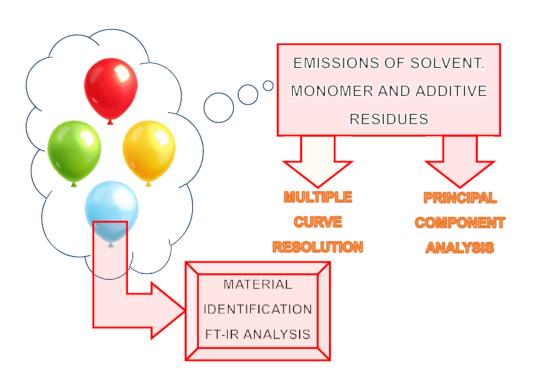
Postprint of: Marć M., Tsakovski S., Tobiszewski M., Emissions and toxic units of solvent, monomer and additive residues released to gaseous phase from latex balloons, Environmental Research, Vol. 195 (2021), 110700, DOI: 10.1016/j.envres.2020.110700

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Emissions and toxic units of solvent, monomer and additive residues released to gaseous phase from latex balloons


Mariusz Marć^{1*}, Stefan Tsakovski², Marek Tobiszewski¹

¹Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland

²Chair of Analytical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", Sofia, 1164, Bulgaria

*Address for correspondence: Mariusz Marć, Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, PL 80-233, Gdańsk, Poland.

e-mail: marmarc@pg.edu.pl


```
1
     Emissions and toxic units of solvent, monomer and additive residues released to gaseous
2
      phase from latex balloons
 3
     Mariusz Marc<sup>1*</sup>, Stefan Tsakovski<sup>2</sup>, Marek Tobiszewski<sup>1</sup>
 4
 5
      <sup>1</sup>Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of
 6
7
      Technology, Gdańsk, Poland
      <sup>2</sup>Chair of Analytical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University "St.
8
9
      Kliment Ohridski", Sofia, 1164, Bulgaria
10
11
      "Address for correspondence: Mariusz Marć, Department of Analytical Chemistry, Faculty of
      Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, PL 80-233, Gdańsk,
12
      Poland.
13
      e-mail: marmarc@pg.edu.pl
14
15
      Capsule: The emitted compounds form two separate groups, suggesting two different
16
      emission sources: first related to latex material, the second one related to sorption-desorption
17
      processes
18
19
20
      Abstract
      This study describes the VOCs emissions from commercially available latex balloons. Nine
21
      compounds are determined to be emitted from 13 types of balloons of different colors and
22
      imprints in 30 and 60°C. The average values of total volatile organic compounds (TVOCs)
23
     emitted from studied samples ranged from 0.054 up to 7.18 µg·g<sup>-1</sup> and from 0.27 up to 36.13
24
25
```

This study describes the VOCs emissions from commercially available latex balloons. Nine compounds are determined to be emitted from 13 types of balloons of different colors and imprints in 30 and 60°C. The average values of total volatile organic compounds (TVOCs) emitted from studied samples ranged from 0.054 up to 7.18 μg·g·l and from 0.27 up to 36.13 μg·g·l for 30°C and 60°C, respectively. The dataset is treated with principal component analysis (PCA) and multiple curve resolution (MCR) to characterize its internal patterns. Here two groups on compounds are recognized – the first one related to balloon material, the second one being emissions of compounds previously adsorbed on balloon material. The toxicity assessment of MCR modeled balloons' emissions was performed by toxic unit (TU) approach. The obtained TUs were summed to give toxicity emission assessment. The incorporation of TUs allows to identify the balloons with the most toxic emissions– imprinted ones in 60°C. The compounds of the highest TUs are hexanal and benzene. FTIR analysis shows that all balloons are made of the same polymeric material – isoprene, so all differences in emissions are related to different additives like pigments, imprints or these responsible for opaqueness. Analyzing the obtained research results it was noticed that latex balloons might be considered as an important source of emission of aliphatic and monoaromatic hydrocarbons to the gaseous phase.

Key words: latex balloons; solvent and monomer residues; emissions; multiple curve resolution; toxic units

1. Introduction

42 43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68 69

70

71

72

73

74

75

76

77

78

79

80

81

Nowadays, almost every synthetic material consists a wide spectrum of additives, such as antistatic agents, ultraviolet radiation filters, antioxidants, plasticisers, stabilizers, lubricants as well as pigments, colorants, fillers or nanofillers (Mitchell et al., 2014; Hahladakis et al., 2018). Consequently, the harmful chemicals (such as formaldehyde, volatile organic compounds (VOC), as well as semi-volatile organic compounds (SVOCs)) that might be introduced in a synthetic materials manufacturing process, could be emitted to the gaseous phase during their regular use (Wolkoff and Nielsen, 2001; Gallon et al., 2020). Mainly, the chemical compounds released from synthetic materials arise from residues of reagents used during polymerisation reaction (monomers, cross-linking agents, reaction initiators, solvents) and the impurities present in employed wide spectrum of plastic additives (Böhm et al., 2012; Rosenmai et al., 2017; Yan et al., 2017). This phenomenon concerns the various types of everyday use large or small-scale indoor equipment (floor coverings, floor panels, furniture, electronic devices, toys), as well as the wide spectrum of synthetic materials (copolymer acrylonitrile-butadiene styrene (ABS), polyvinyl chloride (PVC), polypropylene (PP) and polyethylene(PE)) intended to come into direct contact with food or human skin (Kamarulzaman et al., 2019; Rubio et al., 2019). The quality of synthetic materials (which can be defined by assessing the type and amount of emitted chemical compounds) is particularly important in the case of products intended for direct use by children. As a result of the use of synthetic materials by children, exposure to the harmful chemical compounds can take place not only through the skin (touch), but also through the mucous membranes of the mouth (saliva) and nose (inhalation). It is particularly important because they can lead to allergies and skin irritation and also because most of toxic additives are endocrine disrupting substances (EDS) whose adverse effect are particularly relevant during childhood. (Denk et al., 2017; Wiedmer and Buettner, 2018; Even et al., 2019). One of the most common polymeric products that children over 3 years of age might have direct contact with are party balloons, mainly made of natural rubber latex (NRL). The NR is made from the latex of Hevea brasiliensis tree (occurring in tropical countries such as Thailand, Malaysia, and India), and mainly consists of cis-1,4-polyisoprene (up to 94% of the material weight) and about 6% non-rubber (non-isoprene) compounds such as lipids (range from 1.5 to 3% w/w), proteins and polypeptides (up to 2% w/w), carbohydrates (up to 0.4% w/w) and inorganic salts (up to 0.2% w/w) (Nimpaiboon and Sakdapipanich, 2013; Sukmak et al., 2020). As an alternative source of liquid latex, characterized by a lower allergenic potential, the *Parthenium argentatum* (known as Guayule, occurring in North American and Mexican desert shrub) might also be considered. The appropriate elastic, ductility and strength properties of this material are obtained in the course of rubber vulcanisation process (Altkofer et al., 2005; Critchley and Pemberton, 2020). During the manufacturing process of materials made of NRL, for instance party balloons or medical gloves, a number of additional chemicals, such as reaction accelerators, activators, as well as vulcanizing and anti-oxidant agents, are introduced. As it was observed in the early 1990s, the use of materials made of

NRL such as medical gloves, latex-containing medical products or devices, caused in their 83 users allergic reactions ranging from urticarial to rhinoconjunctivitis, asthma, and anaphylaxis 84 85 (Tommaso et al., 2019). Since that time, allergic problems resulting from the application of 86 NRL accessories have become the subject of interest of the scientific and media world (Palosuo et al., 2011). In general, the skin allergic reaction might be associated with the 87 88 sensitivity to chemical additives used in NRL material manufacturing process (Lauren Charous et al., 2002). For this reason it is highly recommended to investigate not only the 89 90 quality of NRL medical products, but also other NRL products that have direct contact with 91 human tissues, such as mentioned earlier party balloons, for which the manufacturing process 92 is similar to that of medical gloves. However, the quality of party balloons and the emission potential of chemical compounds is very important due to their field of application. In 93 general, party balloons should be filled with air or helium delivered from a manual or 94 95 automatic pump or directly from a gas container. In fact, for regular use, the party balloons 96 filling process is performed by the mouth, which causes direct contact of the material with the 97 oral mucosa, thus increasing the risk of an allergic reaction. It is extremely important when 98 the person using the NRL party balloons is a child just over 3 years of age (manufacturers 99 state balloons are inappropriate for children under three years old). 100 The aim of the research is to investigate the emission of VOCs from party balloons mainly 101

made of natural rubber latex which were delivered directly from the manufacturer. The potential sources of emitted compounds are discussed and with the aim of chemometric tools the risk assessment is performed. To our best knowledge it is the first study on the VOCs emissions from commercially available balloons. We identify the compounds emitted and determine the emission. The novelty lies also in the application of the combination of multiple curve resolution with toxicity units to assess, which of the VOCs from total flux contribute more to the health problems. This study widens the understanding of chemical hazards sources in humans everyday exposure.

2. Materials and methods

111

112

113

114

115

116

117

118

119

120

121

122

102

103

104

105

106

107

108

109

110

2.1 Characteristics of latex balloon samples

Studies were performed on latex balloons delivered directly from the local manufacturer, which is the member of European Balloon and Party Council (EBPC). Thirteen different types of latex balloons were delivered in a separate packed batch. Each batch contained ten balloons of the exactly same shape, colour (pigment type) and similar weight placed in polypropylene zipper bags. Zipper bags with latex balloons were stored at the laboratory at room temperature in a dark place (stored without access to light). To determine the emissions of potential solvent, monomer or additives residues four randomly selected latex balloons were picked up from a single batch and considered as a representative for the whole batch. Selected samples of latex balloons were then weighed, suitably labelled, and placed inside the stainless-steel tightly sealed microscale chamber. Because of the fact that delivered latex balloons varies in terms of colour (pigment type), weight, shape and the presence of additional imprint, it was

124 obliged to introduce the appropriate samples identification system, which was enclosed in

125 Table 1. There was no need for a special treatment of studied samples – absence of cutting

126 and reducing the samples dimensions.

