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ABSTRACT

This paper formulates a mathematical model for generating receiver operating char-
acteristic (ROC) curves without underlying data. Credit scoring practitioners know
that the Gini coefficient usually drops if it is only calculated on cases above the cut-
off. This fact is not a mathematical necessity, however, as it is theoretically possible
to get an ROC curve that keeps the same Gini coefficient no matter how big a share
of lowest score cases are excluded from the calculation (a “right-hand” fractal ROC
curve). Analogously, a left-hand fractal ROC curve would be a curve that keeps its
Gini coefficient constant below any cutoff point. The model proposed here is a linear
combination of left- and right-hand ROC curves. A bifractal ROC curve is drawn
with just two parameters: one responsible for the shape of the curve and the other
responsible for the area under the curve (a Gini coefficient). As is shown in this
paper, most real-life credit-scoring ROC curves lie between the two fractal curves.
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In consequence, the Gini coefficient will be consistently lower when computed only
on approved loans.

Keywords: credit scoring; Gini coefficient; lending; receiver operating characteristic (ROC)
curves.

1 INTRODUCTION

Receiver operating characteristic (ROC) curve models, mathematical formulas for
generating ROC curves without underlying data, have not so far been the focus of
credit-scoring researchers. However, they have been researched in other domains
where such curves are used, especially in signal processing and biostatistics (Egan
1975; Fawcett 2006; Swets 1996). In medical decision making, the need for ROC
curve models arose from the scarcity of data: the models for the curve shape are used
to enable estimation and obtain confidence intervals for the curve (Gonçalves et al
2014; Pepe et al 2009). In the credit-scoring domain, scarcity of data is usually not
a key problem. Still, ROC curve formulas could be useful for simulation or stress
testing (“How much will my portfolio improve if I increase the Gini coefficient of
my credit scoring by x percentage points?”, “What level of new loan volume increase
can I expect if I improve my Gini?”, “What if, due to regulatory changes, my model
deteriorates?”).

The literature on credit scoring does not mention models for ROC curves. The
formulas introduced in biostatistics and other domains include, among others, the
bilogistic (Pepe et al 2009), bibeta (Chen and Hu 1975) and bigamma (Dorfman
et al 1997) models, but the binormal model, despite some problems (Bandos et al
2017), is considered optimal and is usually the default choice (Gonçalves et al 2014;
Hanley 1988; Swets 1986).

The model introduced in this paper is based on two “fractal ROC curves”. The
idea of modeling ROC curves and the Gini coefficient in such a way came from a
question that arose a few years ago during a credit-scoring workshop in Poland. An
attendee at the workshop, a risk modeling manager, complained about a recommen-
dation he had received from the audit department in his bank. An employee in the
audit department raised an issue related to a new scoring model that had recently
been introduced in one of the retail loan business lines. The model, when introduced,
had a sufficient Gini coefficient (D 0:45) on both the development and validation
samples and after implementation. However, when a cutoff point was introduced and
the rejection rate increased, the Gini coefficient on the accepted population dropped
significantly (down to around 0.32).

For this manager, the explanation was obvious: the observed Gini coefficient tends
to drop when it is only calculated on those accounts that remain above the cutoff. He
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Bifractal ROC curves 3

knew this from experience, having observed it many times, and it had never raised
doubts. Industry experts are aware of this phenomenon. It is mentioned in Scallan
(2013), where it is referred to as “truncation”. But the audit employees were not
convinced. They even claimed, based on the decreasing Gini, that the model had
significantly deteriorated since implementation, and that a new scoring model was
needed. The question the manager asked during the workshop was, “Can it be some-
how proved that it needs to be like this and the Gini coefficient drops when the cutoff
point is increased?”.

One answer to this question would be to take an empirical data set and produce the
ROC curve without loans below some new assumed cutoff point, and then compare
the Gini coefficients before and after introducing the new cutoff. Most likely, the
Gini will decrease after the new rejects are excluded from the calculation.

But does it have to be like this? As will be shown in the next section, it is not
a mathematical necessity. An ROC curve does exist for any conceivable value of
the Gini coefficient, such that the Gini neither decreases nor increases after intro-
ducing a cutoff. In this paper, we will call such a curve a “right-hand fractal” ROC
curve. At the same time, as shown in Section 3, real-life ROC curves usually have a
different shape.

