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Abstract: Precise tuning of geometry parameters is an important consideration in the design of mod-
ern microwave passive components. It is mandatory due to limitations of theoretical design meth-
ods unable to quantify certain phenomena that are important for the operation and performance of 
the devices (e.g., strong cross-coupling effects in miniaturized layouts). Consequently, the initial 
designs obtained using analytical or equivalent network models require further adjustment. For 
reliability reasons, it has to be conducted using electromagnetic (EM) simulation tools, which entails 
considerable computational expenses whenever conventional numerical optimization algorithms 
are employed. Accelerating EM-driven design procedures is therefore highly desirable. This work 
discusses a surrogate-based algorithm for fast design closure and dimension scaling of miniaturized 
microwave passives. Our approach involves a small database of previously obtained designs as well 
as two metamodels, an inverse one, employed to yield a high-quality initial design, and the forward 
surrogate that provides predictions of the system sensitivities. The second model is constructed at 
the level of response features, which enables a more accurate gradient estimation and leads to im-
proved reliability and a faster convergence of the optimization process. The presented technique is 
validated using two compact microstrip couplers and benchmarked against the state-of-the-art 
warm-start optimization frameworks. 

Keywords: microwave design; design closure; EM simulation; simulation-driven optimization; sur-
rogate modeling; feature-based modeling; inverse modeling 
 

1. Introduction 
Numerical optimization has been playing an ever increasing role in the design of 

microwave components and structures [1–3]. Perhaps the most common task is parameter 
tuning (also referred to as design closure) [4], where the circuit geometry is adjusted in 
order to improve the performance figures as much as possible. This is necessary because 
the designs obtained using analytical or equivalent network models are normally sub-
optimal due to limited accuracy of circuit-theory-based representations, and need to be 
further enhanced. The optimization process is most often carried out using full-wave elec-
tromagnetic (EM) simulation tools, which ensures reliability but also entails considerable 
computational expenses. These may be impractical even for local optimization [5,6], 
whereas other types of procedures such as global search [7,8], statistical analysis [9], or 
tolerance-aware design [10] incur even higher costs due to a large number of EM analyses 
involved. 

EM-driven design closure is particularly essential in the case of compact microwave 
structures (filters, couplers, impedance transformers, power dividers [11–13]). Size reduc-
tion is typically achieved by folding the conventional transmission lines (TLs), replacing 
them by various compact cells capitalizing on the slow-wave phenomenon (e.g., compact 
microstrip resonant cells, CMRCs, [14,15]) or involving defected ground structures (DSGs) 
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[16], as well as multi-layer implementations [17]. In all these cases, miniaturized circuits 
exhibit significant EM cross-coupling effects. Their adequate quantification requires full-
wave EM simulation. A further difficulty, related to numerical optimization of such struc-
tures, is a relatively large dimensionality of their parameter space; for example, the num-
ber of adjustable parameters of the building blocks such as CMRCs is four to six versus 
two for the TLs they are replacing. Additional difficulties arise due to the circuit complex-
ity being a result of the various functionalities that are to be realized (e.g., harmonic sup-
pression [18] or multi-band operation [19]). 

In the light of the aforementioned challenges, it is no surprise that considerable re-
search efforts have been devoted to the development of methods for expediting simula-
tion-driven design procedures. A representative example is the application of adjoint sen-
sitivities to speed up gradient-based optimization algorithms [20,21]. Although conceptu-
ally simple, it is an intrusive technique from the point of view of the EM simulation en-
gine, and the availability of adjoint technology is quite limited within commercial simu-
lation packages. Gradient-based procedures with sparse sensitivity updates is another op-
tion, which can be realized by suppressing finite-differentiation Jacobian updates based 
on the analysis of design relocation [22] or detecting patterns of response gradient varia-
bility throughout the algorithm iterations [23]. An alternative approach to simulation-
driven design of high-frequency components, such as electromagnetic band gap or Fabry–
Perot antenna, as well as spatial phase shifters, constitute methods exploiting population-
based metaheuristics [24–27]. 

Reduction of the EM-driven design cost can be also achieved by means of surrogate 
modeling techniques. For local optimization, a popular choice are physics-based surro-
gates [28] constructed by appropriate correction of lower fidelity models (e.g., equivalent 
networks [29] or coarse-mesh EM simulations [30]). Some of the techniques involving this 
concept include space mapping [31], shape preserving response prediction [32], adaptive 
response scaling [33], cognition-driven design [34], or feature-based optimization [35]. 
Variable-fidelity simulation models are often used to enable further acceleration [36]. Sur-
rogate-assisted global optimization frameworks typically involve data-driven metamod-
els (kriging [37], Gaussian process regression [38], neural networks [39–41], polynomial 
chaos expansion [42]), and are often combined with sequential design of experiments 
(DoE) procedures [43], where the search process is interleaved with iterative improvement 
of the model predictive power (e.g., efficient global optimization, EGO [44], and similar 
methods [45]). 