127 The total number of investigated samples of latex balloons for the type and amount of

potential solvent, reagents and additives residues emitted from their surface was 52. The

129 average weight of all analysed latex balloon samples was 3.37 ± 0.60 g.

130

131

128

2.2 FT-IR analysis conditions

132 In order to identify the main polymer, its preliminary quality and potential additives that 133 might be used during its manufacturing process, the Fourier transform infrared spectroscopy 134 (FT-IR) analysis was performed. The FT-IR analysis of studied latex balloon samples was 135 recorded with a Nicolet Spectrometer IR200 from Thermo Scientific (Waltham, MA, USA). 136 The system was equipped with an ATR attachment with a diamond crystal. Measurements were performed with 1 cm⁻¹ resolution in the range from 4000 to 400 cm⁻¹ and 64 scans. Four 137 representatives of latex balloons that differ significantly by the colour (pigment type) and 138 139 shape, were randomly selected for FT-IR analysis. Obtained IR results were paralleled to 140 spectra in the Hummel Polymer Sample Library database, which encloses the IR spectra of 141 the most commonly used polymers and other materials. In addition, the manual evaluation and the comparison with the literature IR spectra, was also performed to obtain the very reliable 142 143 analytical information about studied material (Arjunan et al., 2001; Dghim et al., 2015).

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

2.3 Sampling protocol of solvent, monomer and additives residues emitted from investigated latex balloons

The emissions of solvents, monomers and additives residues released from studied latex balloons were assess with the use of microscale stationary emission chamber - the Micro-Chamber/Thermal ExtractorTM (µ-CTETM 250, Markes International, Inc). Detailed information about the characteristics of this analytical equipment, its operating range and overall working parameters were specified in previously published papers (Marć et al., 2017; Marć and Zabiegała, 2017; Marć, 2020). There was no need to apply a specific sample preparation procedure and the studied latex balloons were placed inside a chamber without previously cutting (whole latex balloon was placed inside a single chamber).

Samples of latex balloons were investigated employing mentioned above the μ-CTETM 250 system at two temperatures: (i) 30°C – to investigate the basic emission of general solvents, reagents and potential additives that might be emitted during regular use of studied latex samples; (ii) at 60°C – a significantly higher temperature to assess the maximum emission potential of studied latex samples and to investigate the presence of potential chemical compounds that might be released from the surface of studied latex materials as a polymer or additives thermal degradation products (temperature close to maximum operating temperature range – 70-80°C). One analytical conditioning and sampling period contains the analysis of four samples originating from the same batch of latex balloons. The inert gas flow rate (nitrogen, 2.2) passed through the chamber was set up to 25 ± 0.5 mL·min⁻¹ and the sampling

165 conditioning time was 30 ± 1 min. The samples of analytes emitted from the studied latex 166 balloons to the gaseous phase were transported by the gas stream directly to the attached 167 stainless steel tube filled with Tenax TA sorption medium (60/80 mesh, O.D. × L 1/4 in. × 3 168 1/2 in., Merck KGaA, Darmstadt, Germany), each time conditioned (300°C for 30 min under 169 inert gas flow rate) before sampling stage.

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

2.4 Thermal desorption and final determination systems working parameters

The analytical technique employed at the stage of thermal desorption of analytes collected on the applied sorption medium was two-stage thermal desorption (TD) system (Markes Series 2 Thermal Desorption Systems; UNITY/TD-100). In brief, after the sampling stage the stainless steel tubes were placed in a TD heating unit and maintained in elevated temperature 295°C for 15 min under the inert gas flow rate (helium, 50 mL·min⁻¹), which transfers the analytes directly to the microtrap (multibed glass tube cooled down to 0°C). After this, the valve was switched and the inert gas (helium flow rate 2.0 mL·min⁻¹) was passed through the microtrap (rapidly heated up to 300°C and maintained for 5 min) and the analytes were transported directly to the fused silica capillary column (J&W, DB-1 30 m \times 0.32 mm \times 5 μ m). The separation, preliminary identification and quantitative determination was performed with the use of gas chromatograph (Agilent Technologies 7820A GC System) with flame ionization detector (FID working temperature – 250°C). The GC-FID was connected with the TD unit by transfer line, constantly heated up to 180°C. The GC oven working was: initial temperature – 45°C maintained for 1 min, next ramped 15°C·min⁻¹ up to 120°C, and held for 2 min, then increased with the rate 10°C·min⁻¹ up to 250°C and held for 5 min. The inert GC gas constant flow (He, 5.0) rate – 2.0 mL·min⁻¹. In order to perform better identification of the main emitted chemical compounds from the studied samples of latex balloons the TD-GC-MS system was employed, under the following working parameters: (i) TD unit (Unity v.2, Markes International Ltd.) – the analytes thermal extraction process was performed in similar conditions to mentioned TD-GC-FID system; (ii) GC (Agilent Technologies 6890) column and oven working parameters – GC column (60 m \times 0.25 mm \times 1 μ m, J&W DB-5MS, USA); helium gas flow rate – 1.5 mL·min⁻¹, oven program: initial temperature – 50°C maintained for 1 min and next ramped 10°C·min⁻¹ up to 280 and held for 10 min; (iii) MS (5873 Network Mass Selective Detector, Agilent Technologies) working parameters - ion source temperature: 230°C, the quadrupole mass analyser temperature: 150°C, and the GC-MS transfer line temperature: 280° C, MS working mode – SCAN, monitored mass range (m/z) – 35 - 450.

198 199

200

201

202

203

204

205

2.5 Calibration and QA/QC protocol characteristic

The amount of chemical compounds considered as solvent and reagent residues emitted from the exanimated latex party balloon was assessed with the use of the calibration of the TD-GC-FID employing the external standard (ESTD) method. Based on the commercially available reference standard solution (EPA VOC Mix 2, Supelco, USA) containing defined type and amount of VOCs (13 monoaromatic hydrocarbons dissolved in methanol at a concentration of 2000 µg·mL⁻¹ each), hexanal analytical standard (1 mL, Supelco, USA) and n-undecane

206 reference substance for GC (5 mL, Supelco, USA), the calibration curves were elaborated. To 207 perform the calibration procedure, seven calibration reference solutions (for seven-point 208 calibration curve) in 1 mL of methanol were prepared, containing approx. from 1 ng up to 500 209 ng of each of measured monoaromatic hydrocarbons. The whole calibration protocol was carried out with the use of specific type of laboratory tool (device that gives a possibility to 210 211 introduce a defined amount of calibration solution directly onto the clean sorption medium), 212 in details labelled in former studies (Zabiegała et al., 2011; Marć et al., 2014a; Marć et al., 213 2014b). The Tenax Ta stainless steel tubes containing defined mass of selected VOCs were analysed under the same equipment conditions and working parameters as the real samples. 214 215 Each point representing the defined calibration curve was repeated three times. The evaluated correlation coefficients (R²) of the prepared calibration curves for defined range of 216 217 monoaromatic hydrocarbons were approx. from 0.952 for benzene to 0.999 for styrene. As for 218 the aliphatic hydrocarbons identified on GC-MS system (n-dodecane and n-tridecane), the 219 obtained chromatograms on GC-MS system were compared with chromatograms obtained 220 with the use of GC-FID system and their amounts were calculated based FID response factors 221 and determined calibration curve of n-undecane. The TVOC values were calculated according 222 to the commonly used protocol which defines it as a the sum of all organic compounds, 223 eluting between n-hexane and n-hexadecane (analytical window) on non-polar or slightly polar stationary phases of the GC column using GC-FID and quantifying as toluene 224 225 equivalents (ECA-IAQ, 1997; Massold et al., 2005). The TVOC parameter is a screening factor that might define the impact on the emissions of non-aromatic hydrocarbons that might 226 227 be emitted from the studied samples of latex balloons as a thermal degradation of basic 228 polymer. 229 Following the principles of good laboratory practice, the calculated masses of detected 230 monoraomatic and aliphatic hydrocarbons, as well as TVOC parameter were corrected for the 231 blank field value assessed for the entire measuring set. The blank values were evaluated after 232 every measuring period. In addition, after each of sampling period and blank field value 233 measurement, the emission chambers were conditioned at temperature 100°C for 30 min to 234 remove potential analytes residues or chamber impurities and to reduce to minimum the 235 potential wall-memory effect. The blank field tests were carried out under the same conditions 236 as for the analysis of real samples. 237 The recovery values of monoaromatic hydrocarbons retained on the sorption medium were 238 assessed based on the application of defined mass of analytes (form reference solution) on a clean sorption bed. Next, the sorption tube was introduced to the TD unit and analytes were 239 240 thermally extracted, separated and determined under the same TD-GC-FID conditions as for the real samples. As a result, the average recovery values of monoarometic hydrocarbons do 241 242 not exceed ± 5%. The method detection limits (MDL) were evaluated based the signal-to-243 noise ratio. The assessed values of method quantification limits (MQLs) calculated as 3 ×

2.6. Chemometric analysis and toxicity mixture assessment

MDL ranged from 0.088 ng·g⁻¹ for benzene to 0.098 ng·g⁻¹ for styrene.

