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A B S T R A C T   

This article addresses the problem of choosing the optimal discretization grid for emulating fluid flow through a 
pipeline. The aggregated basic flow model is linearized near the operating point obtained from the steady state 
analytic solution of the differential equations under consideration. Based on this model, the relationship between 
the Courant number (μ) and the stability margin is examined. The numerically set coefficient μopt , ensuring the 
maximum margin of stability, is analyzed in terms of the physical and technological parameters of the flow. As a 
result of this analysis, a specific formula is obtained based on parameters describing the mechanics (geometry 
and physics) of the flow through the pipeline, which leads to the optimal value of the Courant number, separately 
for smooth and rough pumping conditions. A more detailed analysis of the distribution of the optimal μ coef
ficient in relation to the parameters of the pipeline flow mechanics shows four cases to consider when deter
mining the coefficient μopt . Surprisingly, in three cases, the CFL condition is insufficient, which is expressed in the 
form of the proposed procedure for choosing the optimal value of μ. The final dichotomous model is derived from 
the Monte Carlo simulation results in which the effect of each parameter on the optimal Courant number is 
estimated and consolidated. Taking into account the recognized general laws of physics and using numerical 
methods and mathematical analysis, simple and useful analytical relationships describing the flow process are 
obtained. In addition, computer simulations are performed to verify the correctness of the proposed procedure, as 
well as a number of other considerations related to the modeling of fluid flow in transport pipelines.   

1. Introduction 

Numerical stability plays an important role in many engineering 
disciplines, including finding computational solutions for partial dif
ferential equations and emulating1 processes in the real world, where it 
is required to match numerical models to the analyzed process 
(Kowalczuk and Tatara, 2018, 2020). Stability is extremely important 
because it determines the correct operation of systems and the consis
tency of results. The issue of flow model stability is closely related to the 
physical parameters of this process, the chosen discretization grid and 
the implemented discretization scheme. It is usually assumed that the 
physical parameters of the analyzed process are constant and remain 
unchanged during emulation. Similarly, the discretization scheme is 
selected before implementation. The discretization grid is also chosen by 
the system designer (according to certain criteria), and can be 

adaptively changed while the solution is being calculated. 
There are methods to help you choose the appropriate discretization. 

The early Lax Equivalence theorem (Lax and Richtmyer, 1956) indicated 
that a consistent linear numerical scheme with well-set initial conditions 
converges if and only if it is stable. Hence the importance of theoretically 
grounded stability (Thomas, 1995) that underpins systems engineering. 

One of the most recognizable selection methods is the Courant- 
Friedrichs-Lewy (CFL) principle, which specifies the condition neces
sary for the convergence of the difference equation approximating the 
partial differential equation (Courant et al., 1967). For many years, re
searchers have been referring to this condition when performing simu
lations (Woodward and Colella, 1984; Bauer et al., 2008; Thanh, 2014; 
Kornhaas et al., 2015; Duquette et al., 2016; Capuano et al., 2017; Yeung 
et al., 2018; Wang et al., 2018; Shao and Li, 2018; Decuyper et al., 2018; 
Hafsi et al., 2019; Alghurabi et al., 2020). The CFL criterion is not only 
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1 Emulation means real-time simulation. The term here refers to a situation where a numerical model is instantiated in the final application, where (on-line) 
measurements are collected in real time and entered into the system implementing the model. 
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essential in the field of computational fluid dynamics, but is also 
considered paramount in other sciences, for example in antenna physics 
and electromagnetic field theory (Namiki and Ito, 1999; Chen and 
Zhang, 2001). Schemes seemingly not requiring compliance with the 
CFL principle are also proposed, but then usually other or equivalent 
singularities appear that limit the rationality or computability of the 
result (Namiki and Ito, 1999; Chen and Zhang, 2001; Stefański and 
Drysdale, 2008; Czernous, 2008; Kowalczuk et al., 2018). The basic 
starting point is practical knowledge related to the 
Courant-Friedrichs-Lewy condition, which limits and binds the dis
cretization steps, without closing the possibility of further optimization 
(e.g. by trial and error). The problem of optimal selection of the dis
cretization grid is therefore an extremely important issue in numerics, 
calculations and simulations (you can also refer to publications (Gordner 
and Wittum, 2007; Kowalczuk and Tatara, 2016)). 

Model-based approaches to pipeline flow diagnostics are based on 
flow process emulation that enables comparative analysis of actual 
measurements. The crucial point of such calculations is the numerical 
stability of the emulated model (Kowalczuk and Tatara, 2016). This 
means that the choice of discretization grid should be given special 
attention. 