One of the common procedures is re-design of a microwave structure for different 
operating frequencies, bandwidth, or adjustment of its geometry parameters so that it can 
be implemented on a different dielectric substrate. Optimization of a component for any 
particular set of operating conditions and/or substrate parameters as well as re-design to 
a different set of requirements is a computationally expensive endeavor as elaborated on 
before. Notwithstanding, in many cases, a certain number of designs obtained for various 
performance specifications (also called the reference designs) may already be available. 
This knowledge can be incorporated into the design framework to speed up the optimi-
zation process. One possibility is the development of analytical design curves [46] that 
determine the relationships between the geometry parameters and the system perfor-
mance figures. Utilization of the inverse surrogate models is a more sophisticated option 
[47], yet it is more generic because the metamodels are data-driven and do not require 
engineering insight. Inverse modeling re-design frameworks (e.g., [48–50]) allow for 
yielding good initial designs as well as to conduct design refinement, also within variable-
fidelity simulation setups [51]. More involved procedures (e.g., [52]) enable expedited tun-
ing of the system parameters even with respect to the performance figures that are not 
directly controlled by the inverse model. The surrogate-assisted framework introduced in 
[53] permits rapid design optimization using two metamodels: an inverse one for render-
ing the initial design, and a forward model of the system sensitivities to accelerate the 
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final tuning process. The drawback of the method [53] is that forward modeling of sensi-
tivities is very challenging due to their highly nonlinear dependence on geometry param-
eters and the sheer amount of data that need to be handled (e.g., the entries of the Jacobian 
matrices). It is especially troublesome when the number of available reference designs is 
small. 

In this work, an alternative technique for fast parameter tuning of miniaturized mi-
crowave components is proposed, which is an advancement over the method of [53]. The 
major improvement is achieved by incorporating the response feature technology [54] into 
the framework. In particular, we construct the forward surrogate of the system response 
sensitivities at the level of appropriately selected characteristic points, which makes it sig-
nificantly more accurate as compared to the model generated for the complete system 
output (here, the frequency characteristics). Additionally, the design optimization task is 
also formulated at the level of response features, which leads to “flattening” the objective 
function landscape to be handled by the optimization algorithm, and, consequently, faster 
convergence of the parameter tuning process. The proposed methodology exploits a com-
bination of a surrogate-assisted optimization framework involving inverse and forward 
sensitivity surrogates, and the response feature technology. The novelty and the major 
contributions include (i) incorporation of the response feature technology into the warm-
start optimization framework, (ii) ensuring reliability of modeling the system sensitivities 
through the employment of the forward feature-based surrogate, (iii) improving the algo-
rithm convergence properties by conducting the entire optimization process at the level 
of the response features within warm-start optimization framework, (iv) securing compu-
tational cost dramatically better than that of widely used population-based metaheuristics 
or even local optimization procedures. As demonstrated through comprehensive numer-
ical experiments, the incorporation of the response feature technology is instrumental in 
ensuring adequate performance of the warm-start procedure in the case of challenging 
optimization tasks such as the coupling structures considered in this work. The presented 
technique is demonstrated using two miniaturized microstrip couplers. The obtained re-
sults unanimously corroborate the benefits of the considered algorithm. It does not only 
ensure the reliability of the optimization process but also allows for achieving the designs 
satisfying the assumed design specifications at a low cost (few EM analyses on the aver-
age). Our methodology can be used for automated tuning and dimension scaling of com-
pact microwave components over broad ranges of operating conditions and material pa-
rameters. It is particularly suitable whenever repetitive optimization is required and a 
certain number of pre-optimized designs is already available, although the reference 
points can also be specifically rendered for the sake of establishing the presented frame-
work. 

2. Materials and Methods 
This section outlines the proposed framework for design closure of microwave com-

ponents with the use of response feature technology and pre-existing database designs. 
The optimization task is formulated in Section 2.1. The subsequent sections provide a brief 
exposition of the response feature technology (Section 2.2.), a description of the utilized 
metamodels (the inverse one rendering reliable initial designs and the sensitivity feature-
based forward surrogate; Section 2.3), as well as an outline of the parameter tuning pro-
cedure (Section 2.4). The latter section also summarizes the operation of the overall frame-
work. 

2.1. Formulation of the Design Optimization Problem 
Let us introduce the basic notation. The vector of the designable variables will be 

denoted as x  X, where X is the box-constrained design space delimited by the lower and 
upper bounds on the parameters. Let R(x) be the relevant response of the microwave 
structure of interest evaluated using full-wave electromagnetic analysis (e.g., scattering 
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parameters versus frequency). The objective space, being a vector space of performance 
figures Fk, k = 1, …, N, will be denoted as F. Its elements are objective vectors F = [F1 … 
FN]T. The exemplary performance figures may refer to the operating frequencies or band-
width, or the power split ratio. They may also include the material parameters of the sub-
strate such as its thickness or permittivity. The objective space is defined using the lower 
and upper bounds on the figures of interest Fk.min and Fk.max, respectively. 

Boosting the performance of the device under design requires solving the following 
nonlinear minimization problem ࢞∗ = ,(࢞)ࡾ)∗ܷ (ࡲ = ݃ݎܽ ݉݅݊࢞ ,(࢞)ࡾ)ܷ  (1) (ࡲ

In (1), U(R(x), F) is a scalar merit function assessing the quality of the design x. U is for-
mulated according to the relevant design objectives in the vector F so that the better de-
signs coincide with its lower values, whereas x* is the sought optimal design. Naturally, 
the function U(R(x), F) has to be appropriately defined in a specific design context. More 
often than not, the function U(R(x), F) has to take into account additional requirements 
imposed on the system at hand. If that is the case, a convenient approach is to select a 
primary objective and cast the remaining ones into constraints, possibly dealt with in an 
implicit manner [55]. 

