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Abstract: This article considers and compares four analytical models of the pipeline flow process
for leak detection and location tasks. The synthesis of these models is briefly outlined. Next,
the methodology for generating data and diagnosing pipes is described, as well as experimental
settings, assumptions and implemented scenarios. Finally, the quality of model-based diagnostic
estimators has been evaluated for their bias, standard deviations and computational complexity.
The global level of optimality served as a general indicator of the quality and performance of

multidimensional estimators.
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1. INTRODUCTION

One of the most efficient ways to transfer a fluid medium
over a long distance is to use transmission pipelines. Dur-
ing such transport, a leak may occur and cause financial
losses, pollute the environment or endanger people. There-
fore, it is necessary to implement a leak detection and
isolation system (LDI), whose task is to detect potential
leaks and identify their parameters. The following briefly
introduces the methodology used with a view to using the
simplest models possible.

2. ANALYZED MODELS

Four models will be analyzed and compared. Using a
commonly accepted model as a reference, we develop three
other models, which describe the process of isothermal flow
of incompressible fluid through a pipeline.

2.1 Base Model
The first model, referred to as the Base Model, is derived

from the following set of PDEs (Partial Differential Equa-
tions) (Billmann and Isermann, 1987):
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where S is the cross-sectional area [m?|, v is the surrogate
velocity associated with the isothermal speed of sound
in the fluid [£], D is the diameter of the pipe [m], ¢ is
the mass flow [%], p is the pressure [Pal, ¢ is the time
[s], z is the spatial coordinate [m], A is the generalized
dimensionless friction factor, « is the angle of inclination
[rad|, and g is the gravitational acceleration [3].

The above model, after discretization, leads to the follow-
ing nonlinear singular equation in the state space:
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where the state and input vectors are defined as
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where p is the pressure, and ¢ is the mass-flow rate (Bill-
mann and Isermann, 1987). The description of the ma-
trices can be found in (Gunawickrama, 2001). Subscripts
denote the spatial coordinate number, while superscripts
denote time indices. Hat symbols indicate estimates.

2.2 Analytic Model of Diagonal Approximation

The second model is derived on the basis of the assumption
that (3) can be shown in the following nonsingular form:
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where the recombination (or descriptor) matrix A is in-
verted using matrix partitioning (Brogan, 1991).

For the specific structure of the matrix A, it is possible
to find an approximation of its inverse analytically -
by substituting tridiagonal matrices by their diagonal
counterparts (Kowalczuk and Tatara, 2016). The model
associated with the inverse of approximate A is called the
analytical diagonal approximation model (AMDA).

2.8 Analytic Thomas Model

To reduce the computational complexity of calculations,
the sparsity of the matrices in the state-space model (3)
allows us to rearrange this model in the form applicable to
the Thomas algorithm (Conte and de Boor, 1980). Model
(3) can be eventually shown as Kowalczuk et al. (2018).
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By defining: g = 8, Ay = 42 h = b and As = % (where
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a and ¢ are physical parameters), one eventually obtains
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The results of the matrix multiplications Adf&g and Ag[&g
are tridiagonal, therefore the expressions (]I - A;JM) and
(T— A2A3) are also tridiagonal matrices and the Thomas
algorithm (Thomas, 1949) can be applied. This model will
be called the Analytic Thomas Model (ATM).

2.4 Model of Steady State

Let us assume that the LDI system works on a pipeline
in steady flow. Thus, we consider % — 0 and % — 0 in
(1) and (2) as (approximately) satisfied for steady flow. In
such cases, the PDEs are reduced to ordinary differential
equations that can be solved for constant mass-flow rate
and pressure distribution along the pipe. The solution
can be provided separately for zero inclination angle as
constant mass-flow rate and pressure distribution:
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where sign(z) is 1 for > 0, and -1 otherwise; and for
non-zero inclination angle with mass-flow rate calculated

as
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and pressure distribution along the spatial coordinate z:
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This dichotomous model, describing the steady state flow,
(for zero and non-zero angle of inclination), will be jointly
called the analytical model of steady state (AMSS).

3. APPLIED METHODOLOGY

For the LDI task, the four considered models (the base
model, ATM, AMDA, and AMSS) were implemented to
emulate the flow process as a part of a model-based LDI
system. The same input data was provided for each of the
models, working under identical conditions (physical flow
parameters and discretization grid).

The previously validated simulator Gunawickrama (2001)
was used to generate the data. This simulator is suited
for isothermal and incompressible flow and is based on an
adapted version of the base model to accurately generate
inlet and outlet pressures and flow rates. The simulator
uses the fact that a leak of ¢, [%] can be included in the
PDEs (1) and (2) describing the flow process.