At this point, it is worthwhile mentioning that the Gini coefficient, although widely
used to assess the discriminatory power of credit scorecards, is not a perfect measure.
Hand and Anagnostopoulos (2013) show that the Gini is fundamentally incoherent
from the perspective of misclassification costs, which results in different classifiers
being treated differently. An alternative, the H -measure, is provided instead (Hand
2009). In contrast to the Gini coefficient, the proposedH -measure is not based solely
on the shape of the ROC curve; it requires an assumption on the probability distribu-
tion of possible relative misclassification severities. Scallan (2013) discusses practi-
cal situations, including the shape of the ROC curve, the impact of extreme values,
the reject inference method and instance sampling, when the Gini coefficient may
be misleading for credit portfolio managers. Still, as the Gini coefficient remains the
industry’s go-to measure, we will use it in the following text despite its limitations.

In the next section, the right- and left-hand fractal curves are derived. In Section 3
the linear combination of the two curves is fitted to empirical data. Section 4 contains
our conclusions and briefly discusses the limitations of the model.

2 DERIVATION OF A FRACTAL RECEIVER OPERATING
CHARACTERISTIC CURVE

An ROC curve is a graphical representation of the separation power of a scoring
model, or more generally, the discrimination power of some diagnostic tool. The
name “receiver operating characteristic” derives from the area of electronic signal
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4 B. Kochański

FIGURE 1 An ROC curve.
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The Gini coefficient is the ratio of the areas A and .ACC/.

detection, but it is also used in many other domains, including the atmospheric
sciences, biosciences, experimental psychology, finance, geosciences and sociol-
ogy (Gonçalves et al 2014). In the context of banking scoring models, the graph
of an ROC curve is obtained by plotting the cumulative distribution of bad scores
F.s j B/ D Pr.score 6 s j B/ on the y-axis against the cumulative distribution of
good scores F.s j G/ D Pr.score 6 s j G/ on the x-axis (Anderson 2007; Siddiqi
2017; Thomas 2009).

The Gini coefficient can be defined as a linear function of the area under the ROC
curve (AUC) (Fawcett 2006; Hand et al 2001):

Gini D 2AUC � 1 D 2
Z
F.s j B/ dF.s j G/ � 1: (2.1)

The Gini coefficient can also be expressed graphically as the ratio A=.A C C/
(Figure 1), where A is the area between the ROC curve (solid line) and a diagonal
y D x (dotted line), while .ACC/ is the total area of a triangle above the y D x line.

If we want the Gini coefficients to be equal after introducing a cutoff no matter
where we set the cutoff point, then, as shown in Figure 2, the area under the ROC
curve in the 1 � 1 square should be equal to the area under the same curve within
the rectangle defined by point P and the upper right-hand corner of the 1 � 1 square
expressed as a fraction of the area of this rectangle.
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Bifractal ROC curves 5

FIGURE 2 A fractal ROC definition.

0 1

1

P

The shaded area as a fraction of the rectangle surrounded by the dashed line should be equal to the area under
the curve for any cutoff point P chosen from this curve.

In other words, we are looking for a (continuous) function f W Œ0; 1�! Œ0; 1� such
that f .0/ D 0, f .1/ D 1 and, for all x 2 Œ0; 1/,

1

1 � f .x/

�
1

1 � x

Z 1

x

f .�/ d� � f .x/
�
D a; (2.2)

where a is the AUC.
We can make the integral equation (2.2) into a differential equation by introducing

a function F such that F 0 D f . Then the equation can be rewritten as

F 0.x/.1 � a/C
F.x/

1 � x
D
F.1/

1 � x
� a: (2.3)

Let F.1/ D c. Consequently, we have an ordinary differential equation with two
parameters, a and c:

F 0.x/.1 � a/C
F.x/

1 � x
D

c

1 � x
� a: (2.4)

A solution to (2.4) is given by

F.x/ D B.1 � x/1=.1�a/ C c � .1 � x/; (2.5)

where B is a parameter. Since f D F 0, we obtain

f .x/ D
B

1 � a
.1 � x/a=.1�a/ C 1: (2.6)
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6 B. Kochański

From the assumption f .0/ D 0 we get B=.1 � a/ D �1:

f .x/ D 1 � .1 � x/a=.1�a/; x 2 Œ0; 1�: (2.7)

The function satisfies the initial condition f .1/ D 1 and has just one parameter, a,
which is the AUC. As the Gini coefficient is 2AUC�1, we can rewrite the function f
so that it is a function of one parameter, 
 , which is equivalent to the Gini coefficient:

f .x/ D 1 � .1 � x/.1C
/=.1�
/; x 2 Œ0; 1�: (2.8)

Equation (2.8) shows that, for each 
 2 .0; 1/ (in other words, for each value
of the Gini coefficient), there exists an ROC curve that satisfies the constant Gini
coefficient assumption. The Gini coefficient above any cutoff point x is equal to the
Gini coefficient for the total scored population. We note that the curve is self-similar
in the sense that (referring once again to Figure 2) if we “stretched” the rectangle
defined by point P back to the 1 � 1 square, the formula for the curve would not
change, irrespective of which point P is selected. More formally, for any x0 in .0; 1/,
for any x in .x0; 1/ and for any 0 6 
 < 1, the following equality will be true:

f .x/ � f .x0/

1 � f .x0/
D f

�
x � x0

1 � x0

�
: (2.9)

This feature may bring to mind the concept of fractals, which remain self-similar
however they are magnified (Mandelbrot 1983). It may also be noted that the Gini
coefficient remains the same above, but not below, any cutoff point. That is why the
term “right-hand fractal curve” seems appropriate for such a curve. Figure 3 plots
the fractal ROC curves for several values of 
 .