For the sake of illustration, let us consider a microwave coupler that is to be opti-
mized to (i) minimize the matching |S11| and isolation |S41| at the operating frequency f0, 
and (ii) obtain the required power split dS at f0 (i.e., the coupler’s transmission characteris-
tics |S21| and |S31| are to satisfy the condition |S21| − |S31| = dS). Here, the objective vector 
consists of two entries F = [F1 F2]T = [f0 dS]T. The simulated response R(x) comprises S-pa-
rameters of the coupler versus frequency. A possible definition of the merit function is ܷ(ࡾ(࢞), (ࡲ = |ሼݔܽ݉ ଵܵଵ(࢞, ଴݂)|, |ܵସଵ(࢞, ଴݂)|ሽ + ߚ ⋅ ൫(|ܵଷଵ(࢞, ଴݂)| − |ܵଶଵ(࢞, ଴݂)|) − ݀ௌ൯ଶ |ሼݔܽ݉== ଵܵଵ(࢞, ,|(ଵܨ |ܵସଵ(࢞, ଵ)|ሽܨ + ߚ ⋅ ൫(|ܵଷଵ(࢞, ଴݂)| − |ܵଶଵ(࢞, ଴݂)|) −  ,ଶ൯ଶܨ

(2)

where Sk1(x,f) is the evaluation of the respective coupler response at the frequency f, and 
 denotes penalty coefficient that is to control the contribution of the penalty term (the 
second term of (2)) enforcing satisfaction of the constraint imposed on the power split. 

2.2. Feature-Based Optimization: Formulation and Benefits 
In feature-based optimization, direct handling of the response of the device under 

design is superseded by operating on the suitably chosen features (characteristic loca-
tions) that may be extracted from the system outputs [54]. The rationale behind this con-
cept has been rooted in the observation that feature coordinates depend significantly less 
nonlinearly on the design variables than it is for the entire responses. As a consequence, 
the overall design process may be considerably facilitated in terms of its improved relia-
bility and reduced computational overhead. This has been demonstrated for various mi-
crowave structures in the context of modeling [56], numerical optimization [57], and sta-
tistical analysis [58]. 

Let us first explain the selection of the response features on the example of microwave 
coupler characteristics of Figure 1a. The response features suitable for solving the design 
task of Section 2.1 comprise the locations of |S11| and |S41| minima (for operating fre-
quency allocation), along with the levels of |S21| and |S31| for the target operating fre-
quency f0 (for obtaining the required power split); see Figure 1b. In the case where the 
bandwidth is also of interest, additional features may include the points corresponding 
−20 dB level of the matching and isolation characteristics |S11| and |S41| (cf. Figure 1b). 
As far as other high-frequency components are concerned, the exemplary response fea-
tures may correspond to the resonant frequencies in the case of narrowband or multi-band 
antennas. Other options include the points corresponding to the −10 dB level of the reflec-
tion response if the antenna’s bandwidth maximization is of interest. In the case of the 
bandpass filters, the characteristic points may refer to the maxima of the passband ripples 
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of the return loss characteristic. As for the multi-band transformers, the response features 
may correspond to the −20 dB level of the reflection characteristic (i.e., the points defining 
the bandwidth), as well as its local minima. 
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(a) (b) 

Figure 1. Selection of the response features for a particular design task: (a) geometry of an exemplary branch-line coupler; 
(b) exemplary EM-simulated scattering parameters of the structure. The features of choice include (i) the minima of |S11| 
and |S41| characteristics, along with (ii) |S21(f0)| and |S31(f0)| for ensuring the desired power split (marked with circles), 
and the points for which |S11| and |S41| reach −20 dB level for bandwidth enhancement (marked with squares). The char-
acteristic points (circles and squares) are yielded during the EM simulation result post-processing. 

In the following, we will denote the vector of response features as  = [1T … PT]T, 
where each entry φk  =  [ωk λk]T, k  = 1, …, P, consists of the frequency and the level coordi-
nates ωk and λk, respectively. In the above example, there are four characteristic points, 
and the vector  = [1T 2T 3T 4T]T, with 1T = [ω(S11.min) λ(S11.min)]T, 2T = [ω(S41.min) λ(S41.min)]T, 
3T = [ω(S21.f0) λ(S21.f0)]T, and 4T = [ω(S31.f0) λ(S31.f0)]T. The first two entries of  correspond to 
|S11| and |S41| minima, whereas the last two are the points of |S21| and |S31| at the target 
operating frequency. In Figure 2a–d, the relation between the feature points ω(S11.min), 
λ(S11.min), ω(S41.min), λ(S41.min) versus coupler geometry parameters is shown. It is significantly 
simpler (regular and monotonic) than the relations for the original characteristics (see Fig-
ure 3a–d). With the use of the above defined feature points, the objective Function (2) may 
be formulated as follows: 

  
(a) (b) 
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(c) (d) 

Figure 2. Selected feature point coordinates evaluated along the line segment parameterized by t; defined as y(t) = tx0 + 
(1 − t)xopt, where 0 ≤ t ≤ 1; the initial design x0 and the optimal design xopt are shown in more detail in Figure 3. Observe 
much less nonlinear dependence of the quantities of interest as a function of t when compared to the variability of the 
entire characteristics (cf. Figure 3). Shown are: (a) ߱(ௌభభ.೘೔೙), (b) ߱(ௌరభ.೘೔೙), (c) ߣ(ௌభభ.೘೔೙), and (d) ߣ(ௌరభ.೘೔೙). 

