consumption ratio of various configurations.

The approach adopted in this paper includes analysis based on a custom built bench-
mark, described in Section 3, that assumes input data that is composed of multiple data
chunks which are fed into CUDA streams to GPUs or processed on multicore host CPUs.
The benchmark allows for various compute time to host-device communication time ra-
tios, numbers of streams and threads managing computations and communication and
thus, depending on the values of parameters, can be regarded as a template representative
of many real world applications.

The objective of this work is to assess performance and selected performance/power
characteristics of parallel processing of a data stream which is passed for computations to
either GPUs using CUDA streams or to GPUs and CPU cores in a hybrid CPU+GPU ap-
proach. The contribution includes assessment of preferred numbers of streams for various
GPU architectures, preferred application architecture in terms of the number of host GPU
management and computing threads, assessment of performance differences between
standard memory management, Unified Memory and Unified Memory with prefetching,
all for various compute to communication ratios. Additionally, performance per power
consumption is evaluated for selected configurations. Furthermore, scaling from 1 to 4
NVIDIA Tesla V100 GPUs of DGX Station installed at the Faculty of ETI, Gdansk Uni-
versity of Technology is presented.

The outline of the paper is as follows. Section 2 presents existing related work and
contributions of this paper in that context, Section 3 the processing model and design of
the benchmark used for experiments, Section 4 tests and results including testbed systems,
impact of multiple streams on performance using various numbers of threads managing
computations, launching computations from multiple processes with and without MPS,
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performance with and without Unified Memory, scalability of hybrid CPU+GPU code,
scaling across multiple GPUs and performance-power consumption ratios for hybrid con-
figurations. Finally Section 5 presents conclusions and future work.

2 RELATED WORK

2.1 Mechanisms for data management in selected GPU-aware parallel

programming APIs

Overlapping computation on the GPU, CPU as well as CPU-GPU and GPU-CPU com-
munication is a well known technique that allows to minimize execution time of an appli-
cation using GPUs [14, 31, 13, 25]. This approach can be used for both batch processing
if the data is already available when the application starts or is incoming to a node in
possibly many data streams.

In CUDA, kernel functions are executed in parallel on a GPU by a grid which is com-
posed of thread blocks each of which consists of a number of threads. Blocks within a
grid and threads within a block can be lined up in 1, 2 or 3 dimensions. Various operations
(out of host-to-device communication, device-to-host communication, kernel execution)
submitted to two different streams can potentially be overlapped in H2D, compute and
D2H queues. Thus, a larger number of streams can potentially allow better overlapping
(so-called n-way in the case of n streams [41]) if there is potential for that in the applica-
tion and if the GPU and the driver support that. Potentially kernels can also be executed
in parallel, depending on their requirements and the GPU. Unified Memory allows allo-
cation and access to data from the host and device sides and page migration, transparent
to the user. The contribution of the paper is how a particular configuration (with a given
number of streams) for a given GPU (GPUs of various architectures were used) benefits
which is otherwise very difficult to predict given these factors.

It should be noted that OpenCL offers a similar programming model to CUDA but
targeting systems with both GPUs as well as CPUs [13, 15]. Specifically, a kernel can be
executed on a compute device by a structure called NDRange that consists of work groups
which in turn consist of work items. Both work groups within the NDRange and work
items within a work group can be lined up in 1, 2 or 3 dimensions. A kernel is executed by
work items in parallel within a context that is associated with one or more devices. Input
and output data are managed through memory objects. Overlapping can be achieved us-
ing command queues, similarly to using streams in CUDA. OpenCL version 2.0+ allows
to use Shared Virtual Memory which allows codes running on the host and a device to
share data. Various modes including coarse-grained or fine-grained with the possibility
of accessing locations concurrently if SVM atomic operations are supported. Another
high level API allowing to use GPUs in a way similar to OpenMP is OpenACC [13, 15].
OpenACC allows to use directives for instructing parallelization of code regions, specifi-
cally loops as well as scoping of data and synchronization. Data related directives allow
to specify allocation, releasing memory and rely on the concept of reference counters to
data.
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Assessment of benefits and performance of Unified Memory was done previously in
[22] but for batch type input data for applications such as verification of Goldbach’s con-
jecture, 2D heat transfer analysis and adaptive numerical integration. That research was
then extended with evaluation of not only the basic Unified Memory code against the stan-
dard approach but also Unified Memory with prefetching [23]. Results were presented for
four applications: Sobel and image rotation filters as well as stream image processing and
computational fluid dynamic simulation. Tests were performed on Pascal and Volta archi-
tecture GPUs, specifically NVIDIA GTX 1080 and NVIDIA V100 cards. Furthermore,
evaluation of Unified Memory oversubscription over the standard manual management
approach was provided, generally showing slight benefits of the latter, if implemented
efficiently. In those contexts, the contribution of this paper is assessment of impact of
the number of streams with Unified Memory, assessment of NVIDIA MPS’s performance
and consideration of power consumption with the number of streams in parallel process-
ing with CUDA.