244

245

247 Principal component analysis (PCA) is well known chemometric technique for dimensionality reduction (Navarro et al., 2010). PCA looks for the components (latent factors) that describe 248 249 the major variance sources present in a particular data set (Jolliffe, 2002). To extract the components associated with major part of data variance PCA decomposes the data matrix (D) 250 as the product of two orthogonal factor matrices U and V^{T} (eq. 1). 251

252

$$D = UV^T + E \tag{1}$$

254

253

where **D** is the data matrix of dimensions (I, J): I is the number of samples (balloon series No 255 256 in this study), J is the number of variables (detected volatile organic compounds). U is the matrix of principal component sample scores of dimension (I, N), where N is the number of 257 principal components. V^{T} is the matrix of loadings with dimension (N, J). E is the residual 258 matrix with the same dimensions like data matrix (**D**). The two matrices **U** (scores) and $\mathbf{V}^{\mathbf{I}}$ 259 260 (loadings) contain the useful information about hidden relationships within the data set and could be used for the identification of sources contributed to the balloons' emissions. 261 262 However, the score and loadings profiles obtained by PCA could not be used as source 263 profiles since they have negative values. The original scores and loadings matrixes obtained 264 by PCA could not be used directly for source apportionment. They need a transformation leading to non-negativity solution. The most used approach is absolute principal component 265 266 scores (APCS) proposed by Thurston and Spengler (1985). The non-negativity is obtained by introducing of "zero day" (in current study it could be "zero emission") for correction of principal component scores.

267 268 269

Similarly to PCA, Multivariate curve resolution (MCR) decomposes the data matrix into two factor matrices using alternating least squares optimization (Tauler, 1995) but the method provides non-negative solutions without using orthogonal constraints which leads to physically meaningful emission sources.

272 273 The toxicity assessment of MCR modeled balloons' emissions is performed by toxic unit 274 (TU) approach. The TU is a concentration addition approach, which is based on the endpoint 275 of acute or chronic toxicity tests. The concentration of a substance is expressed as a 276 proportion of the response (LC50 inhalation toxicity towards rodents in this study) (Brown, 277 1968). The proportional toxicity (toxic unit) of each compound is obtained by dividing its concentration in the balloon emission by its LC50 value. Then, the obtained TUs are summed 278 279 to give toxicity emission assessment.

280 All chemometric analysis calculations were performed under MATLAB R2018b using PLS 281 Toolbox 8.7 (Eigenvector Research Inc, Manson, WA, USA) and MCR-ALS Toolbox (Jaumot et al., 2015). 282

283

284

270

271

3. Results and discussion

285

286

3.1 FT-IR analysis of studied latex balloons

In order to identify the main polymer material and possible solvents, reagents and additives residues the FT-IR analysis was performed and the results of these studies are shown in Figure 1. Considering the data show in Figure 1 it might be observed that all of studied latex balloon samples were characterised by similar IR spectra. Because of this it might be concluded that analysed latex balloons are generally made of the same type and quality of polymeric material, and slight differences might occur from the application of different type of pigment or due to the presence of gloss on the surface of the studied material. The detailed information about the vibration types and assignments of various IR bands obtained for selected samples of latex balloons (frequencies are recorded with an accuracy of ± 1 cm⁻¹) was enclosed in Table 2.

297

298

299

300

301

302

303 304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

287

288

289

290

291

292

293

294

295

296

3.2 The emissions of solvent, monomer and additives residues from studied latex

Detailed information about the results (contains the range of minimum and maximum values) of emissions of the aliphatic and monoaromatic hydrocarbons (as a representatives of solvent, monomer and additive residues) liberated to the gaseous phase from the studied samples of latex balloons, as well as the values of calculated TVOC parameter were listed in the Table 3. First of all, considering the data listed in the Table 3 it might be observed a clear relation between the temperature and the emission levels. The increase of latex balloon samples conditioning temperature affects significantly the emission of the most of determined chemical compounds (excluding ethylbenzene and in some cases hexanal). Generally, the presence of this phenomenon might be observed comparing the average values of TVOC parameter. For emission experiment temperature 30°C, the average value of TVOC parameter for all of studied samples ranged from 0.054 up to 7.2 µg·g⁻¹ for latex balloon samples labelled as ORANGE_WG_2 and ORANGE_BLACK_IMPRINT_10, respectively. As for the conditioning temperature equal 60°C, the average value of TVOC parameter for all of studied samples ranged from 0.27 up to 36.11 µg·g⁻¹ which also corresponds to the latex balloon samples labelled as ORANGE_WG_2 and ORANGE_BLACK_IMPRINT_11, respectively. Moreover, in both temperature ranges it might be observed that latex balloon samples with an additional imprint were characterised by highest values of TVOC parameter in comparison to plane latex balloons (without the additional imprint). This might lead to the conclusion that the application of additional imprint on the latex balloon surface contains an additional source of emission of chemical compounds to the gaseous phase (mainly volatile organic compounds). In addition, considering the data listed in the Table 3 it might be noticed that the screening parameter defined as TVOC might be significantly use for quick and easy comparison of the polymeric and synthetic materials, which might be characterised by the different shape, pigment and applied additives. Taking into account the chemical structure of applied polymeric material (linear polymer structure) to manufacture the studied latex balloons and combine this information with the FT-IR analysis (Figure 1 and Table 2) and Table 3 it might be observed that the significant impact on the values of TVOC parameter have the aliphatic hydrocarbons, such as undecane,

dodecane and tridecane. It is mainly associated with the chemical structure of synthetic materials and their emission might be caused by the thermal degradation of the structure of polymeric material applied in studied balloon samples. For this reason, the emission of monoaromatic hydrocarbons from the surface of studied latex balloons samples might be considered as a residual. Especially, it might be observed at the conditioning temperature equal to 30°C, in which the emission of ethylbenzene was below LOD and the emission of other monoaromatic hydrocarbons was at the very low level. From all of the determined monoaromatic hydrocarbons, in both temperature ranges, toluene and p,m-xylene were characterised by the highest emission rate. It might be caused by the fact that toluene and in some cases p,m-xylene might be used as the general solvents in the manufacturing process of latex balloons, as well as during the pigment and other additives application process. As a consequence, the impurities that might occur in mentioned solvents (even up to 1%) such as benzene or styrene might be introduced to the final synthetic product and be emitted into the gaseous phase during its regular use. However, most of potential impurities and contaminants that are volatile and might be introduced during the latex balloons manufacturing process might be removed from them during their washing (with a cleaning agent) and drying stage. Despite the fact that the main synthetic material is the same, it might be observed a clear dissimilarities between studied samples (both at 30°C and 60°C). It is mainly associated with the different pigment application, the additive that gives the final material a specific gloss as well as the additional imprint application. Following the literature data, the emission fluctuations (defined by the type and the amount of the emitted chemical compounds) under real conditions (in indoor environment) might also by caused by the presence of atmospheric oxygen, moisture, light irradiation especially for the most reactive compounds such as styrene and hexanal. This issue

356 357

358

359

360

361

362

363

364

365

366

367

368

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

emission results.

3.3 Chemometric analysis and toxicity mixture assessment

More information on the emissions of VOC from balloons can be obtained with application of chemometric tools. The results of PCA are presented in the Figure 2. The first principal component (PC1) explains 58.89% of initial dataset variability, while the second principal component (PC2) carries 17.40% of initial variability. Each of the remaining principal components carry less than 10% of variability so they are not further considered. The investigation of the PC1 factor loadings shows the following grouping of VOCs: sum of para and meta xylenes, styrene, tridecane, ethylbenzene, dodecane, undecane with higher factor loadings, and benzene, toluene and hexanal with lower factor loadings. This is an indication that compounds assigned to these two groups are emitted from different sources. Considering the structures of VOCs present in the first group and the structure of polymeric material it can be concluded that the compounds from first group are emitted from the material of balloon.

is also associated with the emission investigations which are accelerated by raising the

temperature (Kagi et al., 2009; Nohr et al., 2015). However, the use of described μ-CTETM

250 system was supplied by dry nitrogen with no light irradiation, not affecting the overall