ܷఝ(ࡾ(࢞), ࣐) = ݔܽ݉ ቊቚߣ(ௌభభ.೘೔೙)||หߣ(ௌరభ.೘೔೙)||หቚ ߚ+ ብ൤ܨଵܨଵ൨ − ൤߱(ௌభభ.೘೔೙)߱(ௌరభ.೘೔೙)൨ଶ + ቤ+ߚ ⋅ ቀ൫หߣ(ௌమభ.௙బ)(࢞)ห − หߣ(ௌయభ.௙బ)(࢞)ห൯ −  .ଶቁଶብቋܨ
(3)

The designs that are optimal in the sense of (2) and (3) coincide (see Figure 4). The 
primary difference consists in the monotonicity of the feature-based objective function U 

() as compared to the minimax objective function U(). This, in turn, makes solving (3) 
possible without resorting to global optimization algorithms, often necessary to reach the 
optimum solution when using (2). In other words, feature-based formulation improves 
the reliability of the optimization process. Additionally, the computational cost of feature-
based optimization is typically smaller than for the conventional approach, which is an 
important advantage of FBO, especially for the cases when the objective function is ex-
pensive to calculate. 
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(c) (d) 

Figure 3. Exemplary EM-simulated S-parameters of the coupler of Figure 1a (the same as the one used in Figure 2): initial 
design x0 (- - -), optimal design xopt for f0 = 2.0 GHz (—), along with the family of characteristics along the line segment 
between x0 and xopt parameterized by 0  t  1 (marked gray). The vertical red line marks design specifications. Shown are 
S-parameters: (a) |S11|, (b) |S21|, (c) |S31|, and (d) |S41|. 

 
Figure 4. Comparison of the objective function formulated in the minimax sense (2) (- - -) and the 
objective function formulated using response features (3) (—) versus parameter t (cf. Figure 2). The 
latter is monotonic within the entire range 0  t  1, hence, and the optimum design is attainable 
from the given initial point by a local search routine. 

2.3. Accelerated Design Using Metamodels: Inverse and Feature-based Forward Surrogates 
Our framework utilizes two surrogates: an inverse one that serves for generating the 

initial designs, and a forward metamodel of the system sensitivities that is utilized for 
jump-starting and accelerating the optimization procedure. The domain of the first model 
is a subset of the objective space of the device of interest (e.g., the operating frequency, 
substrate parameters), whereas its co-domain (the set of values) is in the geometry param-
eter space of the structure at hand, which is why the model is referred to as inverse. This 
is in contrast to forward surrogates that are customarily constructed over the parameter 
space of the considered system with a co-domain in the functional space of the system 
outputs (here, electrical characteristics). The second of the considered surrogates is of that 
very type, which is why it is referred to as forward. Both metamodels are constructed 
using the database designs. The training data set for setting up the former are the param-
eter vectors of the reference designs and the corresponding performance figure vectors, 
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whereas the latter is established using the sensitivities of the circuit responses at the ref-
erence designs and respective vectors of performance figures. 

The proposed surrogate-assisted optimization procedure, similarly as the routine of 
[53], exploits the set of reference designs xb(j), j = 1, …, p. These designs are obtained by 
solving the problem (1) for selected performance figure vectors F(j) = [F1(j) … FN(j)]T. For the 
sake of improving the surrogate accuracy, the allocation of the F(j) within the objective 
space F should be uniform. The warm-start procedure [53] assumes that the Jacobian ma-
trices Jb(j) = J(xb(j)), j = 1, …, p, of the circuit outputs at xb(j) are also available. This sensitivity 
data is yielded by the optimization routine employed for finding the reference designs, 
hence, its gathering does not incur any additional CPU cost. Notwithstanding, the cost of 
the reference design acquisition is not negligible, yet, it may be unavoidable for setting up 
a reliable surrogate. This is especially the case in higher-dimensional spaces or when the 
intended ranges of the geometry parameters and/or the operating conditions of the surro-
gate are wide. In such cases, constructing conventional data-driven surrogates of suffi-
cient accuracy may prove infeasible. Consequently, alternative means, such as those de-
scribed in this work, may be required, even though associated with some initial compu-
tational expenditures. 

Two metamodels are utilized in the technique of [53]: the inverse surrogate sx: F  X 
and the forward sensitivity model sJ: X  F. The training data set for constructing the 
former is {F(j), xb(j)}j=1,…,p, whereas the latter uses the pairs {F(j), Jb(j)}j = 1, …, p. The inverse meta-
model approximates the manifold U*(R(x),F) of the designs being optimal with respect to 
all performance vectors F  F in the sense of (1). In addition, we have sx(F(j)) = U*(R(x),F(j)) 
for j = 1, …, p, as the model is interpolative. Therefore, the best attainable initial approxi-
mation of the design x* = U*(R(x),Ft) for a target objective vector Ft  F is obtained as ࢞(଴) = (4) (௧ࡲ)௫ݏ

The forward metamodel sJ constructed within the framework of [53] renders the ap-
proximate initial Jacobian matrix J(0) at the design x(0) as J(0) = sJ(Ft), and it is subsequently 
employed for jump-starting the design tuning. From this perspective, the accuracy of 
modeling of the circuit sensitivities with the use of sJ is critical. However, for many classes 
of circuits, including miniaturized microwave components, the said accuracy is typically 
poor. This is due to the fact that the entries of the Jacobian matrix are highly nonlinear, 
both as a function of frequency and geometry parameters. Consequently, their reliable 
modeling with the use of a limited number of the reference designs is hardly possible. In 
this work, in order to work around this issue, instead of the surrogate J(xb(j)), we utilize a 
forward surrogate Jφ(j) = Jφ(xb(j)) of the response features defined as 