The main contribution of this article is the method of choosing 
optimal steps in space and time. It was achieved by analyzing the impact 
of various factors and physical parameters of the flow process on the 
sought solution. In particular, the optimal choice of steps should be 
understood in terms of maximizing the margin of system stability (in the 
classical sense). The intended consequence of such approach is the 
relative robustness of the numerical algorithm for the uncertainties in 
the model, as well as – due to related complex non-linear relationships – 
insensitivity to measurement variation or deviation. When thinking 
about emulation processes, you can use a pseudo-time stepping 
approach, in which, at each stage, the time step can be locally optimized 
using the proposed formula. Due to real-time computation constraints 
(imposed by limited field computer resources), the time step should 
always be determined safely and instantaneously. Often, some process 
parameters are previously unknown or may change during imple
mentation or the emulation itself. Therefore, the time step cannot be 
predetermined and must be calculated in real-time. Due to the large 
number of possibilities, it also cannot be taken from a look-up table. 
Thanks to the main result of this work, concerning the formula for 
choosing the optimal method of discretization, you will not have to 
guess the correct value of the steps by trial and error, as in the case of the 
Courant-Friedrichs-Lewy condition. Instead, assuming that the current 
parameters are estimated correctly, and using the classic principle of 
certainty equivalence (a more detailed discussion of this issue is pro
vided in Appendix B), we are able to calculate the optimal discretization 
grid. 

In practice, the appearance of unforeseen operational situations may 
cause that the applied solution will work in other conditions than those 
for which it was technically adjusted. Such cases are widely known in 
engineering and can also cause various ‘lethal’ side effects in terms of 
theoretical-mathematical, numerical-computational and practical 
implementation. On the other hand, there are no better methods than 
computer ones. Therefore, although numerically difficult, the problem 
considered here is extremely important. It is worth mentioning the 
recent work of (Konangi et al., 2018) on a similar problem and analyzing 
the stability ranges as a function of Mach number. In contrast, we 
analyze (i) the optimal Courant number as (ii) a multivariate function of 
the physical coefficients of the pipeline. 

It is thus well known that due to the existing numerical problems, an 
attempt to implement a model in practice may lead to “overloading” or 
preventing its computer implementation. In some cases, shared engi
neering experience may lead to the empirical discovery of specific re
quirements (such as the CFL principle) and the emergence of various 
interesting theoretical problems that are always worth expressing in a 
rigorous mathematical framework. 

From a theoretical and practical point of view, our analysis leads to 
an interesting categorization, in which we take into account geometric, 
physical, technological, mathematical and numerical parameters. The 
obtained classification, together with apt mathematical modeling, al
lows us to provide analytical formulas explaining the phenomena 
related to the CFL principle, and the issue of the optimal Courant 
number and optimal discretization grid, and as a result leads to a well- 
conditioned simulation/emulation. 

Let us consider purely practical and engineering aspects. As 
mentioned, the optimal Δt can be variable over time (at any stage), 
improperly selected parameters can easily destabilize the system, and a 
simple approach to this problem (e.g. trial and error method) may be 
unacceptable (e.g. from a technological point of view). In addition, the 
target system environment may not be available to the operator. 
Therefore, the practical goal of this development is to determine the 
feasibility conditions for automating the process of choosing the time 
and space step. 

2. Discretization of the base model 

Considering the intention to solve the target problem of choosing the 
optimal discretization grid suitable in emulation of the pipeline flow 
process, which is, for example, part of a field-deployable leak detection 
and isolation system, we will start with a continuous mathematical 
formulation of the analyzed process. 

The continuous-time model of the flow process can be derived from 
the laws of conservation of mass and momentum. As a result, through 
some simplifications, assuming an isothermal incompressible flow, the 
following two partial differential equations can be given (Billmann and 
Isermann, 1987; Kowalczuk and Tatara, 2020): 

S
ν2

∂p
∂t

+
∂q
∂z

= 0 (1)  

1
S

∂q
∂t

+
∂p
∂z

= −
λν2

2DS2

q|q|
p

−
g sin α

ν2 p (2)  

where S is the cross-sectional area [m2], ν is a surrogate speed of sound 
in the fluid [m

s ], D is the diameter of the pipe [m], q is the mass flow [kg
s ], 

p is the pressure [Pa], t is the time [s], z is the spatial coordinate [m], λ is 
the generalized dimensionless friction coefficient,2 α is the inclination 
angle [rad], and g is the gravitational acceleration [m

s2]. The surrogate 
speed of sound, which is a quantity related to the isothermal speed of 
sound, can be calculated as 

ν=
̅̅̅
p
ρ

√

(3)  

where ρ is the density of the fluid.3 Since the question of the applicability 
of such a surrogate is quite complex, you can refer to the discussion in 
(Kowalczuk and Tatara, 2020). 