2.2 Selected works on efficiency of using multiple streams using GPUs

There are studies in the literature on efficiency of using multiple streams using GPUs. For
instance, paper [20] investigates the impact of using various numbers of streams on perfor-
mance of such an application with a theoretical formula for the best number of streams.
It was considered in terms of the number of iterations of a loop within a kernel. Tests
were performed for GTX 280 and GTX 480 cards which are not used widely anymore.
GPU architectures have also changed considerably since then. In paper [12], the author
analyzed and compared performance of processing on a GPU using 1, 2 and 4 streams
for modern GPUs: mobile NVIDIA GeForce 940MX, desktop GTX 1060, server Tesla
K20m and Tesla V100. Tests were performed for various compute time to host-device
communication time ratios proving large benefits of using 2 or 4 streams for overlapping
communication and computations and showing relative performances of the tested GPUs.
Compared to [20] this paper contributes by analysis on newer GPUs, consideration of
Unified Memory approach and performance to power consumption analysis. Compared
to [12] this paper brings testing using more streams, multi-threaded and single-threaded
applications, MPS as well as performance to power consumption considerations. Apart
from multiple streams, concurrent kernel execution is also possible on GPUs. Paper [45]
investigates approaches such as context switching, manual context funneling and auto-
matic CUDA context funneling but tests were performed on older CUDA 4 and earlier
versions and demonstrated that automatic CUDA context funneling (sharing a context
among process threads) is very efficient. Work [29] proposes a detailed computation-
bound single kernel performance model for understanding the resource scheduling sys-
tem with CUDA streams and focuses on multi-kernel concurrency. Similarly, paper [8]
investigates conditions needed for concurrent execution of kernels simultaneously.
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2.3 Using multiple streams for various applications

Deployment of multi-stream processing for GPU based systems for particular applica-
tions has been analyzed in the literature. In paper [43] authors focus on performance
improvement through more effective overlapping of communication and computations
using OpenMP as well as multiple CUDA threads. Many threads control each GPU and
the authors have launched 4 CUDA streams for each pair of neighboring GPUs to over-
lap communication and computation of inner domain points. A 3D stencil use case was
used to demonstrate benefits over previous solutions. Tests were performed on Kepler
and Fermi cards. Compared to that work, this paper considers a model with indepen-
dent input data chunks rather than geometric Single Program Multiple Data paradigm
[13], considers more streams, Unified Memory and power consumption for a more re-
cent Pascal card. In paper [19] authors focus on improvement of performance of Sparse
matrix-vector multiplication (SpMV) code using many GPUs installed within a node. Op-
timization is performed using multiple OpenMP threads that control particular GPUs as
well as multiple CUDA streams for overlapping. Benefits of such improved approach
using 2 GPUs are shown against a naive 1 GPU system implementation for a variety
of sparse matrices. Compared to that approach, this paper considers hybrid CPU+GPU
processing, investigates multiple streams, Unified Memory and performance to power
consumption ratios. Paper [35] proposes a multi-stream implementation of stereo dispar-
ity estimation and anaglyph video frame generation using GPUs. Specifically, multiple
threads are started using Pthreads, each of which manages a certain number of streams.
Performance is presented for a thread count between 1 and 8 and the number of streams
between 1 and 8 showing considerable speed-ups of the solution with 100 frames per sec-
ond for 1024x1024 color images. GeForce GTX780 cards where used for experiments.
Paper [38] contributes by proposal of a parallel CPU+GPU code for image formation in
scanning transmission electron microscopy. Similarly to this work, an algorithm for par-
allelization using multicore CPUs and GPUs are provided, with assessment of benefits
from using multiple CUDA streams. In that context, this paper contributes by analysis
of various numbers of streams, Unified Memory and performance to power consumption
ratios for similar computations. Utilization of CUDA streams for parallel implementa-
tion of a genetic algorithm is presented in paper [39]. Data stream processing accelerated
using GPUs in the context of DBMSes is discussed in [36] for data representation better
matching the GPU architecture. Similarly, this paper contributes by consideration of var-
ious stream and thread CPU+GPU configurations, Unified Memory and performance to
power consumption ratios.