(࢞)ఝࡶ = ێێۏ
ଵݔ߲(࢞)ଵ߲߮ۍێ ⋯ ߲߮ଵ(࢞)߲ݔ௡⋮ ⋱ ⋮߲߮௉(࢞)߲ݔଵ ⋯ ߲߮௉(࢞)߲ݔ௡ ۑۑے

ېۑ
 (5)

Each component ߲߮௝(࢞)/߲ݔ௞ of the Jacobian matrix Jφ is estimated through finite differ-
entiation ߲߮௝(࢞)߲ݔ௞ ≈ [߮௝(࢞ + [0 . . .  0 ℎ 0 . . .  0]்) − ߮௝(࢞)]ℎ  (6)

In (6), the perturbation vector contains zeros except for h at the k-th position. The forward 
feature-based sensitivity metamodel is set up using {F(j),Jφ(j)}j = 1,…,p, as the data pairs. Exem-
plary sensitivities (both the conventional and the feature-based ones) estimated along the 
same segment as considered in both Figures 2 and 3 are shown in Figure 5. As expected, 
the latter are more regular (with respect to parameter t), hence, simpler to model. It should 
also be noted that the Jacobian J consists of nm entries (m being the number of the fre-
quency points in the frequency sweep, typically as high as few hundred), whereas the 
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feature-based Jacobian Jφ has merely nP components. In practice, we have ܲ ≪ ݉, as the 
number p of the reference designs does not exceed a dozen. As demonstrated in Section 3, 
utilization of the response feature sensitivities and their surrogates has a profound effect 
on the reliability of the optimization process. 

 
Figure 5. Exemplary forward sensitivities of the branch-line coupler of Figure 1a parameterized by 0  t  1, and evaluated 
along the same line segment as in Figures 2 and 3. Shown are the selected sensitivities of the S-parameter responses at the 
selected frequency (top panel), along with the sensitivities of the selected features of the reflection and isolation character-
istics (bottom panel). Observe that the latter are more regular, which implicates that their modeling is potentially less 
challenging than that of the entire characteristics. 

2.4. Design Tuning 
This section delineates the design tuning procedure with the use of the two afore-

mentioned surrogate models. The methodology proposed in this work shares—to a cer-
tain extent—a methodological background with the technique proposed in [53], by ren-
dering the initial design with the use of the inverse model. Due to serious difficulties in 
modeling the complex sensitivities (the entries of the Jacobian matrix) of the frequency 
characteristics of compact microwave components, here, the local optimizer is jump-
started using the sensitivities of the features of the circuit response. This allows for cir-
cumventing the main weakness of the technique of [53]. Furthermore, in this work, the 
entire design task is carried out at the level of the response features. On the one hand, this 
improves the reliability of the entire process. On the other hand, it leads to a considerable 
cost reduction as corroborated by the results provided in Section 3. 

The necessity of design tuning stems from the imperfection of the inverse metamodel. 
The refinement procedure is commenced by a generation of the initial design with the use 
of (4). As the initial point is typically of high quality, and the optimum design is most 
likely located relatively close proximity, there is no need to resort to global optimization 
algorithms, and local optimization is capable of yielding a good solution. Here, we employ 
the trust-region (TR) gradient-search algorithm [59]. However, unlike [53], the design task 
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is reformulated in terms of the response features. The TR algorithm approximates the op-
timum design x∗, and its subsequent approximations x(i), i = 0, 1, …, are rendered by opti-
mizing a linear expansion model L(i)φ of the response features, defined as ࡸఝ(௜)(࢞) = ࣐(࢞(௜)) + ఝ(࢞(௜))ࡶ ⋅ (࢞ − ࢞(௜)) (7)

We have ࢞(௜ାଵ) = ݃ݎܽ (೔)ࢊஸ࢞ି࢞(೔)ஸ(೔)ࢊି ;࢞݊݅݉ ,(࢞)ఝ(௜)ࡸ)ܷ ௧) (8)ࡲ

The main contributor to the computational cost of the optimization process is the 
Jacobian matrix estimation through finite differentiation, which amounts to n full-wave 
EM evaluations of the system response per iteration. In this work, the initial estimate of 
the Jacobian Jφ(0) is provided by the forward model sJ. In the subsequent iterations, Jφ is 
updated with the rank-one Broyden formula [60], which is sufficient given a good accu-
racy of Jφ(0). 

Figure 6 shows the flow diagram of the proposed optimization framework, and its 
three main components, i.e., construction of the inverse and forward surrogate, rendition 
of both the starting point as well as the initial Jacobian matrix, and the final design tuning 
procedure. 

Design specifications: 
performance vector Ft

Reference designs

{xb
(k),Jb

(k)}

Extract response 
features

Set up inverse and 
forward surrogates 

{xb
(k),Jφ 

(k)} sx(.)
sJ(.) Generate initial design

x(0) = sx(Ft)

x(0)

Yield feature-based Jacobian 
Jφ(0) = sJ(Ft)

x(0),Jφ(0)

Solve subproblem (8)
x(i+1) = argmin{x : U(LP

(i)(x),Ft)

Evaluate x(i+1); update Jacobian 
(Broyden)

Termination 
condition?

x(i+1)

x*
Yes

No

x(i),JP(x(i))

EM 
solver

METAMODEL CONSTRUCTION

INITIAL DESIGN GENERATION

DESIGN TUNING

 
Figure 6. Flow diagram of the warm-start optimization procedure involving the response feature 
technology and its main components: construction of the surrogate models (the inverse and feature-
based forward surrogates), generation of the initial design along with the initial estimate of the re-
sponse features sensitivities, and final design refinement. 