The model of Eqs. (1) and (2) was derived with the assumptions of a 
constant pipe diameter and operation in turbulent flow region 
(Re > 4000). In addition, the elastic effects of walls are neglected, the 
speed of sound is constant, and the velocity of flow is significantly 
smaller than the speed of sound. We also assume that the considered 
pipe is ‘long’ (Billmann and Isermann, 1987). Such a description is 
subject to discretization by means of finite low-order differential 
schemes (Billmann and Isermann, 1987): 

∂x
∂t

=
3xk+1

n − 4xk
n + xk− 1

n

2Δt
(4)  

2 The Darcy friction factor (White, 2011; Kowalczuk and Tatara, 2020).  
3 We can also briefly refer to Eq. (3) as the speed of sound. 
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∂x
∂z

=
xk+1

n+1 − xk+1
n− 1 + xk

n+1 − xk
n− 1

4Δz
(5)  

where Δz and Δt are, respectively, spatial and time steps. The subscript 
indicates the segment index of the pipe, and the superscript is the 
discrete-time step number. It is assumed, as shown in Fig. 1, that the 
pressures are estimated and monitored at the end of the odd pipeline 
segments, while the flow rates at the end of the even sections. In the 
considered case of dynamic flows, in order to determine successive 
pressures and mass flows, we need to know the adjacent mass flows and 
pressures. It is important that pressure and flow measurements are only 
available at (both) pipe ends. 

The discretization of the model Eq. (1)–Eq. (2) using schemes Eq. (4) 
and Eq. (5) leads to the following set of difference equations describing 
the pipeline flow process: 

apk+1
n − b

(
qk+1

n− 1 − qk+1
n+1

)
=

a
3
(
4pk

n − pk− 1
n

)
+ b

(
qk

n− 1 − qk
n+1

)
(6)  

b
(
pk+1

n+1 − pk+1
n− 1

)
+ cqk+1

n = b
(
pk

n− 1 − pk
n+1

)
+ Ynpk

n +

(
4c
3
+ Fk

n

)

qk
n −

c
3

qk− 1
n

(7)  

with physical coefficients 

a=
3S

2ν2Δt
, b =

1
4Δz

, c =
3

2SΔt
, Yn = −

g sin αn

ν2 (8)  

Fk
n ≃ −

λν2

DS2

⃒
⃒qk

n

⃒
⃒

pk
n− 1 + pk

n+1
(9)  

where αn denotes the inclination angle of the n-th segment. The 
approximation Eq. (9) results from presenting the central pressure pk

n as 
the mean value of pressures from adjacent segments. The set of two 
equations Eq. (6) and Eq. (7) can be expressed in the form of the 
following state-space model: 

Ax̂k
=Bx̂k− 2

+ C(x̂k− 1
)x̂k− 1

+ Duk− 1 + Euk (10)  

where the state and input vectors are defined as 

x̂k
=
[

q̂k
0 q̂k

2 q̂k
4⋯q̂k

N p̂k
1 p̂k

3 p̂k
5⋯p̂k

N− 1

]⊤
∈ RN+1  

and 

uk =
[

pk
0 pk

N

]⊤
∈ R2  

respectively (Gunawickrama, 2001). Symbols with hats indicate 
estimates. 

The matrices A, B, C, D and E (Kowalczuk and Tatara, 2017) are 
specifically described in Appendix A. 

The form Eq. (10) shown above makes it difficult to analyze the 
numerical stability of the model. Since matrix A is proved to be 
invertible (Kowalczuk and Tatara, 2017), equation Eq. (10) can be 
rewritten in a nonsingular state-space form: 

x̂k
=A− 1( Bx̂k− 2

+C(x̂k− 1
)x̂k− 1

+Duk− 1 +Euk) (11) 

Recalling the results presented in Kowalczuk and Tatara (2017), an 
aggregated state vector ̃xk

=
[

x̂k⊤ x̂k− 1⊤ ]⊤ and an aggregated input ũk
=

[
uk⊤ uk− 1⊤

]⊤ can be defined, which allows for a useful model of the flow 

process to be shown as an aggregated dynamic equation in the state 
space, fitting a linear framework: 

x̃k
=Acx̃k− 1

+ Bcũk (12)  

where 

Ac(x̃k− 1
)=

[
A− 1C(x̃k− 1

) A− 1B
I 0

]

(13)  

Bc =

[
A− 1E A− 1D
0 0

]

(14) 

Obviously, this is not full, but only apparent ‘linearization’, because 
matrix Ac is a function of the state vector x̃k− 1. Moreover, the Bc matrix 
strongly depends on the friction coefficient λ. When performing emu
lations, we calculate the Ac matrix in an iterative way, which means that 
we are dealing here with non-linear and variant (non-stationary) pro
cessing. Importantly, model Eq. (12) has a convenient form of state 
equations that can be analyzed using suitable numerical tools. Since 
non-linear effects associated with flow and pressure variables are pre
sent in Eq. (2), standard methods of linear stability analysis (e.g. von 
Neumann or frequency analysis Morton and Mayers (2005)) cannot be 
used here. 