2.4 Selected frameworks and environments for processing data

using GPUs

Paper [24] provides analysis of programming environments for processing large amounts
of data efficiently. Specifically, the work investigates programmability vs performance
such that programs can increase their performance at the cost of decreasing programma-
bility. Java and Stream API, C/C++ and OpenMP, C/C++ and CUDA (with and with-
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out CUDA streams) are compared. Power-aware computations for data processing is
also an important research topic considered today [16]. There exist frameworks that
provide higher than OpenMP, CUDA and MPI programming abstractions to process-
ing data streams using GPUs, good performance and relatively easy-to-use programming
models. Available solutions for data streaming include, in particular, Spark [47], Storm
[28, 21], Storm working in a geographically distributed and highly variable environment
[6], FastFlow [2], extension of FastFlow for a network of multi-core workstations [1],
Flink [5, 18], PiCo [33], Thrill [3]. Paper [48] describes GStream that is a scalable frame-
work suited for a cluster of GPUs with GStream API over CUDA, Pthreads and MPI. It is
demonstrated for benchmarks such as FIR, MM, FFT, IS and LAMMPS that it offers very
good speed-ups, only slightly worse that raw CUDA. For this and the following high level
approaches, the contributions of this paper can be used for improvement of performance
of lower level building blocks and mapping computations onto GPUs and CPUs as well
as optimization of CPU-GPU communication. Another general data processing platform
utilizing GPUs is G-Storm [7] which can be used for various applications and data types
and provides a high level programming approach. It handles data transfers and resource
allocation automatically. If data is to be further used on the same GPU in subsequent
operations, it will not be copied back and forth between the host and the GPU. G-Storm
very much relies on CUDA MPS that allows to create a single context that can be used
from many processes on the host. It should be noted that this paper evaluates gains from
MPS and shows benefits of multi-threaded and CUDA multi-stream approach for even
better performance and such can be used to improve existing systems. Paper [40] pro-
poses an efficient real-time system for processing large amounts of high frequency data
such as video and text. The approach integrates Hadoop for parallel processing, Spark
for the real-time component and GPUs for processing. Matrix type data is processed on
GPUs similarly to MapReduce. The authors conclude that the proposed solution is faster
than CPU MapReduce. Such a system could also benefit from low level optimization be-
tween host and GPUs presented in this paper. Work [44] proposes a CPU+GPU system
for processing a large number of incoming data streams with hard real-time constraints.
A scheduler running on the CPU side distributes streams among CPUs and GPUs for high
utilization of the system in order to meet the constraints. The solution was evaluated us-
ing an AES-CBC encryption kernel on thousands of streams proving over 80% more data
processing rate than a single GPU system. Paper [42] presents KernelHive that can be
used to optimize scheduling and execution of processing using a stream of multiple inde-
pendent data chunks on hybrid CPU+GPU systems. Efficient multithreaded data stream
processing in a workflow management system called BeesyCluster, either within a high
performance workstation or even spanning multiple clusters, is presented in paper [10].
In that context, the contribution of this paper is optimization of internal building blocks
for efficient GPU management and consideration of power consumption as well.
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3 PROCESSING MODEL AND DESIGN OF BENCHMARK

This section presents the custom-developed application benchmark that is representative
of various applications run on GPUs or in a hybrid CPU+GPU environment. Many vari-
ables have been considered and can be changed in the proposed processing model and as
such were used for subsequent tests. Design of the benchmark application is shown in
Figure 1. It is assumed that the application processes a sequence of input data packets
such that two data packets serve as input to a processing function that produces output
data. This general assumption corresponds to many real life applications, depending on
relative sizes of output and input data, e.g. multiplication, addition or other operations
on matrices that are important computational steps in various artificial intelligence ap-
plications such as deep neural network training. Parallelization involves the following
elements and ideas:

1. At a high level of parallelism, OpenMP threads are spawned – one thread per each
GPU and additionally one thread managing computations on a multi-core CPU(s).
These threads fetch input data from memory in a critical section and pass for compu-
tations either to a GPU or the CPU(s). This scheme, working in a loop, effectively
supports dynamic load balancing among compute devices.