8.1 Residual Generation and Leak Detection

After initialization, residual signals are calculated in each
iteration of the diagnostic algorithm:
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where q~f and ¢ are measurements of the inlet and outlet
mass-flow rates, and ¢¥ and G® are estimates of inlet and
outlet flow rates obtained from the model, respectively.

(10)

Leak Detection ~ We calculate the cross-correlation of
residuals using a low-pass filter implemented with the
forgetting factor S, (Billmann and Isermann, 1987) as
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Moreover, the above is summed up over all analyzed time
shifts 7 = 1,2, ..., Tmae resulting in
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In the event of a leak, the value of the above indicator
decreases. We compare it to a threshold ®;:

L < By, (13)

If the above condition is met, an alarm is triggered and
the diagnostic phase occurs.

Leak Location  The location of the leak can be deter-
mined on the basis of the characteristic shape of the
pressure distribution along the pipe in the event of leakage.
The location of the leak (z1,) can be determined as
sk (ko ak\
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To reduce the influence of measurement noise, another low-
pass filter is implemented.

Leak Size In a leaking case the inlet mass-flow rate is
increasing, while the outlet rate is decreasing, and the size
of the leak can be determined as a difference between the
measurements of the inlet and outlet flow rates:
QL =d; —ds =7f — 7y (15)
However, to reduce the impact of noise, we use the follow-
ing improved balancing method (Gunawickrama, 2001):

wf = E{qr} (16)
where 1215 is referred to as the leak size estimator. This
approach may require some reference values (Gunawick-
rama, 2001) that compensate for the sensors calibration

errors. Calculation of the expected value can be realized
by means of low-pass filtering.

8.2 Estimation of the Friction Factor

Usually for real pipelines, the coefficient of friction is only
known roughly. This is due to the complex, variant/non-
stationary and non-linear nature of this quantity.

For discrete-time models (Base Model, AMDA, ATM) the
friction coefficient can be estimated assuming that the
mean square error between the estimated flow rate and
the measured one is minimized (Gunawickrama, 2001).
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Similarly, for AMSS model we calculate A that minimizes
the mass-flow squared error as:
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where ¢%, is the measurement of flow velocity at one end
of the pipeline, E € {i,0}. The resulting friction factor be

computed as
2
P <Ck) (18)
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where C, for zero inclination angle is given by
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whereas for the non-zero inclination angle case we have
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Due to measurements at the inlet and outlet of the pipe,
the above (18) can be associated with the respective input

and output estimates of MR
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Again, the effective value of the friction factor A can be
estimated (Kowalczuk and Gunawickrama (2004)) using a
simple recursive filtering with a forgetting factor.

4. EVALUATION OF THE DIAGNOSTIC MODELS
AND ESTIMATORS

To evaluate the proposed models in terms of their applica-
bility to LDI systems, the influence of various parameters
on the diagnosis outcome was examined. Because the sys-
tem output is influenced by measurement noise, leak size,
and leak location, the problem is multidimensional, and
the experimental settings have to be reflected by rationally
selected parameters.

Diagnostic estimates of the size and location of the leak
were assessed for the bias (expected estimate error) and
standard deviation of that error. The respective biases are
calculated using the mean signed difference:
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for the estimates of the leak size and location, where n
is the number of executed experiment runs. The standard
deviation (STD) of estimation errors can be determined
for the leak size and location estimators as
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4.1 Ezperimental Setup

The physical parameters of the pipeline process are given
in Table 1. Simulation data were generated using these
parameters, with the number of Ny segments implemented
for the data generation was set to 100 (while the LDI
system itself uses N = 10).

Another reference set of parameters concerning the com-
putation and simulation process are shown in Table 2.

4.2 Assessment of the Quality of the Estimators

The quality of estimators is evaluated in terms of their
accuracy (reflected in respective bias) and precision -
reflected in their standard deviations.

In the whole leak simulation study, the evaluation was
performed for 60 experimental settings: 9 values of leak size
qL € {0.04,0.1,0.4,0.8,1.6,2,4,8,16}[%]7 and 6 discrete
leak locations (in km) 27, € {0.1,4,13.87,40, 73.75,98.2}.
Moreover, 7 different noise percentages introduced to pres-
sure readings v;q9, € {0,0.01,0.05,0.1,0.5,1,5}[%] were

taken into account, but only for q, = 4 % and zy = 40km.

It is difficult to clearly indicate a best model, because there
are many factors determining their quality. The prob-
lem of comparative criterion therefore arises. One of the
most recognizable approaches to multi-criteria problems
is optimization in the sense of Pareto, which introduces a
practical ranking of solutions (Deb et al., 2003).