In order to guarantee the stability of the numerical system, the au
thors of Courant et al. (1967) recommend that the evaluation rate of the 
considered phenomenon be greater than the propagation velocity of the 
analyzed phenomenon (which is similar to the consequences of the 
famous sampling theorem). In its original version, the CFL rule states 
that the domain of numerical relation must cover the domain of 
analytical dependence. 

This means that the discretization grid Δz
Δt must be greater than or 

equal to the rate of information exchange in the appropriate differential 
equations (which is also called the characteristic method) for the 
computational system to be stable Bridson (2015). It turns out, however, 
that the CFL condition is only a necessary condition, which in general 
may turn out to be insufficient (it only gives the lower bound of the 
expression Δz

Δt, see also discussion in Appendix C). 
In order to perform stable emulation, an appropriate discretization 

grid must be established. In particular, since the sound velocity ν is the 
highest transfer rate present in the flow process, the following inequality 
limitation (CFL) arises: 

Δz
Δt

⩾ν (15) 

Moreover, by transforming the above into an equivalent equality 
form, the CFL condition can be expressed as: 

Δt = μ Δz
ν (16)  

where μ is a coefficient from the range (0,1〉 linking the two dis
cretization steps, commonly called the Courant number. 

In such a situation, a useful mesh parameter (mh) of the analyzed 
discretization grid can be defined as: 

mh =
Δz
Δt

=
ν
μ (17) 

The proposed discretization conditions are discussed in Appendix C, 
where the full grid visualization is presented. Our experience shows that 
for each set of technological parameters, there is a specific relationship 
between the quantization of time and space that guarantees a maximum 
margin of stability m. For the discrete models, this margin is measured as 
m = 1 − smax, where smax is the largest modulus of all eigenvalues of the 
state matrix Ac (Brogan, 1991). 

Fig. 1. Spatial discretization grid of the pipeline.  
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3. Steady state evaluation leading to a linear model 

Simulation experiments were performed for a number of pipeline 
diameters. The results are summarized in Fig. 2, where the stability 
margin is expressed as a function of the μ coefficient. When analyzing 
such plots for various sets of pipeline physical parameters, it was noticed 
that there is an exact value of this coefficient which leads to the 
maximum margin of stability of the analyzed numerical scheme. 

The results shown in Fig. 2 were obtained with a considerable 
computational effort (20,000 iterations for each simulation experiment). 
However, it served to accurately determine the steady state. To deter
mine whether a steady state was reached, two subsequent state vectors 
were compared. When the second norm of the resulting deviation vector 
is lower than the numerical noise level, it is assumed that the steady 
state conditions are satisfied. 

Clearly, transient processes may cause difficulties in selecting the 
discretization grid. It is worth noting that these processes are also usu
ally useless from the point of view of monitoring and diagnostics. 
Transient processes are also unreliable due to the differences between 
the real flow process and the numerical process as they include varia
tions and fluctuations due to numerical effects (alien to the real world). 
That is why we weed the steady state, which is fully representative. It is 
also important that we were able to develop a precise steady-state for
mula (Kowalczuk and Tatara, 2020). All this will allow us to determine 
the appropriate model of the coefficient μ. 

To emphasize the fact that the only pressures that are relevant from a 
practical point of view are those at the inlet and outlet of the pipe, we 
denote them as pi and po, corresponding to p0 and pN, respectively. 

Nonlinear differential equations require great computational effort 
to preserve stability, which is why, in many cases, the linearization 
around the known operating point is a standard procedure that reduces 
the complexity of the problem. 

To implement the linearization procedure, we suggest moving from 
the numerical domain to the analytical field, in which we have achieved, 
inter alia, an analytical result (Kowalczuk and Tatara, 2018, 2020) 
regarding the method of calculating the steady state, which will be the 
basis of the linearization. In this way, we can provide an analytical so
lution of partial differential equations Eq. (1) and Eq. (2) in the steady 
state in the following form: 

q= sign
(
p2

i − p2
o

)
⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒
DS2

λν2
p2

i − p2
o

L

⃒
⃒
⃒
⃒

√

(18)  

p=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
i − z

p2
i − p2

o

L

√

(19)  

for a zero inclination (tilt) angle (α = 0) and: 

q=

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒
⃒
⃒
⃒
⃒

2DS2

λν2
gsinα

ν2

⎛

⎜
⎜
⎝

p2
i − p2

oe2gsinα
ν2 L

e2gsinα
ν2 L

− 1

⎞

⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

√
√
√
√
√
√
√ ⋅sign

⎛

⎝p2
i − p2

oe2gsinα
ν2 L

⎞

⎠ (20)  