2. Nested OpenMP parallelism is used for parallelization with many threads on the
CPU(s).

3. Input data can be stored in regular RAM from which it can be sent to GPU’s global
memory explicitly or stored in previously allocated space in Unified Memory. In
the latter case, prefetching can be turned on for enabling overlapping computations
with host-device communication. In the case of the Unified Memory based version,
streams are still used for maximum concurrency of operations [34].

The benchmark allows to set various modes and parameters and correspondingly allows
to mimic behavior of various applications following the assumed processing pattern:

1. memory mode – several modes are possible:

(a) allocation of host memory std using cudaHostAlloc()with flag cudaHost
AllocPortable that does allow subsequent overlapping computations and
communication in various streams,

(b) allocation of memory UM using Unified Memory (UM) by calling cudaMalloc
Managed() that allows to use the same pointer from both host threads to write
input data, from a kernel to read input data and write output results as well as
from the host to read output.

(c) allocation of memory UMprefetch using Unified Memory with data prefetching
through cudaMemPrefetchAsync() for streams to be used in subsequent
steps,

2. compute time to host-device communication time ratio that corresponds to the com-
putational time on a given input data chunk divided by the communication time of
this data chunk (CPU-GPU-CPU),
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Figure 1: Proposed processing framework

3. output-input ratio that denotes the ratio of the size of output data to the size of input
data,

4. stream count – the number of streams per one GPU used,

5. host thread count – the number of threads among which computations are scheduled
on CPU(s) cores,

6. gpu count <ids of gpus> – the number and ids of GPU(s) to be used for computations.

In each experiment, unless otherwise noted, data chunk was 256KB in size and 1.6 GBs of
data was processed. In the test we assumed 1024 threads per block and the total number
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of threads was 262144. In the GPU kernel function, a thread fetches its unique index in
a grid and processes data from two input arrays into a result stored in its own location
(depending on its index) in an output array. Specifically, it computes averages of selected
vector elements of the two input arrays and computes a distance between the averages
which is added to the final output. All arrays are stored in global memory and the kernel
uses 3 variables as temporary indices and one variable as a loop counter. Compute time
to host-device communication time ratio is configured with a proper number of iterations
of the aforementioned loop.

4 EXPERIMENTS AND TESTS

4.1 Testbed systems

For experiments, we used the benchmark described in Section 3 run on three modern
multicore CPU(s) + GPUs workstations. Specifications of the systems are listed in Table
1. Testbeds 1 and 2 feature 2 Intel Xeon CPUs + 2 NVIDIA GPUs, of various generations
while testbed 3 an Intel Xeon CPU + 4 NVIDIA Tesla V100 cards used for testing scaling
across multiple GPUs.

For each particular configuration, unless otherwise noted, 10 tests were performed
and the average value is presented.

4.2 Impact of multiple streams on performance

The purpose of following experiments is to determine the impact of using multiple streams
for overlapping computations and communication and finally execution time of a GPU
enabled application.

The following tests have been performed for several values of compute time to host-
device communication time ratio, for several GPU cards and for the number of streams
between 1 and 32. Additionally, two different ways of launching computations on a GPU
are presented and compared:

1. A: one thread per GPU managing computations through one or more streams. In this
case, the thread launches CPU-GPU communication, kernel and GPU-CPU commu-
nication asynchronously through streams one after another.

2. B: as many threads as the number of streams are launched per GPU, each of which
launches CPU-GPU communication, kernel, GPU-CPU communication in a separate
stream. Threads need to synchronize while fetching new input data packets.