For obvious reasons, the computational complexity of the
developed and analyzed process models can be associated
with both the computational time (¢;) necessary for a
single iteration, and the steady-state settling time ;.

All the performance parameters obtained in this part of
the experimental study are collected in Table 3, consider-
ing the computational parameters of Tables 1 and 2.

To make the above indicators comparable, we go to the
task of maximization with normalization relative to the
highest value (for each indicator separately). So 1 means
best score, while lower values refer to this best result. The
normalized functionals obtained are plotted in Fig. 1.

In the P-sense, AMDA, AMSS and base models are equiv-
alent (ATM is very close to them), and you can point a
diagnostic estimator that is tailored for a specific task.
In general, however, all of these aspects are important,

Table 1. Physical parameters of the flow.

[ Parameter [ Value [
Length of the pipe L 100 km
Diameter of the pipe D 0.4m
Speed of sound v 350 &
Friction factor A 0.02
Number of segments N 10
Inclination angle « 0°
Inlet pressure p; 112.28 bar
Outlet pressure p, 80 bar
Leak location zj, 40 km
Leak size qr, 4 k—‘g
Leak occurrence time tj, 105.5 min
Leak development time t; | 17.5min

Table 2. Computational parameters.

[ Parameter [ Value
Percentage of pressure reading Urdg,, 0.1% of reading
Percentage of mass-flow rate reading Urdg, 1% of reading
Courant number p 0.17
Detection threshold &4, 0.01
Forgetting factors f¢, 8z, B¢, Ba 0.99
Maximum shift 7,,4, for cross-correlation 20
Number of runs n 200
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Table 3. Quality measures of the estimators of Z;, (isolation) and gy, (identification).

[ Performance indicator H ATM [ AMDA [ AMSS [ Base model [
Bias of leak size estimator wg —265-10"1 | —1.45.1071 | —2.66-10~1 | —2.65-10"!
STD of leak size estimator 64 9.75-1073 3.37-10! 8.78 - 1073 9.75-1073
Bias of leak location estimator —1.21-10% —1.85-10% —2.65-10% —8.21-103
STD of leak location estimator &, 6.70 - 10° 2.18-10° 1.33-10° 3.14-10°
Single iteration computation time t; [s] 3.53-10~° 2.05-10~% 2.73-107° 7.18 104
Steady state computation time ¢ [s] 1.45-102 3.53 - 109 2.73-10°° 2241071

0.8 —

I Bias of leak size est.
[ STD of leak size est.
[IBias of leak location est.
[ STD of leak location est.
[ single iteration comp. time
[ steady-state comp. time

0.6
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Figure 1. Normalized local optimality level indicators for the analyzed models.

then we can use a measure called Global Optimality Level
(GOL) (Kowalczuk and Biataszewski, 2017). This crite-
rion, aiming at maximizing the lowest quality indicator
for each diagnostic estimator, is shown in Table 4.

Table 4. GOL for the diagnostic estimators.

[ [ ATM [ AMDA | AMSS [ Base model |
[GOL: [187-107 3 [ 738106031 [122-10-% |

We can see that the AMSS model is superior because its
GOL is at least two orders of magnitude larger than GOL
for other estimators. Nevertheless, the small values for the
ATM and AMDA models and the base model result from
the last quality indicator, i.e. the time required to reach
steady state. The AMSS model is particularly suitable
for this task (while other models are not). Thus, we get
better GOL estimates after excluding this indicator, and
the effect of this approach is shown in Table 5.

Table 5. Corrected GOL for the estimators.

[ [ ATM [ AMDA | AMSS | Base model |
[ GOL: [ 020 [ 0.03 [031 o004 |

It is now clear that the best diagnostic estimator is the one
based on the AMSS. The second best is the ATM-based
estimator. We also see that the AMDA model is slightly
inferior to the base model.

It is important to clarify here that the quality criteria are
measured with some uncertainty. Therefore, the above as-
sessment is approximate, however, given the total number
of runs (about 4000), the collective results seem justified.

5. SUMMARY

This paper has presented a comparative study analyzing
different derivative models in terms of their diagnostic
application. The evaluation of diagnostic estimators in
terms of their bias and standard deviation has been
proposed and evaluated taking into account different leak
sizes, locations and measurement noise levels. Multivariate

estimators resulting from the applied process models have
been compared in terms of their Global Optimality Level.

The AMSS model turns out to be the best in most cases in
terms of standard deviation, bias and calculation time, the
AMDA estimator seems only suitable for leakage locations,
and the ATM estimator, with lower computational com-
plexity, is in most cases comparable with the basic model.
In the GOL sense, the AMSS model is the best.
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