p2 = e− 2gsinα
ν2 zp2

i +

⎛

⎜
⎜
⎝

p2
i − p2

oe2gsinα
ν2 L

e2gsinα
ν2 L

− 1

⎞

⎟
⎟
⎠

⎛

⎝e− 2gsinα
ν2 z

− 1

⎞

⎠ (21)  

for a non-zero inclination angle, where z is a spatial coordinate.4 

As shown above, the space-state model Eq. (12), although essentially 
non-linear, has a linear form of state-space equations. This model can 
now be (fully) linearized (you can call it the second stage of ‘lineariza
tion’) around the appropriate working point (Kowalczuk and Tatara, 
2020), which in our case is a state vector consisting of the determined 
steady-state values of pressure and flow shown above. Note that the 
coefficient of friction is also required to calculate the flow rates Eq. (18) 
and Eq. (20), and therefore it must be estimated first (Kowalczuk and 
Tatara, 2020). A fixed-value state transition matrix is obtained by simply 
substituting the calculated steady state x̌ for x̃∞: 

Ac =Ac(x̌)|
x̌=
[

q̌⊤ p̌⊤ q̌⊤ p̌⊤
]⊤ (22) 

The precise value of the steady state x̌ can be calculated as follows. 
According to Eq. (18) or Eq. (20), we conclude that the constant value of 
the mass flow along the pipe is: 

qn = const = q ​ for ​ n = 0, 2, 4,…,N (23)  

And the discrete-in-space version of the pressure distribution according 
to formulae Eq. (19) and Eq. (21) is given as, respectively: 

pn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
i −

p2
i − p2

o

L
Δzn

√

​ for ​ n = 1, 3,…,N − 1 (24)  

and: 

pn=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

p2
i − p2

oe2g sin α
ν2 L

1 − e2g sin α
ν2 L

+

⎛

⎜
⎜
⎝p2

i −
p2

i − p2
oe2g sin α

ν2 L

1 − e2g sin α
ν2 L

⎞

⎟
⎟
⎠e− 2Δzg sin α

ν2 n

√
√
√
√
√
√
√ ​ for ​ n=1,3,…,N − 1

(25) 

Putting Eq. (22) in Eq. (12), we get the following fully linearized 
dynamic equation of an aggregated vector x: 

xk =Acxk− 1 + Bcũk (26) 

Knowing the value xk, we are able to calculate the emulation output 
values, i.e. the mass inlet and outlet flow rates that can be further pro
cessed or compared to measurements for leak detection, for instance. 

Commentary 1. The presented linearization means a great methodo
logical simplification of the modeling and computation problem dis
cussed here. It is important that the above steady state of the flow 

Fig. 2. Stability margin as a function of the μ coefficient for different diameters 
of a pipeline. Stability margin was measured after 20,000 iterations of the 
simulation algorithm. The other physical parameters of the pipeline were: N =
10, L = 4000 [m], λ = 0.01, ν = 304 [m

s ], pi = 32 [bar], po = 30 [bar], and α =
0 [∘] (Kowalczuk and Tatara, 2016). 

4 When presenting the above solutions for steady state, we assume that all 
parameters are known. In fact, the problem is more complex (Kowalczuk and 
Tatara, 2020); among others the friction coefficient depends on the instanta
neous value of the flow velocity. Therefore, it can change in any emulation step, 
and analytical solutions may differ from the true steady state. Thus they should 
be treated rather as an initial guess, taking into account current parameter 
values. 
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process is calculated analytically, based on the original partial differ
ential equations of the flow process. Moreover, it should be noted that 
due to the linearization of the state transition matrix, the nonlinear ef
fects of the pertinent parameters (q and p) become integrated into the 
state transition matrix (apart from the state itself). 

Commentary 2. Although in general the results of simulations of 
various numerical (discrete-time) models that can be used in computer 
environments do not have to coincide with analytic solutions, relevant 
studies (Kowalczuk and Tatara, 2018) show that the steady-state vector 
obtained as a result of numerical simulation of the linearized model 
given by Eq. (26) converges in time to the analytic solution of the 
complete (continuous in space and time) flow process model (the higher 
the accuracy and complexity resulting from fine discretization, the 
better). 

Commentary 3. The linearity effect obtained in Eq. (22), including the 
method Eq. (26) for calculating Ac (see also Appendix D), allows us to 
perform a standard numerical stability analysis. Moreover, the model, 
together with the matrix Ac, calculated for a given operating point al
lows us to predict both the state of the system and the output quantity 
(mass flow). The approach taken can be interpreted in terms of Certainty 
Equivalence (see Appendix B). 