Figure 2 presents results for these versions for particular numbers of threads and
streams used for testbed 1 while Figure 3 does so for testbed 2. It can be seen that, in
general, best results were obtained using one dedicated host thread per GPU launching
communication and computations to multiple streams with 2 streams for testbed 1. For
testbed 2 the same implementation offers best results with 2+ streams with small differ-
ences between the number of streams larger than 2-4. At the same time, we can see very
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Table 1: Testbed configurations

Testbed 1 2 3
CPUs 2 x Intel Xeon

CPU E5-2620v4
@ 2.10GHz

2 x Intel(R)
Xeon(R) CPU
E5-2640 @
2.50GHz

Intel(R) Xeon(R)
CPU E5-2698 v4
@ 2.20GHz

CPUs – to-
tal number of
physical/logical
cores

16/32 12/24 20/40

System memory
size (RAM) [GB]

128 64 256

GPUs 2 x NVIDIA
GTX 1070
(Pascal)

2 x NVIDIA
Tesla K20m
(Kepler)

4 x NVIDIA
Tesla V100
(Volta)

GPUs – to-
tal number of
CUDA cores

2 x 2048 2 x 2496 4 x 5120

GPU Compute
capability

6.1 3.5 7.0

GPU memory
size [MB]

2 x 8192 2 x 5120 4 x 16384

Operating system Ubuntu Linux
version 4.15.0-
36-generic

CentOS Linux
version 3.10.0-
862.9.1.el7.x86
_64

Ubuntu Linux
version 4.4.0-83-
generic

Compiler/version Cuda compilation
tools, release
9.1, V9.1.85, gcc
7.3.0

Cuda compilation
tools, release
9.1, V9.1.85, gcc
4.8.5

Cuda compilation
tools, release 9.0,
V9.0.176, gcc
5.4.0

small deviations between runs (10 measured) for testbed 2 (default affinity values are pre-
sented). For testbed 1, we can observe larger deviations for configurations with multiple
host threads launching operations on the GPU (we present threads/close affinity values).
These differences might stem from various operating system settings and compiler ver-
sion as the CUDA versions were the same.

4.3 Launching computations from multiple processes using MPS

In case there is no dedicated parallel application available for parallel processing of in-
coming data streams to a computer node, it is probable that several processes working in
parallel will try to submit work for processing on a GPU that will be shared in such a
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Figure 2: Comparison of implementations with various numbers of threads and streams
on a GPU, testbed 1, bars represent standard deviation

case. This may lead to inefficiency of processing. One solution would involve writing a
dedicated multi-stream application as analyzed in this paper. An alternative approach has
been made available by NVIDIA through Multi Process Service (MPS) that tries to over-
lap CPU-GPU communication and processing on a GPU from various contexts. It does
not require code modifications which is a considerable advantage. Details of its usage can
be found in [13]. Figures 4 and 5 present results of using the MPS enabled configuration
vs the standard configuration for testbed 1 and testbed 2 respectively. Five tests were
performed for each configuration and the average value is presented. Results really indi-
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Figure 3: Comparison of implementations with various numbers of threads and streams
on a GPU, testbed 2, bars represent standard deviation

cate that the solution improves execution time visibly, except for smaller compute time
to host-device communication time ratio for testbed 1. In these tests, two different pro-
cesses were launched in parallel on the number of data chunks half the sizes of the cases
shown in Figures 2 and 3. It should be noted that the best results obtained for 2 streams
shown in Figure 2 still offer better execution times while the ones shown in Figure 3 show
practically the same or marginally better performance compared to the one with MPS.
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Figure 4: Comparison of performance with and without NVIDIA MPS, testbed 1

4.4 Performance with Unified Memory

Since the latest cards and CUDA versions offer the benefit of easier programming with
Unified Memory, this experiment is to show performance of Unified Memory based im-
plementation compared to previous best cases. The test involves setting input data on the
host and launching a kernel that processes data packets on the GPU. Subsequently, results
are read from the host side in order to find the maximum of results and display to the user.

The basic UM enabled version was further optimized using data prefetching (we de-
note this version by UMprefetch). Specifically, the data packet to be processed in a subse-
quent step in a given stream is prefetched using a call to function cudaMemPrefetch
Async(...) on the two input buffers.