As can be shown, an analogical left-hand fractal ROC curve can be derived. The
integral equation for it is

1

xg.x/

� Z x

0

g.�/ d�
�
D a D


 C 1

2
; (2.10)

and we get the following solution:

g.x/ D x.1�
/=.1C
/; x 2 Œ0; 1�: (2.11)

We may show the self-similarity property is analogous to (2.9):

g.x/

g.x0/
D g

�
x

x0

�
: (2.12)

Note that the function g.x/ specifying a left-hand fractal ROC curve is an “alge-
braic ROC”, namely a “power ROC” as described, among other things, by Swets
(1996). The right-hand fractal ROC could also be included in the category of “alge-
braic ROCs” as defined by Swets (1996), but, to the best of the author’s knowledge,
has not appeared in the literature before.
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Bifractal ROC curves 7

FIGURE 3 A right-hand fractal ROC curve for several gammas (Gini coefficients).
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3 MODELING EMPIRICAL RECEIVER OPERATING
CHARACTERISTIC CURVES

In practice, empirical ROC curves are neither right- nor left-hand fractal but some-
where in between. For example, take the data provided in Řezáč and Řezáč (2011)
from an unnamed European financial institution. Figure 4 plots empirical data points
against two fractal ROC curves. (Note that in order to draw the fractal ROC curves,
the Gini coefficient (
 parameter) had to be assumed. The Gini coefficient calculated
based on the data was taken to be 
 D 0:46.) As can be seen, the empirical ROC
curve lies between the two extremes.

This brings us to the idea of a linear combination of the two fractal ROC curves
as a simple way to model empirical ROC curves. If we combine (2.8) and (2.11), we
get

rˇ;
 .x/ D f̌ .x/C .1 � ˇ/g.x/

D ˇf1 � .1 � x/.1C
/=.1�
/g C .1 � ˇ/x.1�
/=.1C
/: (3.1)

In this setup, a real-life ROC curve can be modeled with just two parameters. One
of them (
 ) represents the Gini coefficient, and the other (ˇ) is responsible for the
shape of the curve. Formula (3.1) returns a left-hand fractal ROC curve for ˇ D 0

and a right-hand fractal ROC curve for ˇ D 1.
Once we have (3.1), we can fit the curve to empirical data points. To obtain this

goal, a minimal average weighted distance algorithm is proposed. To fit the curve we
use the “bobyqa” function (Powell 2009) from the R package minqa (Bates et al
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8 B. Kochański

FIGURE 4 An empirical ROC curve from Řezáč and Řezáč (2011) versus right- and
left-hand fractal ROC curves.
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FIGURE 5 Setting weights for the “bobyqa” objective function.
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Bifractal ROC curves 9

FIGURE 6 A model ROC curve from (3.1) fitted to the data from Řezáč and Řezáč
(2011).
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2014). We choose the following objective function to be minimized:

fobj.x;y; ˇ; 
/ D

nX
iD1

jyi � rˇ;
 .xi /jwi ; (3.2)

where j � j denotes the absolute value; wi are weights, as explained below; xi and
yi are the coordinates of points from the empirical ROC curve; x and y are vectors
containing these coordinates; and rˇ;
 .xi / is the vertical coordinate of point xi cal-
culated with (3.1). Points .0; 0/ and .1; 1/ are not included in the calculation. The
weights wi are based on vector x in the way illustrated in Figure 5. Namely, for each
element xi of vector x, wi is the length of the section consisting of those x-axis
points between 0 and 1 that are closer to xi than to any other element of x. In this
way, if only x has no duplicates, all the wi are greater than zero and

P
i wi D 1.

Figure 6 contains an ROC curve fitted to the data from Řezáč and Řezáč (2011)
with the method described above. The parameter ˇ turns out to be around 0.52, so
the real ROC curve is almost exactly in the middle of the left- and right-hand fractal
curves. Based on the plot, we may infer that the goodness-of-fit is quite good in this
case. The objective function (fobj) is below 0.005, which means that the weighted
average absolute deviation between the empirical data and the fitted model is below
this level.