3. Demonstration Case Studies and Benchmarking 
This section provides a demonstration of the proposed surrogate-assisted optimiza-

tion framework using two structures: a branch-line [60] and a rat-race coupler [61], de-
scribed by ten and six design variables, respectively. The results show that the proposed 
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framework is capable of yielding designs satisfying assumed design objectives at a low 
computational cost. 

3.1. Example 1: Branch-Line Coupler 
Our first verification structure is a miniaturized branch line coupler [60]. Figure 7 

shows the circuit topology which employs a high-impedance asymmetrical T-equivalent 
structure replacing the conventional transmission line for size reduction and return loss 
bandwidth enhancement. The circuit is implemented on the substrate of fixed height h = 
0.76-mm, whereas the substrate permittivity is one of the objective space components. The 
vector of designable parameters is x = [g l1r la lb w1 w2r w3r w4r wa wb]T. The relationships 
between other parameters are as follows: L = 2dL + Ls, Ls = 4w1 + 4g + s + la + lb, W = 2dL + Ws, 
Ws = 4w1 + 4g + s + 2wa, l1 = lbl1r, w2 = waw2r, w3 = w3rwa, and w4 = w4rwa, s = g and dL = 15 mm is 
fixed. All dimensions are expressed in mm except those with r-subscript which are rela-
tive. The computational model is implemented in CST Microwave Studio. 

The following design objectives are considered: (i) the coupler matching and isolation 
are to be below –20 dB at the frequency f0, and, at the same time, (ii) equal power split, i.e., 
|S21(x, f0)| = |S31(x, f0)|, is to be ensured. The conditions (i) and (ii) are to be achieved for a 
given substrate permittivity r. For this case study, the ranges of the performance figures are 
1.0 GHz  f0  2.0 GHz, and 2.0  r  5.0. The assumed number of the database designs is 
nine, and they correspond to the following performance figures pairs {f0, r} = {1.0, 5.0}, 
{1.5, 5.0}, {2.0, 5.0}, {1.0, 3.5}, {1.5, 3.5}, {2.0, 3.5}, {1.0, 2.0}, {1.5, 2.0}, and {2.0, 2.0} (frequency 
in GHz). These designs have been used to set up both the inverse model sx and the feature-
based forward surrogate sJ. 

Numerical verification of the proposed methodology for the branch-line coupler of 
Figure 7 has been performed for the objective vectors Ft provided in Table 1, where the 
detailed optimization results are also given. Table 2 gathers the optimized branch-line 
coupler (BLC) dimensions, whereas Figure 8 shows the initial and optimized characteris-
tics of the circuit. The initial designs of Figure 8 are yielded for the target operating con-
ditions Ft by the inverse metamodel sx as x(0) = sx(Ft), and the optimized designs are fine-
tuned according to the procedure delineated in Section 2.4, where the feature-based Jaco-
bian is jump-started with Jφ(0) = sJ(Ft). The average computational cost of yielding the opti-
mal design is just nine full-wave EM analyses. The quality of the optimal designs is quan-
tified by the value max(S11(f0), S41(f0)), i.e., the maximum value of the matching and isola-
tion characteristics at the target operating frequency f0, as well as the obtained power split 
dS = ||S21(f0)| − |S31(f0))|| at f0. In the proposed framework, the average value of the former 
equals –23.6 dB, whereas the latter does not exceed 0.03 dB for all the optimized designs 
(see also Table 1). For this verification case, the non-feature-based warm-start optimiza-
tion procedure reported in [53] failed to provide satisfactory results for all the target vec-
tors of Table 1. This is due to the fact that the accuracy of the forward sensitivity model is 
in this case poor. In other words, the information comprised in nine reference designs did 
not provide a reliable representation of the sensitivity of the circuit response, yet it was 
sufficient to set up the sensitivity feature-based metamodel of satisfactory predictive 
power. 

As mentioned above, a straightforward comparison between the proposed feature-
based technique and its original counterpart (not relying on response features) is not pos-
sible for the verification example of this section. An indirect comparison may be made 
with the methodology of [53] applied for three- and four-section impedance matching 
transformers described by ten and fifteen geometry parameters, respectively. In [53], de-
rivative-free forward metamodel was sufficiently accurate to reliably represent the sensi-
tivities of the device at hand and the high-quality optimal designs were obtained at the 
average cost of eight EM analyses (per design). The proposed approach may also be com-
pared to the work of [62], where the branch line coupler of Figure 7 has been optimized 
directly, i.e., without jump-starting the Jacobian. In that case, the average cost of the opti-
mization process [62] has been considerably higher and exceeded 70 EM simulations per 
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design. An important remark is that, in general, a local optimization procedure requires 
good starting point being sufficiently close to the optimal solution. In our approach, such 
high-quality initial designs are yielded by the inverse metamodel, thereby allowing to ex-
pedite the optimization process. 

wc

Ws

lb

la

wa

dL w2

l1

w1

s
Ls

W

L

w3 w4

wb

I

II

III

IV
 

Figure 7. Compact branch-line coupler (BLC) [60]. The numbered circles indicate the circuit ports. 

Table 1. Optimization cost breakdown and the objective function values for branch-line coupler of 
Figure 7. 