409

369 The probable source of emission of remaining three compounds is their sorption during balloons storage and their release from the surface of material during thermal desorption. 370 371 The second type of information can be obtained from PCA factor scores interpretation. 372 Firstly, objects located in lower left corner of the plane are characterized by low emission of 373 both groups of compounds. These objects are balloons treated with thermal desorption at 374 30°C. For objects 9, 10, 11, 12 and 13 the change of desorption temperature from 30 to 60°C 375 results in much higher emission of compounds mainly from the first group - meta xylenes, 376 styrene, tridecane, ethylbenzene, dodecane, undecane. These objects are balloons with 377 imprints, that is potential cause of high emissions of these hydrocarbons. For the remaining 378 objects there is an increase in emission of compounds from both groups (shift upwards and to 379 the right). 380 The results of PCA (Figure 2) are in good agreement with MCR results (Figure 3). The first 381 component in both analyses, PC1 for PCA and S1 for MCR, are characterized by high factor 382 loadings of p,m-xylene, styrene, tridecane, ethylbenzene, dodecane and undecane. In the 383 MCR score plot (Figure 3B) the first component reflects the temperature dependences of 384 balloons' emissions from 30 to 60°C. According to the MCR modelled emissions the balloons 385 could be classified in three groups. The first group consists of balloons 1-8 at 30°C and their 386 emissions are characterized by the contributions of the second component (C2). The second 387 group is formed by the balloons 9-13 (30°C) and balloons 1-8 (60°C). The content of this group indicates that the imprinted balloons have similar emission pattern at 30°C to the non-388 389 printed balloons at 60°C. The emission pattern is characterized by the contributions of both components with prevalence of the C2. The emission pattern of the third group consisting of 390 391 balloons 9-13 (60°C) is strongly dominated by the first component (C1). This group is also 392 clearly outlined in PCA score plot (Figure 2B). 393 For estimation of the toxicity of balloons' emissions toxic units model is implemented. The 394 concentrations of emitted compounds are weighted by LC50 inhalation toxicity towards 395 rodents. The calculated TUs of balloons' emissions with contributions of both MCR 396 components (TU1 and TU2) are presented in Figure 4. The emissions from balloons 1-8 at 397 30°C are characterized by rather lower TUs, compared to other emissions. The emission 398 toxicity of this group of balloons is based on compounds related to the second MCR 399 component like benzene, toluene and hexanal. The emissions of imprinted balloons at 30°C 400 (balloons 9-13) and non-printed ones at 60°C (balloons 1-8) cause much higher TUs than 401 emissions from balloons from the first group. The toxicity emission pattern of the second 402 group is dominated (from 80 to 90%) by the compounds related to the first MCR component 403 like para and meta xylenes, styrene, tridecane, ethylbenzene, dodecane and undecane. The 404 emission expressed in TUs from 9-13 balloons at 60°C is 3 to 8 times higher in comparison to 405 other balloons emissions. Similarly to the previous group the main contribution to the emission toxicity is based again on the compounds related to the first MCR component. 406 407 As the emission profiles were not measured, the future studies will be focused on changes of 408 emission in time at different temperatures. The other limitation is lack of calculation of VOCs

concentrations nor they TUs to the exposure, which should be considered in the future work.

447

448

410	The limitation of the study is lack of knowledge on the exact composition of balloon material
411	(the type and quality of basic reagents and additives, as well as the detailed description of
412	each stage of studied materials manufacturing process), which is not stated by the
413	manufacturer, so the relation between investigated material and VOCs emission can be the
414	topic for the future studies.
415	
416	4. Conclusions
417	Latex balloons should be considered as one of the source of emission of aliphatic and
418	monoaromatic hydrocarbons. Due to the fact that the main type of polymer from which the
419	NRL party balloons were made is of natural origin, the presence of VOCs might be a direct
420	result of their natural occurrence - biological VOCs from natural source of liquid latex.
421	Additionally, determined chemical compounds could come from the contamination of
122	additives introduced in the technological process at the stage of preparation of the final NRL
123	product.
124	The emitted compounds form two separate groups, suggesting two different emission sources
425	- first related to latex material, the second one related to sorption-desorption processes on the
426	surface of the balloon. The shape and applied pigment and especially imprints might be
127	considered as the general factor that impact the emission level of determined chemical
128	compounds. The temperature has a significant impact on the emissions of determined
129	chemical compounds. The emission of carcinogenic compounds such as benzene should be
430	monitored in the future in more detailed studies.
431	
432	5. Conflict of interest
433	
434	The authors declare that they have no conflict of interest.
435	
436	6. References
437	Altkofer, W., Braune, S., Ellendt, K., Kettl-Grömminger, M., Steiner, G., 2005. Migration of
438	nitrosamines from rubber products – are balloons and condoms harmful to the human health?
439	Molecular Nutrition & Food Research 49, 235 - 238
140	Arjunan, V., Subramanian, S., Mohan, S., 2001. Fourier transform infrared and Raman
141	spectral analysis of trans-1,4-polyisoprene. Spectrochimica Acta Part A 57, 2547-2554
142	Böhm, M., Salem, M.Z.M., Srba, J., 2012. Formaldehyde emission monitoring from a variety
143	of solid wood, plywood, blockboard and flooring products manufactured for building and
144	furnishing materials. Journal of Hazardous Materials 221-222, 68-79
145	Brown, V.M., 1968. The calculation of the acute toxicity of mixtures of poisons to rainbow
146	trout. Water Research 2, 723-733

Critchley, E., Pemberton, M.N., 2020. Latex and synthetic rubber glove usage in UK general

dental practice: changing trends. Heliyon 6, e03889

- Denk, P., Velasco-Schon, C., Buettner, A., 2017. Resolving the chemical structures of off-
- odorants and potentially harmful substances in toys example of children's swords. Analytical
- and Bioanalytical Chemistry, 409, 5249–5258
- 452 Dghim, F., Bouaziz, M., Mezghani, I., Boukhris, M., Neffati, M., 2015. Laticifers
- 453 identification and natural rubber characterization from the latex of Periploca angustifolia
- 454 Labill. (Apocynaceae). Flora 217, 90–98
- 455 European Collaborative Action Indoor Air Quality & Its Impact on Man (ECA-IAQ),
- Environment and Quality of Life, Report No 19, Total Volatile Organic Compounds (WOC)
- in Indoor Air Quality Investigations, Luxembourg, 1997
- Even, M., Girard, M., Rich, A., Hutzler, C., Luch, A., 2019. Emissions of VOCs From
- Polymer-Based Consumer Products: From Emission Data of Real Samples to the Assessment
- of Inhalation Exposure. Frontiers in Public Health 7, 202
- 461 Gallon, V., Le Cann, P., Sanchez, M., Dematteo, C., Le Bot, B., 2020. Emissions of VOCs,
- 462 SVOCs, and mold during the construction process: Contribution to indoor air quality and
- 463 future occupants' exposure. Indoor Air 30, 691–710
- Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P., 2018. An overview of
- 465 chemical additives present in plastics: migration, release, fate and environmental impact
- during their use, diposal and recycling. Journal of Hazardous Materials 344, 179–199
- Jaumot, J., de Juan, A., Tauler, R., 2015. MCR-ALS GUI 2.0: New features and applications.
- 468 Chemometrics and Intelligent Laboratory Systems, 140, 1-12
- Jolliffe, I. (2002). Principal Component Analysis, 2nd Edition ed, Springer-Verlag, New
- 470 York, USA
- Kagi, N., Fujii, S., Tamura, H., Namiki, N., 2009. Secondary VOC emissions from flooring
- 472 material surfaces exposed to ozone or UV irradiation. Building and Environment 44, 1199-
- 473 1205
- Kamarulzaman, N.H., Le-Minh, N., Fisher, R.M., Stuetz, R.M., 2019. Quantification of VOCs
- and the development of odour wheels for rubber processing. Science of the Total
- 476 Environment 657, 154-168
- Lauren Charous, B., Tarlo, S.M., Charous, M.A., Kelly, K., 2002. Natural rubber latex allergy
- in the occupational setting. Methods 27, 15–21
- Marć, M., 2020. Emissions of selected monoaromatic hydrocarbons as a factor affecting the
- 480 removal of single-use polymer barbecue and kitchen utensils from everyday use. Science of
- the Total Environment 720, 137485
- Marć, M., Namieśnik, J., Zabiegała, B., 2014a. BTEX concentration levels in urban air in the
- area of the Tri-City agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Quality Atmosphere
- 484 and Health 7, 489-504.
- 485 Marć, M., Namieśnik, J., Zabiegała, B., 2017. The miniaturised emission chamber system and
- 486 home-made passive flux sampler studies of monoaromatic hydrocarbons emissions from
- selected commercially-available floor coverings. Building and Environment 123, 1-13

- 488 Marć, M., Zabiegała, B., 2017. An investigation of selected monoaromatic hydrocarbons
- 489 released from the surface of polystyrene lids used in coffee-to-go cups. Microchemical
- 490 Journal 133, 496–505
- 491 Marć, M., Zabiegała, B., Namieśnik, J., 2014b. Application of passive sampling technique in
- 492 monitoring research on quality of atmospheric air in the area of Tczew, Poland. International
- 493 Journal of analytical Chemistry, 94, 151–167
- Massold, E., Bahr, C., Salthammer, T., Brown, S.K., 2005. Determination of VOC and TVOC
- in air using thermal desorption GC–MS—practical implications for test chamber experiments.
- 496 Chromatographia 62, 75–85
- 497 Mitchell, G., Higgitt, C., Gibson, L.T., 2014. Emissions from polymeric materials:
- 498 characterised by thermal desorption-gas chromatography. Polymer Degradation and Stability
- 499 107, 328–340
- Navarro, A., Tauler, R., Lacorte, S., Barceló, D., 2010. Occurrence and transport of pesticides
- and alkylphenols in water samples along the Ebro River Basin. Journal of Hydrology 383, 18-
- 502 29
- Nimpaiboon, A., Sakdapipanich, J., 2013. A model study on effect of glucose on the basic
- characteristics and physical properties of natural rubber. Polymer Testing 32, 1408–1416
- Nohr, M., Horn, W., Jann, O., Richter, M., Lorenz, W., 2015. Development of a multi-VOC
- 506 reference material for quality assurance in materials emission testing. Analytical and
- 507 Bioanalytical Chemistry. 407, 3231–3237
- Palosuo, T., Antoniadou, I., Gottrup, F., Phillips, P., 2011. Latex Medical Gloves: Time for a
- Reappraisal. International Archives of Allergy Immunology 156, 234-246
- Rosenmai, A.K., Bengström, L., Taxvig, C., Trier, X., Petersen, J.H., Svingen, T., Binderup,
- 511 M.L., Alice, V.L.D.M., Dybdahl, M., Granby, K., Vinggaard, A.M., 2017. An effect-directed
- strategy for characterizing emerging chemicals in food contact materials made from paper and
- 513 board, Food and Chemical Toxicology 106, 250–259
- Rubio, L., Valverde-Som, L., Sarabia, L.A., Ortiz, M.C., 2019. The behaviour of Tenax as
- food simulant in the migration of polymer additives from food contact materials by means of
- gas chromatography/mass spectrometry and PARAFAC. Journal of Chromatography A 1589,
- 517 18-29
- 518 Sukmak, G., Sukmak, P., Horpibulsuk, S., Yaowarat, T., Kunchariyakun, K.,
- Patarapaiboolchai, O., Arulrajah, A., 2020. Physical and mechanical properties of natural
- rubber modified cement paste. Construction and Building Materials 244, 118319
- Tauler, R., 1995. Multivariate curve resolution applied to second order data. Chemometrics
- and Intelligent Laboratory Systems 30, 133–146
- 523 Thurston, G.D., Spengler, J.D., 1985. A quantitative assessment of source contributions to
- inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment, 19,
- 525 9-25