4. The largest possible margin of stability 

In order to determine the optimal discretization mesh mh or, equiv
alently, Δz

Δt, the linearized aggregated model Eq. (26) was simulated with 
a random choice of technological flow parameters, as presented in 
Table 1. Consequently, for each parameter set, the Courant number μ 
was optimized (yielding μopt) to ensure the highest possible margin of 
stability. 

It is worth noting that our structure of the state space model covers 
only the technological parameters indicated in Table 1. While the in
fluence of the flow rate is included in the computational parameters of 
the state transition matrix as well as in the state vector itself (compare 
also Appendix D). 

Although the parameter ranges in Table 1 cover in practice the entire 
physically feasible search space, nevertheless the set of parameters used 
in the final application should be additionally checked in terms of 
meeting the assumptions and physical conditions of the base flow model 
(taking into account, for example, compressibility or incompressibility 
conditions, turbulent or laminar flows, etc.). 

4.1. Preliminary analysis of the results obtained 

At the beginning, each parameter was tested independently (with the 
other parameters fixed). However, since each simulation requires a long 
wait for a steady state (due to transient processes), the time required to 
collect the necessary data, especially for greater dimensionality of the 
model, was very long. In the linearized model, the state transition matrix 
is constant and the stability margin remains unchanged during simula
tion, therefore the time of data collection is significantly shortened. Note 
that the linearized model can be analyzed using classical systemic and 
mathematical tools, for example, the analysis of stability can be per

formed by determining the eigenvalues of the state transition matrix. 
This gives us the ability to run an optimization algorithm to find a curve 
in the Δt − Δz plane that provides the maximum margin of stability: 

m= 1 − smax (27)  

where smax is the maximal absolute eigenvalue of the state transition 
matrix Ac. 

For three exemplary pipeline lengths, a plot of the stability margin as 
a function of the Courant number was determined. This result is shown 
in Fig. 3 for a short pipe (100 km) case, in Fig. 4 you have the case of a 
medium pipe (1000 km), and Fig. 5 is for a long pipeline (5000 km). 

In practice, we can recommend the use of μ = 1, but only for some 
medium length pipes. Leaving a broader treatment of this topic for 
further research, we would like to limit ourselves here to the common 
(CFL) condition μ ≤ 1. 

You can see that, for a short pipe (Fig. 3), the maximum stability 
margin is achieved at μopt ≈ 0.36, while the system becomes unstable at 
μ ≈ 0.66. The value of the μ coefficient for which the system becomes 
unstable will be called the critical Courant number μcrit. It is thus clear 
that the CFL condition is not sufficient in the considered case and it is 
necessary to use a different method to specify μopt . 

A similar situation can be observed for long pipes (Fig. 5), though the 
difference between μopt and μcrit is much smaller (μopt = 0.993, μcrit =

0.936). Again, we see that the optimal Courant number μopt should be 
specified very accurately. 

Fig. 4 also requires some explanation. Based on purely mathematical 
considerations, one can come to the obvious conclusion that μopt is not 
restricted, and that the optimal stability margin can be found even with 
μ greater than 1 while maintaining system stability. In general, however, 
it should be noted that stability is not the only criterion for project ra
tionality. With a set period Δt, sampling in space with a step Δz before 
the information arrives there does not seem rational, so according to 
CFL, you should use μopt ≤ 1. Otherwise, the state transition matrix is ill- 
conditioned and in general the flow process model does not meet the 
basic criteria for reliable modeling (repeatability). Therefore, below, all 
values of μopt greater than 1 will be truncated to 1. 

5. Pipe description – factoring 

After a detailed analysis of a wider range of experimental pipeline 
operating conditions (including various geometrical and physical pa
rameters), we distinguish three basic classes (types) of pipeline tech
nological operation (streaming, pumping) conditions as:  

• rough,  
• smooth,  
• indefinite. 

Table 1 
Range of parameters used for the simulation.  

Parameter Min Max 

Length L [m] 1 106  

Diameter D [m] 0.001 2 
Friction coefficient λ [-] 0.001 0.4 
Number of segments N [-] 4 100 
Inlet pressure pi [Bar]  1 100 
Outlet pressure po [Bar]  0.01 Inlet pressure 

Surrogate sound velocity ν [m
s
]  250 2000  

Fig. 3. Dependence of the stability margin on coefficient μ for a short pipe (L =
100 km). Assumed simulation parameters: ν = 1472 [m

s ], D = 0.52 [m], λ =

0.0029; N = 16; pi = 94.1 [bar]; po = 72.7 [bar]. 
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Rough and smooth conditions were identified as regions of pumping 
conditions, which, as we observed, can be identified using some simple 
indices (factors). The analysis of the impact of each parameter on the 
value of the optimal Courant number is summarized in Table 2. A deeper 
analysis shows that the relationship can be linear for some parameters, 
and quadratic for others. Positive means enlarging the value of μopt (and 
extending the space of useable μ). Therefore, to determine the optimal 
Courant number, we suggest the following development. Note also that 
as it results from our simulation study, the surrogate speed of sound has 
no effect on the optimal Courant number. 