Figure 6 presents comparison between std, UM and UMprefetch versions for 1 GPU
on testbed 1 while Figure 7 presents comparison between std, UM and UMprefetch ver-
sions for 2 GPUs on testbed 1, data size proportionally smaller than in the previous tests.
It can be seen that prefetching really improves performance but still the standard memory
optimized multi-stream version offers the best performance. This is in line with some
previous works comparing performance of Unified Memory to standard based versions
showing generally similar or worse performance in [22], [30] and [37] in return for an
easier programming model. This paper confirms it for various compute time to host-
device communication time ratios, numbers of streams and 1 and 2 GPUs.
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Figure 5: Comparison of performance with and without NVIDIA MPS, testbed 2

4.5 Scalability of hybrid CPU+GPU code

The purpose of the following experiments (using standard memory management) is to
show scalability of the hybrid parallel code on the two testbeds with 1 GPU, 2 GPUs as
well as host threads engaged for computations, for various GPU/CPU performance ratios.
The latter can vary depending on an application. In this case, 2 streams per GPU were
used for testbed 1 and 4 streams per GPU for testbed 2. The same thread affinities and
binding as in Section 4.2 were used.

The results presented in Figure 8 for testbed 1 and in Figure 9 for testbed 2 allow
to assess GPU/CPU performances for which adding host threads for computations brings
visible savings in execution times. It can be noticed that 2 GPUs configurations achieve
relatively better performance than proportional scaling from 1 GPU configurations, ap-
parently due to using one of the GPUs for display as well. Scaling from 1 to 2 GPUs
is clearly visible. Increasing the number of host threads decreases application execution
time at rates very much depending on GPU to CPU performances, with practically no
gains when using 2 GPUs and GPU/CPU performance ratio around 30 for testbed 1. It
should be kept in mind that in case some CPU cores are used for computations, still as
many threads as the number of GPUs are used for management of computations on the
GPUs. Furthermore, the threads managing computations on the GPUs and the CPUs fetch
next data packets synchronizing on an OpenMP critical section which also decreases po-
tential speed-ups.
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Figure 6: Comparison of standard memory (std), Unified Memory (UM) and optimized
Unified Memory (UMprefetch) implementations – testbed 1, 1 GPU, bars represent stan-
dard deviation

4.6 Performance-power consumption ratio

In today’s high performance computing systems, power consumption has become an im-
portant topic. It is considered in designs of future clusters for which the total power
consumption is suggested not to exceed 20MW for 1 Exaflop/s [17]. In this context, we
analyze performance to power consumption for the various configurations analyzed in this
paper, specifically for:
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1. various numbers of streams involved when using 1 GPU,

2. GPU + CPU configurations with various numbers of host threads involved in compu-
tations.

GPU performance was calculated as the inverse of the sum of data chunk CPU-GPU
communication, processing and GPU-CPU result transfer times. CPU performance was
calculated as the inverse of data chunk processing time on the CPU(s). Average power
consumption of various configurations was measured using a hardware meter within a
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10 minute period for each configuration. A bash script was used to run a particular con-
figuration. Figure 10 shows normalized performance computed as inverse of execution
time divided by average power consumption through application run for 1 GPU and var-
ious numbers of streams. Normalization of performance was done by dividing results by
quotients of compute time to host-device communication time ratios of various configura-
tions. It can be seen that normalized performance per power consumption has its maxima
depending on compute time to host-device communication time ratio. It is interesting to
note that for 2+ numbers of streams the best normalized ratios are observed for compute
time to host-device communication time ratio 9.98 and lower for the other ratios.
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Figure 10: Normalized performance by power consumption for 1 GPU and various num-
bers of streams, testbed 1

Furthermore, performance by power consumption is shown for 1 and 2 GPU config-
urations with addition of various numbers of host threads used for computations using
testbed 1. Results for the GPU/CPU performance ratio of around 30 are shown in Figure
11. It can be seen that, while execution times slightly decrease as shown in Figure 8 be-
fore, the performance-power consumption ratio goes down due to too little improvement
of execution times thanks to CPU compared to its power consumption. Had the computa-
tional power been better compared to GPUs, the ratio would have been better for higher
numbers of host threads. Such a simulation was performed and its results are shown in
Figure 12 for a smaller GPU/CPU relative performance ratio. It can be seen from the tests
that for GPU/CPU performance equal to 2 using more host threads offers benefits in terms
of performance/power consumption.
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14*10
-6

16*10
-6

18*10
-6

20*10
-6

22*10
-6

24*10
-6

26*10
-6

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

p
e

rf
o

rm
a

n
c
e

/p
o

w
e

r 
c
o

n
s
u

m
p

ti
o

n
 [

1
/(

W
s
)]

number of computational host threads

2 GPUs + x host threads, GPU/CPU perf=2
1 GPU + x host threads, GPU/CPU perf=2

Figure 12: Performance by power consumption for 1 and 2 GPU configurations and vari-
ous numbers of host threads, GPU/CPU performance=2, testbed 1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1020 P. Czarnul