Target Operating Condi-
tions Ft Max(S11(f0), S41(f0)) [dB] dS [dB] Optimization Cost 1 

f0 [GHz] r 
1.2 4.4 −26.4 0.02 11 
1.5 4.4 −22.5 0.03 8 
1.7 3.5 −22.7 0.01 10 
1.7 4.4 −23.9 0.01 8 
1.0 3.0 −20.1 0.01 6 
2.0 4.4 −26.3 0.01 8 

1 The cost in terms of the number of EM simulations required by the optimization process. 

Table 2. Branch-line coupler: designs optimized for the target operating conditions of Table 1. 

Target Vector Ft Geometry Parameter Values [mm] 
f0 [GHz] r g l1r la lb w1 w2r w3r w4r wa wb 

1.2 4.4 0.56 0.58 9.06 10.86 0.81 0.81 0.20 0.11 3.79 0.40 
1.5 4.4 0.56 0.70 7.36 7.92 0.92 0.90 0.56 0.15 3.40 0.77 
1.7 3.5 0.63 0.50 7.23 9.17 0.98 0.72 0.25 0.10 2.91 0.39 
1.7 4.4 0.49 0.55 6.96 8.38 0.83 0.68 0.34 0.10 2.83 0.44 
1.0 3.0 0.89 0.55 11.64 13.65 0.92 0.97 0.15 0.10 4.63 0.20 
2.0 4.4 0.40 0.50 6.35 8.51 0.87 0.47 0.20 0.10 2.18 0.22 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. The S-parameters of the branch line coupler of Figure 7: initial designs are marked gray, the designs optimized 
according to the proposed feature-based procedure for the target operating conditions of Table 1: (a) f0 = 1.2 GHz, r = 4.4, 
(b) f0 = 1.5 GHz, r = 4.4, (c) f0 = 1.7 GHz, r = 3.5, (d) f0 = 1.7 GHz, r = 4.4, (e) f0 = 1.0 GHz, r = 3.0, (f) f0 = 2.0 GHz, r = 4.4 are 
marked black. The vertical red line marks design specifications. 
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3.2. Example 2: Rat-Race Coupler 
Our second demonstration example is a compact rat-race coupler (RRC) [61] shown 

in Figure 9. The circuit employs a defected microstrip structure (meander spurline) within 
a folded transmission line. The slow-wave effect of the meander spurline allows for re-
ducing the size of the coupler. Further size reduction is obtained by folding the part of the 
structure to the inside. The RRC is described by the following independent parameters x 
= [L1 br g hfr s lfr]T. All dimensions are expressed in mm except for the relative quantities 
with r-subscript which are unitless. The following relationships hold L2 = L1 − g − w0, a = (lf 
− 17s)/16, b = (hf − s)br, lf = L2 lfr, lv = L1 − 2g − 2w0, and hf = s + (w0 − s)hfr. The fixed parameters 
are dW = dL = 10 mm, whereas the input line width w0 is computed for a given substrate 
permittivity r so as to ensure 50 Ω input impedance. The computational model is imple-
mented in CST Microwave Studio. 

dL

dW

w0

g

L1

L2

lv

s

a

b

hf

lf

dW

I II

III IV
 

Figure 9. Rat-race coupler (RRC) [61] with meander spurline and folded transmission line. The cir-
cuit ports are indicated by the numbered circles. 

As in the previous case, the design objectives include (i) ensuring the coupler match-
ing and isolation below −20 dB at the operating frequency f0, and (ii) achieve equal power 
split. The same ranges of the design objectives are considered, i.e., 1.0 GHz  f0  2.0 GHz, 
and 2.0  r  5.0. Furthermore, nine database designs have been used to set up the entire 
framework, and they correspond to the performance figures pairs listed in Section 3.1. 

The methodology outlined in Section 2 has been also validated by optimizing the rat-
race coupler of Figure 9. Table 3 gathers the selected target objective vectors Ft, as well as 
the optimization results and computational cost. The geometry parameters of the opti-
mized designs are provided in Table 4. Figure 10 shows the coupler S-parameters for the 
initial and optimized designs. The average computational cost of design optimization for 
this verification case is as low as six full-wave EM analyses. The quality the optimal de-
signs is quantified by the higher of the values of the matching and isolation characteristics 
at the target operating frequency f0, the average value of which for the presented example 
and for all the target objective vectors is slightly below −20 dB. In this case, the average 
value of the power split at f0 is around 0.1 dB. As for the previous example, the framework 
of [53], in which the forward sensitivity model has been based on the entire frequency 
response of the coupler, failed to yield satisfactory results. Therefore, only an indirect 
comparison may be made with the results of optimizing the same structure with the use 
of the classical approach [62]. In [62], the computational cost of yielding optimal RRC ge-
ometries exceeded 50 EM analyses. 
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Table 3. Optimization cost breakdown and the objective function values for rat-race coupler of 
Figure 9. 

Target Operating 
Conditions Ft Max(S11(f0), S41(f0)) [dB] dS [dB] 

Optimization 
Cost 1 

f0 [GHz] r 
1.2 4.4 –22.1 0.03 5 
1.5 2.7 –20.1 0.01 7 
1.5 4.4 –19.9 0.30 5 
1.6 2.5 –20.9 0.03 6 
1.7 3.5 –18.9 0.25 5 
1.8 2.5 –19.6 0.01 8 

1 The cost in terms of the number of EM simulations required by the optimization process. 

Table 4. Rat-race coupler: designs optimized for the target operating conditions of Table 3. 