- 526 Tommaso, C.P., Cofer, S.A., Stans, A.A., Clarke, M.J., Mulhern, K.S., Cima, R.R., 2019.
- 527 Latex-safe: Children's center conversion. Perioperative Care and Operating Room
- 528 Management 14, 1-4
- Wiedmer C, Buettner A., 2018. Quantification of organic solvents in aquatic toys and 529
- 530 swimming learning devices and evaluation of their influence on the smell properties of the
- 531 corresponding products. Analytical and Bioanalytical Chemistry 410, 2585–2595
- 532 Wolkoff, P., Nielsen, G.D., 2001. Organic compounds in indoor air - their relevance for
- 533 perceived indoor air quality. Atmospheric Environment 35, 4407–4417
- 534 Yang, F., Li, X., Meng, D., Yang, Y., 2017. Determination of Ultraviolet Absorbers and Light
- Stabilizers in Food Packaging Bags by Magnetic Solid Phase Extraction Followed by High-535
- 536 Performance Liquid Chromatography. Food Analytical Methods 10, 3247-3254
- 537 Zabiegała, B., Sarbu, C., Urbanowicz, M., Namieśnik, J., A comparative study of the
- performance of passive samplers, Journal of the Air & Waste Management Association 61, 538
- 539 260-268

- 541 7. Figure and Table captions
- 542 Figure 1. The results of the FT-IR analysis of selected latex balloon samples, differs in a
- shape and applied pigment: ORANGE_WG_2 Regular latex balloons, orange without gloss; 543
- 544 DARK_GREEN_G_5 - Regular latex balloons, glossy, dark green, shaded; BLACK_WG_6 -
- 545 Regular latex balloons, black, matt, without gloss; COLORLESS_LATEX_8 - Regular latex
- balloons, colorless, pure latex balloons. 546
- 547 Figure 2. Principal component analysis (PCA) results – factor scores (A) and factor loadings
- 548 (B).
- 549 **Figure 3.** Multiple curve resolution (MCR) results – factor loadings (A); factor scores (B)
- 550 first emission from 1-13 balloons in 30°C then from 1-13 balloons in 60°C
- 551 Figure 4. Toxicity assessment of MCR modelled emissions (TU1 and TU2 represent the
- 552 contributions of the first and second MCR components, respectively).
- 553 **Table 1.** General information about the analyzed samples of latex balloons delivered directly
- 554 form the manufacturer.
- 555 **Table 2.** Assignments of various IR bands for representatives of studied samples of latex
- balloons (frequencies are recorded with an accuracy of ± 1 cm⁻¹). 556
- 557 **Table 3.** The selected aliphatic and monoaromatic hydrocarbons emitted from the
- 558 investigated latex balloon samples.

Table 1. General information about the analyzed samples of latex balloons delivered directly form the manufacturer.

Sample	Sample acronym	Average mass ± SD [g] (n = 4)	Brief description
Balloon Series 1	ORANGE_G_1	3.618 ± 0.030	Regular latex balloons, glossy orange
Balloon Series 2	ORANGE_WG_2	3.702 ± 0.087	Regular latex balloons, orange without gloss
Balloon Series 3	SMALL_ORANGE_WG_3	1.959 ± 0.014	Small latex balloons, orange without gloss
Balloon Series 4	SMALL_GREEN_WG_4	2.519 ± 0.047	Small latex balloons, green without gloss, matt
Balloon Series 5	DARK_GREEN_G_5	3.593 ± 0.036	Regular latex balloons, glossy, dark green, shaded
Balloon Series 6	BLACK_WG_6	3.681 ± 0.061	Regular latex balloons, black, matt, without gloss
Balloon Series 7	WHITE_WG_7	2.595 ± 0.038	Regular latex balloons, without gloss, matt, white
Balloon Series 8	COLORLESS_LATEX_8	3.643 ± 0.020	Regular latex balloons, colorless, pure latex balloons
Balloon Series 9	ORANGE_WHITE_IMPRINT_9	3.657 ± 0.083	Regular latex balloons, orange with white imprint
Balloon Series 10	ORANGE_BLACK IMPRINT_10	3.661 ± 0.057	Regular latex balloons, orange with black imprint 1
Balloon Series 11	ORANGE_BLACK_IMPRINT_11	3.785 ± 0.109	Regular latex balloons, orange with black imprint 2
Balloon Series 12	BLACK_WHITE_IMPRINT_12	3.711 ± 0.053	Regular latex balloons, black with white imprint
Balloon Series 13	BLACK_WHITE_POWDER_13	3.707 ± 0.034	Regular latex balloons, matt, black covered with white powder

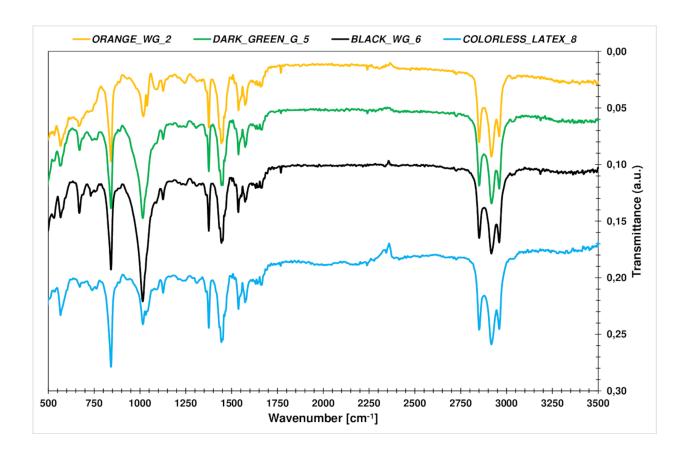
Table 1. Assignments of various IR bands for representatives of studied samples of latex balloons (frequencies are recorded with an accuracy of \pm 1 cm⁻¹).

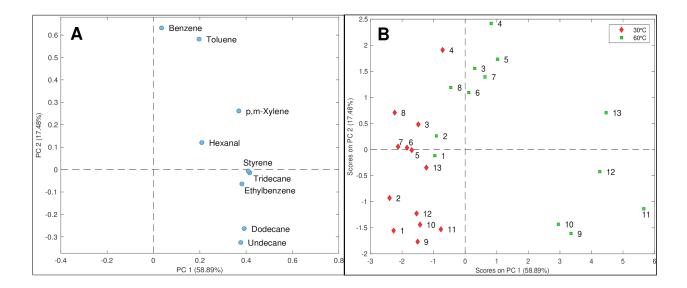
Wavenumber (cm ⁻¹)	, ,							
2960 (s)	=C-H stretching vibrations	commercially available						
2916 (s)	C-H asymmetrical stretching	latex balloons						
2850 (s)	C-H symmetrical stretching	delivered directly from						
1574 (w) and 1537 (w)	C=C stretching vibrations	the manufacturer						
1421-1445 (m)	C-H asymmetric deformation							
1375 (m)	C-H symmetric deformation							
1003-1016 (s)	-C-C stretching or wagging vibrations							
850-840 (s)	C-H out off-plane banding vibrations in the –CH=CH-							
567 (w)	C-C skeleton vibration							
s – strong; m – medium; v	v – weak							

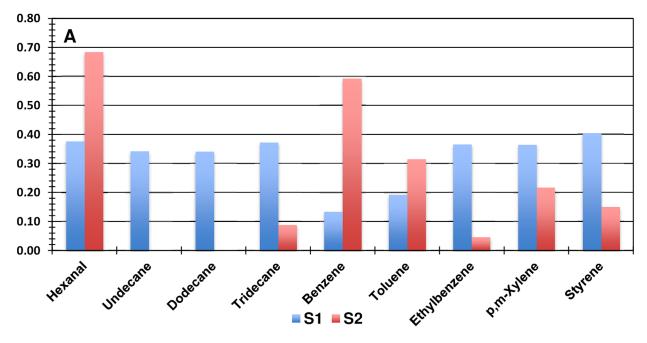
Table 3. The selected aliphatic and monoaromatic hydrocarbons emitted from the investigated latex balloon samples.