The observed dependencies of μopt on flow parameters show the dual, 
or even multiple, functionality of the Courant number. Originally, this 
factor was used for parameterization, stabilizing the discrete model. 
Now the ratio μ shows up as a precise tool in the feasibility study for 
system optimization (increasing the stability of the model). 

Referring to the optimization issue, the optimal Courant number can 
be expressed in terms of purely mechanical properties of the pipeline 

system, which is the key conclusion of this report. In addition, thanks to 
the adopted differentiation of pipeline types, we can provide the exact 
formula for the optimal μopt (with reference to Table 2) for each of them. 
Consequently, our research shows that this solution can be described 
with one formula for μopt , which, due to its classification nature, will also 
be called the pipe factor Π: 

Π = (ΠN)
i ϑp (28)  

where i = 1 for smooth pumping conditions and i = − 1 for rough 
pumping conditions, and the coefficients ΠN and ϑp are defined below. 
The value of the pipe factor, for cases where it is less than 1, can be 
associated with μopt . This means that the optimal Courant number can be 
computed directly using the given set of pipeline parameters. 

Determining the mechanical factor of a pipe as: 

ΠM =

̅̅̅̅̅
Lλ
D

√

(29)  

which contains geometry (L, D) and physics (λ, constant generalized 
coefficient of friction) parameters, the aforementioned numerical ratio 
ΠN of the pipe can be shown as: 

ΠN =
1
N

ΠM (30)  

without going into detail and before providing a specific classification, 
the μopt values obtained at constant inlet and outlet pressures for various 
pipeline numerical factors (ΠN) resulting from the change in pipe length 
L are shown in Fig. 6, where areas for smooth, rough and indefinite 
classes of conditions for pumping the medium through the pipeline have 
been marked. 

Examining the plot of μopt versus the numerical pipe factor, we see 
two segments in the region of smooth operating conditions (at a point, 
the dependency of μopt on the pipe numerical factor does change) in 
Fig. 6. For safety, we will use a stronger limitation with respect to the 
coefficient μopt (preferring lower values). Indeed, in the middle (indefi
nite) region, the CFL condition is sufficient. In the case of higher values 
of the pipe numerical factor, a second region appears for which the CFL 
condition is not sufficient, and here too, a formula must be given to 
calculate the correct factor μopt . Interestingly, for long pipes, the value of 
μopt is inversely proportional to the numerical pipe factor. 

Unfortunately, according to more detailed research, the numerical 
factor of the pipe is not sufficient to distinguish between the rough, 
smooth and indefinite classes of pumping conditions, which is why we 
have defined and used the following approximate dichotomous 
description of the pressure corrector ϑp in Eq. (28) for rough operating 
pipes: 

Fig. 4. Dependence of the stability margin on coefficient μ for a medium length 
pipe (L = 1000 km). Assumed simulation parameters: ν = 1472 [m

s ], D = 0.52 
[m], λ = 0.0029; N = 16; pi = 94.1 [bar]; po = 72.7 [bar]. 

Fig. 5. Dependence of the stability margin on coefficient μ for a long pipe (L =
5000 km). Assumed simulation parameters: ν = 1472 [m

s ], D = 0.52 [m], λ =

0.0029; N = 16; pi = 94.1 [bar]; po = 72.7 [bar]. 

Table 2 
Dependence of the optimal Courant number on the simulation parameters for 
two categories of pipe, showing the effects: (+) positive, (− ) negative or (o) no 
relationship.  

Parameter Smooth conditions Rough conditions 

Length L [m] (+) (− ) 
Diameter D [m] (− ) (+) 
Friction coefficient λ [-] (+) (− ) 
Number of segments N [-] (− ) (+) 
Pressure drop pi − po [Bar]  (+) (− ) 
Outlet pressure po [Bar]  (− ) (+) 

Surrogate sound velocity ν [m
s
]  (o) (o)  

Fig. 6. Exemplary distribution of μopt in terms of the numerical pipeline factor 
ΠN controlled by changing the length of the pipe L (with the fixed parameters of 
the simulation: ν = 1472 [m

s ], D = 0.52 [m], λ = 0.0029; N = 16; pi = 94.1 
[bar]; po = 72.7 [bar]). 
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ϑR
p = 8

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p2

o

p2
i − p2

o

√

(31)  

and for smooth pumping conditions: 

ϑS
p = 0.5

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pi − po

pi + po

√

(32)  

which introduces effects caused by pressure to Eq. (28). Note that the 
dichotomous corrector shows the explicit influence of pressures and the 
implicit effect of the pipe working conditions (smooth/rough). Another 
advantage of such parameterization is the logical separation of the effect 
of the geometry (N,L,D) and the technological and physical parameters 
(pressure and λ) in the common model of the Courant coefficient and 
pipe factor Eq. (28) for both cases i = 1, − 1. 