Eleven data points are available in this chart. We may use the chart with a Lorenz
curve from Řezáč and Řezáč (2011) to read more data points regarding the same
scoring model. Figure 7 presents the results. It seems that both the parameters (ˇ
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10 B. Kochański

FIGURE 7 A curve fitted to more data points read from the Lorenz curve in Řezáč and
Řezáč (2011).
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FIGURE 8 A curve fitted to the empirical ROC curve found in Wójcicki and Migut (2010).
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and 
 ) and the objective function are almost the same as in the previous calculation,
which consists of a smaller number of data points.

Figure 8 contains an ROC curve fitted to the empirical ROC curve from an anti-
fraud scoring model developed in a Polish bank (Wójcicki and Migut 2010). Again,
the fit seems to be quite good, and the beta is close to one-half (0.56).
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Bifractal ROC curves 11

FIGURE 9 A curve fitted to the empirical data on Altman’s Z-score from Engelmann and
Tasche (2003).
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FIGURE 10 A curve fitted to the empirical data on a logit score from Engelmann and
Tasche (2003).
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Engelmann and Tasche (2003) present ROC curves calculated for the Altman
Z-score model and a self-developed logit model based on the Bundesbank database
of small and medium enterprises (years 1987–99). Figures 9 and 10 present the
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14 B. Kochański

FIGURE 11 A curve fitted to the empirical data on a model for individual entrepreneurs
from Miyamoto (2014).
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results of the curve fitting for these cases. Here, the ˇ parameters are 0.26 and 0.33,
respectively.

It is quite difficult to find publicly available data for empirical ROC curves. And
even if such information is available in the literature, in most cases it is necessary to
extract it from the graph itself. Two consumer-lending institutions kindly provided
their real-life ROC curves for this exercise under the condition of anonymity. Also,
data from Lichman (2013) was used to build a simple logistic regression classifier.
The results for the above-mentioned examples and several others found in the lit-
erature are presented in Table 1. The overall fit appears to be quite good. The goal
function does not exceed 0.035 in any of the cases, which means that, at worst, the
weighted average vertical distance between the data points and the fitted curve is
3.5 percentage points. The median result of fobj is around 1 percentage point.

The case of the Miyamoto (2014) model for individual entrepreneurs in a small
bank is an interesting one. The fitted curve here is almost the right-hand fractal curve,
as the shape parameter is very close to 1 (ˇ D 0:989, Figure 11). As it appears, a
right-hand fractal ROC curve, where the Gini does not drop with the introduction of
the cutoff, not only is a theoretical possibility but also may occur in practice. A curve
quite close to the left-hand fractal ROC curve is presented in Figure 12 (ˇ D 0:112).

However, except for these two cases, the beta parameters lie between 0.25 and
0.75, which shows that real-life ROC curves fall somewhere in the middle of the
left- and right-hand fractal models. This would be an important conclusion for the
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Bifractal ROC curves 15

FIGURE 12 A curve fitted to ROC points for a scorecard built on data from Lichman
(2013).
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audit department employees mentioned in Section 1. In most situations, they should
expect the Gini coefficient to drop when it is computed on approved loans after the
introduction of a substantially higher cutoff point.

4 CONCLUSIONS

The relatively simple two-parameter formula derived from two “fractal” ROC curves,

y D ˇf1 � .1 � x/.1C
/=.1�
/g C .1 � ˇ/x.1�
/=.1C
/;

seems to be a useful and intuitive model for empirical ROC curves associated with
credit-scoring Gini coefficients. The 
 parameter in the model reflects the value of
the Gini coefficient, while the other parameter (ˇ) serves as a shape parameter.

When the model curve is fitted to actual data, the beta parameter turns out to be
around the midpoint (between 0.25 and 0.75). The empirical ROC curves lie between
the left- and right-hand fractal ROC curves. As a consequence, there is almost always
a decrease in the Gini coefficient when a more strict cutoff point is introduced. The
Gini will be consistently lower when computed only on approved loans.

The model can be used to simulate new, unknown ROC curves or to simplify cal-
culations for existing ROC curves. For example, it could help answer the question of
how much the profits of a lending institution may be improved after the introduction
of a new scorecard with increased separation power. This is a typical scenario when
the need arises to draw a hypothetical ROC curve.
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16 B. Kochański

Certainly, the model has some limitations. Most importantly, the usefulness of
the model relies on the goodness-of-fit to actual ROC data. As shown in Section 3,
the fit to empirical data is quite good, although it may differ for various cases, and
alternative options (such as the binormal curve) may turn out to be more adequate.

DECLARATION OF INTEREST

The author reports no conflicts of interest. The author alone is responsible for the
content and writing of the paper.

ACKNOWLEDGEMENTS

I thank Professor Karol Dziedziul from Gdańsk University of Technology for his
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