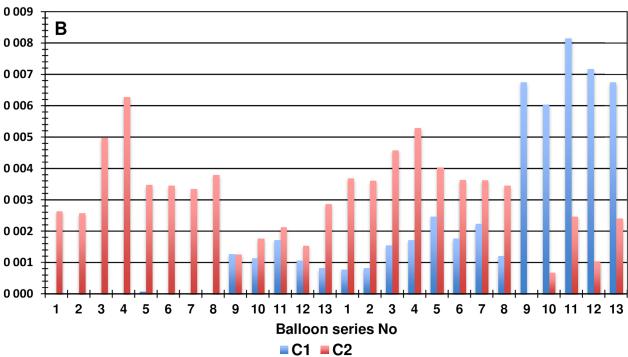
Latex balloons seasoning temperature: 30°C												
Smaple name	Parameter	<mark>Hexanal</mark>	Undcane	Dodecane	Tridecane	Benzene	Toluene	Ethylbenzene	p,m-Xylene	Styrene	TVOC	
опари паше		[ng/g]	[ng/g]	[ng/g]	[ng/g]	[ng/g]	[ng/g]	[ng/g]	[ng/g]	[ng/g]	[ng/g]	
	Average	<mark>8.7</mark>	<mark>4.6</mark>	4.3	<mark>2.4</mark>	0.30	0.38	<lod< th=""><th>0.29</th><th><lod< th=""><th><mark>60.6</mark></th></lod<></th></lod<>	0.29	<lod< th=""><th><mark>60.6</mark></th></lod<>	<mark>60.6</mark>	
ORANGE_G_1	Stand. Dev.	1.3	1.3	<mark>2.1</mark>	1.5	0.30	0.18	-	0.04	-	<mark>5.6</mark>	
	Min	<mark>6.6</mark>	<mark>3.6</mark>	<mark>3.0</mark>	1.5	0.02	0.13	-	0.25	-	<mark>56.8</mark>	
	Max	<mark>9.5</mark>	<mark>6.4</mark>	<mark>7.4</mark>	<mark>4.5</mark>	0.72	0.51	-	0.32	-	<mark>68.8</mark>	
	Average	<mark>6.19</mark>	<mark>3.55</mark>	<mark>3.64</mark>	1.95	0.96	0.96	<lod< td=""><td>0.36</td><td>0.27</td><td><mark>54.3</mark></td></lod<>	0.36	0.27	<mark>54.3</mark>	
ORANGE_WG_2	Stand. Dev.	0.82	0.12	0.27	<mark>0.41</mark>	0.18	0.36	-	0.10	0.10	<mark>6.1</mark>	
ORANGE_WG_2	Min	<mark>4.89</mark>	<mark>3.43</mark>	<mark>3.26</mark>	1.55	0.79	0.44	-	0.22	0.15	<mark>45.2</mark>	
	Max	<mark>6.70</mark>	<mark>3.70</mark>	3.89	<mark>2.43</mark>	1.22	1.28	-	0.46	0.36	<mark>58.4</mark>	
	Average	10.7	<mark>6.07</mark>	<mark>7.06</mark>	5.1	1.90	3.8	<lod< th=""><th>0.47</th><th>1.37</th><th>130</th></lod<>	0.47	1.37	130	
SMALL_ORANGE_WG_3	Stand. Dev.	<mark>1.4</mark>	<mark>0.77</mark>	<mark>0.39</mark>	<mark>1.2</mark>	0.22	1.3	-	0.27	0.42	<mark>24</mark>	
SWALL_ORANGE_WG_5	Min	<mark>8.8</mark>	5.13	<mark>6.52</mark>	4.0	1.69	2.19	-	0.29	0.88	104	
	Max	12.1	<mark>6.70</mark>	<mark>7.42</mark>	<mark>6.9</mark>	2.16	5.26	-	0.88	1.91	<mark>162</mark>	
	Average	12.2	<mark>7.7</mark>	11.3	8.0	2.14	16.9	<lod< td=""><td>1.85</td><td>1.29</td><td>241</td></lod<>	1.85	1.29	241	
SMALL_GREEN_WG_4	Stand. Dev.	<mark>1.9</mark>	<mark>3.0</mark>	<mark>4.9</mark>	<mark>5.4</mark>	0.65	2.6	-	0.59	0.40	<mark>47</mark>	
SWALL_GREEN_WG_4	Min	11.0	5.2	<mark>7.9</mark>	<mark>4.7</mark>	1.29	14.79	-	1.35	0.74	<mark>204</mark>	
	Max	<mark>15.0</mark>	<mark>12.1</mark>	<mark>18.5</mark>	<mark>16.1</mark>	2.78	20.33	-	2.71	1.58	<mark>308</mark>	
	Average	<mark>7.58</mark>	<mark>4.55</mark>	<mark>6.94</mark>	<mark>4.58</mark>	0.95	11.4	<lod< td=""><td>1.31</td><td>0.57</td><td>125</td></lod<>	1.31	0.57	125	
DARK_GREEN_G_5	Stand. Dev.	0.48	<mark>0.58</mark>	<mark>0.96</mark>	<mark>0.93</mark>	0.27	1.2	-	0.55	0.42	<mark>34</mark>	
DARK_GREEN_G_5	Min	<mark>7.02</mark>	3.77	<mark>5.61</mark>	<mark>3.59</mark>	0.55	9.98	-	0.81	0.23	103	
	Max	8.1 <mark>7</mark>	<mark>5.11</mark>	<mark>7.76</mark>	<mark>5.81</mark>	1.10	12.81	-	1.91	1.18	<mark>175</mark>	
	Average	<mark>6.73</mark>	3.72	<mark>8.3</mark>	<mark>6.8</mark>	1.28	8.44	<lod< th=""><th>0.99</th><th>0.57</th><th>133.8</th></lod<>	0.99	0.57	133.8	
BLACK_WG_6	Stand. Dev.	<mark>0.69</mark>	0.53	<mark>1.4</mark>	<mark>1.6</mark>	0.41	0.74	-	0.07	0.28	<mark>6.5</mark>	
DLACK_WG_U	Min	<mark>5.80</mark>	<mark>3.26</mark>	<mark>7.2</mark>	<mark>5.6</mark>	0.88	7.78	-	0.91	0.36	127.3	
	Max	<mark>7.45</mark>	<mark>4.46</mark>	10.3	<mark>9.1</mark>	1.83	9.45	-	1.06	0.98	143.9	
	Average	<mark>6.9</mark>	<mark>4.27</mark>	<mark>6.87</mark>	<mark>5.10</mark>	1.39	7.8	<lod< th=""><th>0.61</th><th><lod< th=""><th><mark>479</mark></th></lod<></th></lod<>	0.61	<lod< th=""><th><mark>479</mark></th></lod<>	<mark>479</mark>	
WHITE_WG_7	Stand. Dev.	1.3	0.28	0.40	<mark>0.99</mark>	0.20	1.5	-	0.24	-	<mark>33</mark>	
WIIIIE_WG_/	Min	<mark>5.4</mark>	<mark>3.89</mark>	<mark>6.48</mark>	<mark>4.04</mark>	1.16	5.99	-	0.33	-	<mark>441</mark>	
	Max	<mark>8.3</mark>	<mark>4.55</mark>	<mark>7.43</mark>	<mark>6.44</mark>	1.60	9.51	-	0.91	-	<mark>521</mark>	
COLORLESS LATEX 8	Average	<mark>5.66</mark>	<mark>3.36</mark>	<mark>5.0</mark>	3.02	2.16	5.93	<lod< th=""><th>0.64</th><th><lod< th=""><th><mark>156</mark></th></lod<></th></lod<>	0.64	<lod< th=""><th><mark>156</mark></th></lod<>	<mark>156</mark>	
COLURLESS_LATEA_6	Stand. Dev.	0.63	0.48	1.1	0.78	0.13	0.73	-	0.16	-	<mark>40</mark>	