Target Vector Ft Geometry Parameter Values [mm] 
f0 [GHz] r L1 br g hfr s ffr 

1.2 4.4 32.46 0.55 2.63 0.69 0.33 0.53 
1.5 2.7 31.50 0.51 2.06 0.55 0.26 0.63 
1.5 4.4 28.68 0.52 2.95 0.54 0.23 0.47 
1.6 2.5 30.82 0.57 2.46 0.52 0.24 0.62 
1.7 3.5 27.46 0.50 2.52 0.52 0.20 0.48 
1.8 2.5 28.55 0.59 1.63 0.44 0.31 0.58 
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(e) (f) 

Figure 10. The S-parameters of the rat race coupler of Figure 9: initial designs are marked gray, the designs optimized 
according to the proposed feature-based procedure for the target operating conditions of Table 1: (a) f0 = 1.2 GHz, r = 4.4, 
(b) f0 = 1.5 GHz, r = 2.7, (c) f0 = 1.5 GHz, r = 4.4, (d) f0 = 1.6 GHz, r = 2.5, (e) f0 = 1.7 GHz, r = 3.5, (f) f0 = 1.8 GHz, r = 2.5 are 
marked black. The vertical red line marks design specifications. 

In order to put the methodology considered in this work in the context of state-of-
the-art techniques reported in the literature, Table 5 provides a qualitative comparison 
with selected global search methods involving both direct optimization of EM simulation 
models of high-frequency structures using particle-swarm optimization algorithm (PSO) 
[24–27], arguably one of the most popular nature-inspired techniques, and surrogate-as-
sisted approaches [40,41]. On the one hand, it can be observed that our approach is signif-
icantly more efficient in computational terms, as well as allows for handling higher-di-
mensional problems. On the other hand, these advantages result from utilization of the 
reference designs, which indicates the importance of exploiting the problem-specific 
knowledge whenever possible. 

Table 5. Comparison of the proposed methodology for design closure of compact microwave com-
ponents with selected global search methods. 

Technique Model 
Optimization 

Algorithm Test Case 
Number 

of Design 
Variables 

Optimization 
Cost 

[40] 
Artificial 
Neural 

Network 

Feed-forward-
ANN approach 

Wilkinson 
power divider 1 Not reported 

[41] 
Artificial 
Neural 

Network 

Bayesian regu-
larization back-

propagation 

Microstrip fil-
ter 

1 Not reported 

[24] 

Full-
wave 

simula-
tion 

model 

PSO 
Spatial phase 

shifter 1 Not reported 

[25] 

Full-
wave 

simula-
tion 

model 

PSO 
Band-gap res-

onator an-
tenna 

10 Not reported 
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[26] 

Full-
wave 

simula-
tion 

model 

PSO 
Fabry–Perot 
resonator an-

tenna 
1 Not reported 

[27] 

Full-
wave 

simula-
tion 

model 

PSO 
Band-gap res-

onator an-
tenna 

3 
Around 

2500 EM simula-
tions 

This work 

Full-
wave 

simula-
tion 

model 

Trust-region 
gradient search 

Rat-race cou-
pler 

10 
Few (about a 
dozen) of EM 
simulations 

4. Conclusions 
The paper proposed a framework for expedited re-design of compact microwave 

components. Our procedure exploits a database comprising a limited number of pre-op-
timized designs, along with the inverse and forward feature-based metamodels. The pri-
mary contribution of the proposed methodology consists in the incorporation of the re-
sponse feature technology into the warm-start algorithm. For the presented verification 
cases, a branch-line and a rat-race coupler, constructing the forward sensitivity meta-
model at the level of the response features rather than the entire frequency characteristics 
allowed for modeling the circuit sensitivities in a reliable manner. As a matter of fact, 
carrying out the optimization process with the use of the non-feature-based forward sur-
rogates turned out to be impossible due to the limited accuracy of the latter. This indicates 
that for the considered class of miniaturized microwave structures, modeling sensitivities 
at the level of the response features is instrumental in achieving satisfactory results. An-
other advantage of the proposed approach is a small computational cost of yielding high-
quality designs satisfying the assumed design specifications, which has been less than a 
dozen of full-wave simulations for all the presented verification cases. 

As for the limitations of the proposed framework, it can be considered a suitable tool 
for cost-efficient and reliable solving of optimization tasks whenever a set of already ex-
isting designs is readily available for a structure at hand that would serve for setting up 
the inverse and forward surrogates employed by our technique. Another area of employ-
ing the presented methodology are the situations when the initial expenditures of data-
base designs acquisition are justifiable by repetitive future reuse of the framework. Nev-
ertheless, the overall cost of both surrogate construction and rendering the optimal de-
signs is significantly lower than the cost offered by either the methods employing conven-
tional surrogates or the optimization techniques using population-based optimizers. 

Moreover, the scope of applicability of our method is limited to structures whose 
responses feature well distinguished characteristic points. Nevertheless, the characteris-
tics of many real-world microwave components are essentially structured (e.g., couplers 
or multi-band transformers). Therefore, the employment of the feature-based techniques 
for such structures is not impeded by the aforementioned factors. Furthermore, the pre-
sented methodology may also be applied to antenna structures, in particular, narrow-
band or multi-band antennas, to allocate their resonances at the required target frequen-
cies. 

Improving the efficiency of our approach is possible by automating the process of 
rendering the reference designs and lowering its cost. Another way of improving the ver-
satility of the technique is to develop a generalized definition of features points that would 
be less dependent on a particular structure of the component response. This would allow 
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for to preserving the consistency of the feature set across the parameter space and permit 
applying the proposed approach to a wider class of high-frequency structures. 
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