4.7 Scaling across multiple GPUs
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Figure 13: Execution time vs number of streams for various numbers of GPUs, largest
case from Figure 2, testbed 3

The following experiments demonstrate how the code scales across GPUs in testbed
3 with 4 NVIDIA Tesla V100 Volta series GPU cards. Firstly, Figure 13 presents how the
numbers of streams affect performance for the largest configuration shown in Figure 2.
Then, assuming 8 streams per GPU which (the configuration which already gives small
execution times on the flat parts of the chart), execution times are shown for the standard
memory management, UM and UMprefetch as in the previous cases. It can be seen in
Figure 14 that, again, the UM version offers visible overhead over the standard mem-
ory management version. UMprefetch, thanks to manual prefetching, offers performance
half-way between these two versions for 1 GPU. For 2 and 4 GPUs, it is worse than the
standard memory management version by about 30% of the difference between the other
two versions.

5 CONCLUSIONS AND FUTURE WORK

In the paper we analyzed performance and performance to power consumption ratio of
multi-stream data processing on modern multicore CPU+ GPU systems. Using a bench-
mark that allows to set up various compute time to host-device communication time ra-
tios, number of streams, number of threads managing computations it was possible to
assess performance of various configurations on modern testbeds with Intel Xeon CPUs
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Figure 14: Execution time vs memory management solutions for various numbers of
GPUs, largest case from Figure 2, 8 streams per GPU, testbed 3

and NVIDIA Tesla K20m, GTX 1070 Pascal and Tesla V100 Volta series cards. Bene-
fits of using a properly implemented multi-stream code were shown compared to GPU
computations managed by various threads or processes for various numbers of streams.
Furthermore, benefits of such code compared to standard Unified Memory and Unified
Memory with prefetching were shown showing performance gains at the cost of increased
programming effort. Additionally, gains from using NVIDIA Multi Process Service have
been presented for multi-process configurations. Performance to power consumption ra-
tios have been shown for various numbers of streams and compute time to host-device
communication time ratios as well as for hybrid CPU+GPU configurations for various
numbers of computational threads on the host and relative GPU and CPU performances.
Scalability of the code was presented between 1 and 4 GPUs using NVIDIA Tesla V100
cards.

The results can be generalized as follows. For the considered data stream process-
ing application and various compute to communication ratios, using multiple streams, at
least 2 offered visible benefits, with best results using one dedicated host thread per GPU
launching communication and computations to multiple streams. Some configurations
result in best execution times for 2, 4, 8 or even 16 streams but we can note that benefits
over 4 streams, if any, are very small. Secondly, we confirmed that using NVIDIA MPS
gives visible benefits especially for larger compute to communication ratio. Furthermore,
for various compute to communication ratios we confirmed that Unified Memory brings
visible overhead over the standard memory management implementation while a Unified
Memory version with manual prefetching ranks between the two. For CPU+GPU codes,
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increasing the number of computational host threads up to the number of available logical
processors decreases application execution time at rates very much depending on GPU to
CPU performances with considerable gains with CPU performance in the same order as
the one of the GPU. It has been shown that observed performance per power consumption
varies with the number of streams, GPU to CPU performance ratio and the number of
computational host threads.

These results can be used as guidelines for best performance implementations for
various applications as the tests are of generic nature and, depending on values of par-
ticular aforementioned parameters, are representative of many applications. Specifically,
obtained results can be used for implementation of building blocks for data stream frame-
works using multi-core CPUs and GPUs, especially multi CUDA stream communication
optimization.

Future work includes extending the scope of the conducted tests performed on sys-
tems with NVIDIA Tesla V100, specifically regarding various CPU+GPU configurations,
tests for various compute/communication ratios, as well as extending tests to larger V100
based systems such as NVIDIA DGX-1 featuring 8 V100 GPUs. More experiments with
thread affinities will be conducted, with research of their impact for particular codes.
Additionally, we plan to incorporate of the outcomes of this work into higher level frame-
works such as KernelHive [42] and possibly others and investigate the impact of Unified
Memory oversubscription compared to the traditional implementation model.
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