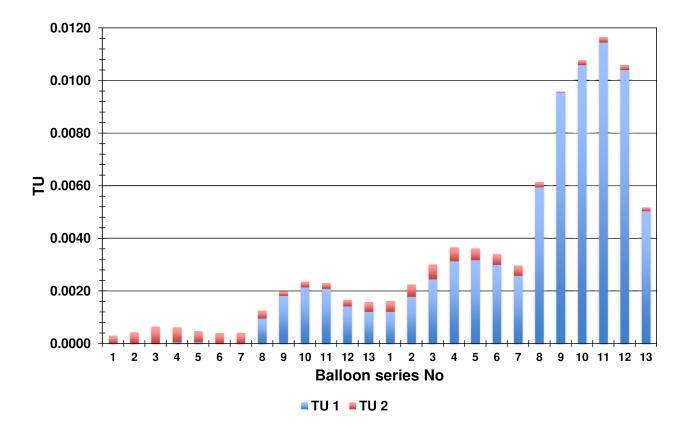
					•			İ		
Min	<mark>5.12</mark>				2.04	5.27	-	0.45	-	<mark>122</mark>
Max	<mark>6.53</mark>	<mark>3.97</mark>	<mark>6.4</mark>	<mark>3.93</mark>	2.30	6.61	-	0.82	-	<mark>212</mark>
Average	<mark>6.4</mark>	<mark>70.6</mark>	<mark>50.2</mark>	<mark>8.0</mark>	0.071	3.00	0.142	1.37	1.41	$59.7 \cdot 10^2$
Stand. Dev.	1.1	<mark>3.9</mark>	<mark>4.2</mark>	1.2	0.011	0.85	0.011	0.37	0.33	$2.8 \cdot 10^2$
Min	<mark>4.9</mark>	<mark>65.4</mark>	<mark>45.7</mark>	<mark>7.3</mark>	0.06	2.21	0.13	1.02	1.19	$56.7 \cdot 10^2$
Max	<mark>7.4</mark>	<mark>74.7</mark>	<mark>55.8</mark>	<mark>9.7</mark>	0.08	3.82	0.15	1.71	1.89	$63.2 \cdot 10^2$
Average	<mark>6.98</mark>	<mark>87</mark>	<mark>85</mark>	10.7	0.46	3.80	0.37	1.08	1.23	$71.8 \cdot 10^2$
Stand. Dev.	<mark>0.65</mark>	<mark>16</mark>	<mark>18</mark>	2.1	0.16	0.78	-	0.17	0.67	$13.0 \cdot 10^2$
Min	<mark>6.19</mark>	<mark>64</mark>	<mark>59.8</mark>	<mark>8.6</mark>	0.36	2.96	0.37	0.95	0.68	$54.9 \cdot 10^2$
Max	<mark>7.63</mark>	100	101.1	13.6	0.69	4.72	0.37	1.33	2.20	$86.3 \cdot 10^2$
Average	<mark>9.74</mark>	92.3	110	15.0	0.381	3.72	0.26	1.07	1.34	$71.7 \cdot 10^2$
Stand. Dev.	0.63	<mark>9.2</mark>	18	<mark>4.2</mark>	0.082	0.13	0.16	0.05	0.13	$5.9 \cdot 10^2$
Min	<mark>9.19</mark>	<mark>80.8</mark>	<mark>94</mark>	11.5	0.28	3.54	0.11	1.04	1.24	$64.7 \cdot 10^2$
Max	10.62	102.8	134	21.0	0.46	3.84	0.44	1.14	1.53	$78.9 \cdot 10^2$
Average	<mark>5.6</mark>	<mark>57</mark>	<mark>59</mark>	<mark>8.1</mark>	0.40	5.3	0.21	2.19	1.01	$44.7 \cdot 10^2$
Stand. Dev.	<mark>1.4</mark>	<mark>27</mark>	<mark>26</mark>	<mark>2.4</mark>	0.22	1.6	-	0.64	0.15	$22.1 \cdot 10^2$
Min	<mark>4.1</mark>	23	<mark>22</mark>	<mark>4.6</mark>	0.17	3.72	0.21	1.58	0.87	$17.8 \cdot 10^2$
Max	<mark>6.8</mark>	<mark>81</mark>	<mark>83</mark>	10.2	0.68	6.91	0.21	2.74	1.21	$64.4 \cdot 10^2$
Average	<mark>7.48</mark>	<mark>54.5</mark>	<mark>63.3</mark>	8.73	0.982	8.18	0.083	2.24	0.98	$43.2 \cdot 10^2$
Stand. Dev.	0.47	<mark>2.6</mark>	<mark>4.3</mark>	0.32	0.031	0.47	0.051	0.28	0.11	$1.4 \cdot 10^2$
Min	<mark>6.89</mark>	<mark>51.6</mark>	<mark>57.9</mark>	<mark>8.36</mark>	0.94	7.79	0.04	1.96	0.85	$41.7 \cdot 10^2$
Max	<mark>7.98</mark>	<mark>57.9</mark>	<mark>68.4</mark>	<mark>9.05</mark>	1.01	8.79	0.12	2.57	1.10	$44.7 \cdot 10^2$
	Late	x balloons	seasoning	g temperat	ture: 60°	C				
Parameter	<mark>Hexanal</mark>	Undcane	Dodecane	Tridecane	Benzene	Toluene	Ethylbenzene	p,m-Xylene		TVOC
								- 0 0-	- 0 0-	[ng/g]
							<lod< th=""><th></th><th></th><th><mark>330</mark></th></lod<>			<mark>330</mark>
							-			35
							-			<mark>294</mark>
1							-			<mark>367</mark>
Average							<lod< th=""><th></th><th></th><th><mark>265</mark></th></lod<>			<mark>265</mark>
-							-			<mark>23</mark>
Min							-			<mark>246</mark>
Max							-			<mark>298</mark>
Average	<mark>8.3</mark>	<mark>29.1</mark>	<mark>47.2</mark>	27.3	2.34	8.9	<lod< th=""><th>4.95</th><th>2.86</th><th><mark>484</mark></th></lod<>	4.95	2.86	<mark>484</mark>
	Max Average Stand. Dev. Min Max	Max 6.53 Average 6.4 Stand. Dev. 1.1 Min 4.9 Max 7.4 Average 6.98 Stand. Dev. 0.65 Min 6.19 Max 7.63 Average 9.74 Stand. Dev. 0.63 Min 9.19 Max 10.62 Average 5.6 Stand. Dev. 1.4 Min 4.1 Max 6.8 Average 7.48 Stand. Dev. 0.47 Min 6.89 Max 7.98 Latex Parameter Hexanal [ng/g] Average 8.67 Stand. Dev. 0.91 Min 7.60 Max 9.51 Average 7.00 Stand. Dev. 0.70 Min 5.97 Max 7.48	Max 6.53 3.97 Average 6.4 70.6 Stand. Dev. 1.1 3.9 Min 4.9 65.4 Max 7.4 74.7 Average 6.98 87 Stand. Dev. 0.65 16 Min 6.19 64 Max 7.63 100 Average 9.74 92.3 Stand. Dev. 0.63 9.2 Min 9.19 80.8 Max 10.62 102.8 Average 5.6 57 Stand. Dev. 1.4 27 Min 4.1 23 Max 6.8 81 Average 7.48 54.5 Stand. Dev. 0.47 2.6 Max 7.98 57.9 Latex balloons Hexanal [ng/g] [ng/g] Average 8.67 19.9 Stand. Dev. 0.91 1.7 Min	Max 6.53 3.97 6.4 Average 6.4 70.6 50.2 Stand. Dev. 1.1 3.9 4.2 Min 4.9 65.4 45.7 Max 7.4 74.7 55.8 Average 6.98 87 85 Stand. Dev. 0.65 16 18 Min 6.19 64 59.8 Max 7.63 100 101.1 Average 9.74 92.3 110 Stand. Dev. 0.63 9.2 18 Min 9.19 80.8 94 Max 10.62 102.8 134 Average 5.6 57 59 Stand. Dev. 1.4 27 26 Min 4.1 23 22 Max 6.8 81 83 Average 7.48 54.5 63.3 Stand. Dev. 0.47 2.6 4.3	Max 6.53 3.97 6.4 3.93 Average 6.4 70.6 50.2 8.0 Stand. Dev. 1.1 3.9 4.2 1.2 Min 4.9 65.4 45.7 7.3 Max 7.4 74.7 55.8 9.7 Average 6.98 87 85 10.7 Stand. Dev. 0.65 16 18 2.1 Min 6.19 64 59.8 8.6 Max 7.63 100 101.1 13.6 Average 9.74 92.3 110 15.0 Stand. Dev. 0.63 9.2 18 4.2 Min 9.19 80.8 94 11.5 Max 10.62 102.8 134 21.0 Average 5.6 57 59 8.1 Stand. Dev. 1.4 27 26 2.4 Min 4.1 23 22 4.6 <	Max 6.53 3.97 6.4 3.93 2.30 Average 6.4 70.6 50.2 8.0 0.071 Stand. Dev. 1.1 3.9 4.2 1.2 0.011 Min 4.9 65.4 45.7 7.3 0.06 Max 7.4 74.7 55.8 9.7 0.08 Average 6.98 87 85 10.7 0.46 Stand. Dev. 0.65 16 18 2.1 0.16 Min 6.19 64 59.8 8.6 0.36 Max 7.63 100 101.1 13.6 0.69 Average 9.74 92.3 110 15.0 0.381 Stand. Dev. 0.63 9.2 18 4.2 0.082 Min 9.19 80.8 94 11.5 0.28 Max 10.62 102.8 134 21.0 0.46 Average 5.6 57	Max 6.53 3.97 6.4 3.93 2.30 6.61 Average 6.4 70.6 50.2 8.0 0.071 3.00 Stand. Dev. 1.1 3.9 4.2 1.2 0.011 0.85 Min 4.9 65.4 45.7 7.3 0.06 2.21 Max 7.4 74.7 55.8 9.7 0.08 3.82 Average 6.98 87 85 10.7 0.46 3.80 Stand. Dev. 0.65 16 18 2.1 0.16 0.78 Min 6.19 64 59.8 8.6 0.36 2.96 Max 7.63 100 101.1 13.6 0.69 4.72 Average 9.74 92.3 110 15.0 0.381 3.72 Stand. Dev. 0.63 9.2 18 4.2 0.082 0.13 Min 9.19 80.8 94 11.5 0.28	Max 6.53 3.97 6.4 3.93 2.30 6.61 - Average 6.4 70.6 50.2 8.0 0.071 3.00 0.142 Stand. Dev. 1.1 3.9 4.2 1.2 0.011 0.85 0.011 Min 4.9 65.4 45.7 7.3 0.06 2.21 0.13 Max 7.4 74.7 55.8 9.7 0.08 3.82 0.15 Average 6.98 87 85 10.7 0.46 3.80 0.37 Stand. Dev. 0.65 16 18 2.1 0.16 0.78 - Min 6.19 64 59.8 8.6 0.36 2.96 0.37 Average 9.74 92.3 110 15.0 0.381 3.72 0.26 Stand. Dev. 0.63 9.2 18 4.2 0.082 0.13 0.16 Max 10.62 102.8 134 <td> Max</td> <td>Max 6.53 3.97 6.4 3.93 2.30 6.61 - 0.82 - Average 6.4 70.6 50.2 8.0 0.071 3.00 0.142 1.37 1.41 Stand. Dev. 1.1 3.9 4.2 1.2 0.011 0.85 0.011 0.37 0.33 Min 4.9 65.4 45.7 7.3 0.06 2.21 0.13 1.02 1.19 Max 7.4 74.7 55.8 9.7 0.08 3.82 0.15 1.71 1.89 Average 6.98 87 85 10.7 0.46 3.80 0.37 1.08 1.23 Stand. Dev. 0.65 16 18 2.1 0.16 0.78 - 0.17 0.67 Min 6.19 64 59.8 8.6 0.36 2.96 0.37 0.95 0.68 Max 7.63 100 101.1 13.6 0.69</td>	Max	Max 6.53 3.97 6.4 3.93 2.30 6.61 - 0.82 - Average 6.4 70.6 50.2 8.0 0.071 3.00 0.142 1.37 1.41 Stand. Dev. 1.1 3.9 4.2 1.2 0.011 0.85 0.011 0.37 0.33 Min 4.9 65.4 45.7 7.3 0.06 2.21 0.13 1.02 1.19 Max 7.4 74.7 55.8 9.7 0.08 3.82 0.15 1.71 1.89 Average 6.98 87 85 10.7 0.46 3.80 0.37 1.08 1.23 Stand. Dev. 0.65 16 18 2.1 0.16 0.78 - 0.17 0.67 Min 6.19 64 59.8 8.6 0.36 2.96 0.37 0.95 0.68 Max 7.63 100 101.1 13.6 0.69




	Stand. Dev.	1.1	1.4	3.0	4.0	0.37	1.5	-	0.13	0.36	21
	Min	<mark>7.3</mark>	27.6	43.8	22.2	1.97	7.56	-	4.83	2.59	<mark>467</mark>
	Max	<mark>9.8</mark>	30.8	51.0	31.5	2.85	11.00	-	5.13	3.38	514
	Average	10.67	24.3	42.1	25.1	1.471	31.3	<lod< th=""><th>4.94</th><th>2.26</th><th>472</th></lod<>	4.94	2.26	472
CMALL CREEN WG 4	Stand. Dev.	0.92	2.7	4.2	3.4	0.074	3.3	-	0.62	0.53	<mark>56</mark>
SMALL_GREEN_WG_4	Min	<mark>9.35</mark>	22.5	38.9	20.2	1.40	28.62	-	4.49	1.58	423
	Max	11.44	28.4	47.8	27.7	1.56	35.43	-	5.83	2.74	551
	Average	8.58	21.8	39	25.5	1.19	28.1	0.60	4.92	1.88	412
DADY CREEN C 5	Stand. Dev.	0.83	<mark>2.4</mark>	<mark>11</mark>	<mark>7.7</mark>	0.22	2.8	0.15	0.38	0.43	<mark>32</mark>
DARK_GREEN_G_5	Min	<mark>7.50</mark>	<mark>19.4</mark>	<mark>26.1</mark>	<mark>16.6</mark>	0.92	24.23	0.38	4.41	1.26	<mark>389</mark>
	Max	<mark>9.44</mark>	25.1	<mark>51.8</mark>	<mark>35.2</mark>	1.43	30.77	0.70	5.30	2.22	<mark>457</mark>
	Average	<mark>6.9</mark>	<mark>16.5</mark>	<mark>26.6</mark>	<mark>17.1</mark>	1.40	18.0	0.53	4.02	1.63	<mark>338</mark>
BLACK_WG_6	Stand. Dev.	1.2	<mark>1.6</mark>	<mark>4.2</mark>	3.2	0.32	3.3	0.21	0.84	0.85	<mark>53</mark>
DLACK_WG_0	Min	5.3	<mark>15.4</mark>	<mark>22.7</mark>	12.9	1.22	14.31	0.32	3.12	0.99	<mark>291</mark>
	Max	<mark>8.0</mark>	<mark>18.9</mark>	<mark>31.7</mark>	20.2	1.89	22.39	0.80	5.1	2.9	<mark>415</mark>
	Average	<mark>7.16</mark>	<mark>24.9</mark>	<mark>48.0</mark>	<mark>34.7</mark>	1.481	19.8	0.35	5.1	1.8	<mark>690</mark>
WHITE_WG_7	Stand. Dev.	<mark>0.55</mark>	<mark>1.6</mark>	<mark>4.4</mark>	<mark>3.9</mark>	0.059	1.8	0.14	0.50	0.21	<mark>12</mark>
WIIIE_WG_/	Min	<mark>6.37</mark>	<mark>23.6</mark>	<mark>43.7</mark>	<mark>31.2</mark>	1.41	17.21	0.22	4.57	1.61	<mark>683</mark>
	Max	<mark>7.62</mark>	<mark>27.2</mark>	<mark>53.3</mark>	<mark>40.2</mark>	1.55	21.29	0.53	5.56	2.12	<mark>707</mark>
	Average	<mark>4.73</mark>	<mark>17.54</mark>	<mark>33.1</mark>	<mark>19.6</mark>	1.82	14.28	0.330	4.20	1.08	344
COLORLESS LATEX 8	Stand. Dev.	<mark>0.41</mark>	<mark>0.96</mark>	<mark>6.0</mark>	<mark>6.6</mark>	0.26	0.80	0.079	0.34	0.17	<mark>48</mark>
COLORLESS_LATEA_6	Min	<mark>4.46</mark>	16.33	<mark>26.2</mark>	13.3	1.60	13.35	0.25	3.91	0.92	281
	Max	<mark>5.34</mark>	18.65	<mark>38.3</mark>	<mark>26.1</mark>	2.11	14.97	0.41	4.61	1.33	<mark>391</mark>
	Average	<mark>7.18</mark>	<mark>379</mark>	318	<mark>41.8</mark>	0.69	8.4	0.96	5.1	4.49	$30.5 \cdot 10^3$
ORANGE_WHITE_IMPRINT_9	Stand. Dev.	<mark>0.90</mark>	<mark>45</mark>	<mark>47</mark>	<mark>1.6</mark>	0.23	2.3	0.37	1.4	0.66	$3.0 \cdot 10^3$
ORANGE_WITTE_IMI KINT_9	Min	<mark>6.37</mark>	<mark>346</mark>	<mark>279</mark>	<mark>40.4</mark>	0.38	5.75	0.63	3.73	3.76	$28.1 \cdot 10^3$
	Max	8.30	<mark>441</mark>	<mark>379</mark>	43.9	0.92	10.41	1.35	6.55	5.38	$34.6 \cdot 10^3$
	Average	<mark>7.67</mark>	<mark>483</mark>	<mark>459</mark>	<u>52.1</u>	1.24	8.9	0.513	4.06	2.69	$34.5 \cdot 10^3$
ORANGE_BLACK_IMPRINT_10	Stand. Dev.	0.78	<mark>45</mark>	<mark>93</mark>	<mark>9.5</mark>	0.49	1.5	0.091	0.35	0.37	$6.3 \cdot 10^3$
ORANGE_DEACK_IMI KIN1_IV	Min	<mark>6.97</mark>	<mark>459</mark>	325	41.0	0.70	7.47	0.44	3.68	2.28	$26.1 \cdot 10^3$
	Max	<mark>8.70</mark>	<mark>551</mark>	527	<mark>63.9</mark>	1.80	10.38	0.64	4.38	3.16	$41.4 \cdot 10^3$
	Average	<u>17.9</u>	<mark>416</mark>	<mark>667</mark>	<mark>93</mark>	1.16	10.06	0.712	4.76	4.15	$36.1 \cdot 10^3$
ORANGE_BLACK_IMPRINT_11	Stand. Dev.	1.2	<mark>35</mark>	<mark>76</mark>	<mark>11</mark>	0.10	0.82	0.081	0.38	0.68	$3.3 \cdot 10^3$
	Min	<mark>16.8</mark>	<mark>394</mark>	<mark>592</mark>	<mark>82.4</mark>	1.02	9.34	0.61	4.33	3.34	$33.0 \cdot 10^3$




	Max	19.3	<mark>468</mark>	<mark>773</mark>	107.6	1.27	10.80	0.80	5.24	4.96	$40.4 \cdot 10^3$
	Average	<mark>9.3</mark>	<mark>319</mark>	<mark>343</mark>	<mark>52</mark>	0.96	15.0	1.22	7.4	3.87	$23.6 \cdot 10^3$
DI ACE WHITE IMPRING 12	Stand. Dev.	1.8	<mark>161</mark>	127	<mark>17</mark>	0.18	4.3	0.40	1.4	0.21	$10.1 \cdot 10^3$
BLACK_WHITE_IMPRINT_12	Min	<mark>7.5</mark>	148	188	31.9	0.76	11.05	0.85	6.10	3.68	$12.4 \cdot 10^3$
	Max	11.2	<mark>488</mark>	<mark>482</mark>	<mark>71.0</mark>	1.13	19.43	1.67	9.03	4.16	$34.6 \cdot 10^3$
	Average	10.10	<mark>348</mark>	<mark>372</mark>	<mark>52.5</mark>	1.67	20.82	0.96	7.2	4.24	$23.5 \cdot 10^3$
DI ACK WHITE DOWNED 12	Stand. Dev.	0.91	<mark>86</mark>	<mark>41</mark>	<mark>6.5</mark>	0.17	0.83	0.22	1.4	0.25	$1.9 \cdot 10^3$
BLACK_WHITE_POWDER_13	Min	<mark>9.05</mark>	<mark>290</mark>	319	<mark>44.5</mark>	1.49	19.95	0.75	6.03	4.08	$21.6 \cdot 10^3$
	Max	11.05	<mark>475</mark>	<mark>418</mark>	<mark>60.5</mark>	1.87	21.85	1.16	8.43	4.60	$25.6 \cdot 10^3$



Highlights

- The VOCs emissions depend on latex balloon pigment and imprints presence
- The average values of emitted TVOCs at 30oC ranged from 0.051 up to 7.18 $\mu g \cdot g^{-1}$
- The average values of emitted TVOCs at 60oC ranged from 0.27 up to 31.13 $\mu g \cdot g^{\text{-}1}$
- PCA analysis showed that VOCs are from balloon material and desorption process
- MCR with toxic units identified the most hazardous VOCs benzene and hexanal