To cover the two (S/R) cases of Eq. (28), when the original CFL 
condition is not sufficient, we define the following condition (i) for 
rough operating conditions: 

ΠR =
1

ΠN
ϑR

p < 1 case(i) (33)  

and the corresponding condition (ii) for smooth conditions: 

ΠS = ΠNϑS
p < 1 case(ii) (34) 

These two equations can also be equivalently rewritten as: 

ϑR
p < ΠN (35)  

ΠN <
1
ϑS

p
(36) 

In view of the above, the developed formula Eq. (28), or equivalent 
set Eq. (33) and Eq. (34), receives a new interpretation and application 
as a technological classifier of pipelines. To a large extent, Eq. (28) can 
also be seen in practice as a balanced stream model. To sum up, formula 
Eq. (28) represents the common stream model, pipe factor, pipeline 
classifier and Courant number Eq. (28), for both (S/R) cases i = 1, − 1. 

Another advantage of the stream modeling based on the mechanical 
pipe coefficient, numerical factor and pressure corrector, relying on the 
applied parameterization, is the logical separation of the effects of the 
geometry (N,L,D) and physics (pressure and λ) in the common techno
logical pipe factor Eq. (28), which allows, at the same time, the Courant 
number to be selected. 

In addition, analyzing the impact of these parameters on the pro
posed mathematical formula Eq. (28), in particular Eq. (33) and Eq. 
(34), it can be easily concluded that there is a simple argument for the 
introduced concept of technological smoothness and roughness. On the 
one hand, the smoothness condition Eq. (34) can be improved by 
minimizing ΠS Eq. (34), ΠN Eq. (30) or ϑS

p Eq. (32), i.e. by reducing the 
pressure drop (pi − po), L or λ, or by increasing the pressure (pressure 
head or pref (Kowalczuk and Tatara, 2020)), D or N. On the other hand, 
the roughness condition Eq. (33) is strengthened by minimizing ΠR Eq. 
(33) or ϑR

p Eq. (31) or by maximizing ΠN Eq. (30), i.e. by increasing the 
pressure drop (pi − po) or pressure ratio (pi/po) or L or λ or by reducing D 
or N. You can see that these actions are technically opposite to the case 
of striving for smoothness. 

Because Δz = L/N, there is also a direct effect of L and N on the 
Courant number and the discretization grid. Thus, not only the rela
tionship Eq. (17) between dz and dt matters, but also the absolute values 
of Δz and Δt. Therefore, these quantities should be used as a measure of 
the numerical scale of the pipe (pipe sections, pipe mesh and the pipe 
itself), i.e. as another numerical parameter with a significant effect on 
the pipe factor Π. All of these parameters relate to the model description 
of particular pipe sections (see also Appendix C). 

As a result of the analysis from the previous paragraph, we can see 

that we need to add another parameter conditioning the categorization 
and digitization of the flow process. Namely, the improvement in 
smoothness Eq. (34) can be obtained by reducing the numerical scale of 
the pipe (Δz or Δt), and the strengthening of the roughness condition Eq. 
(33) can be achieved by increasing this scale. 

Therefore, in short, and only taking into account mechanical and 
numerical considerations, smooth operating conditions characterize a 
relatively smooth surface, short and wide pipe sections, and small scale, 
while rough conditions - a relatively rough surface, long and narrow 
pipe sections, and large scale. 

5.1. Additional comments 

According to the results of the first approximate Monte Carlo nu
merical study described in Section 4 and the resulting observations of 
the value of the optimal coefficient μopt for various cases (related to 
numerical issues, pipe geometry and pressure control signals), the 
optimal Courant coefficient can be expressed in a simple (approximate) 
formula. In particular, the method of selecting the Courant number re
sults from a mathematical description of the numerical results obtained 
(regarding smooth and rough conditions) during the first Monte Carlo 
computations, which consisted in analyzing the margin of stability in the 
adopted parameter space (pipeline length, diameter, friction coefficient, 
surrogate sound velocity in the medium, number of segments and 
pressure input and output). 

Interestingly, the authors of (Hibbitt et al., 1979) noticed and 
distinguished the so-called slender pipes. While not all of the experi
mental conditions are reported, this type of pipe is consistent with our 
understanding of the rough operating conditions that include long and 
narrow pipelines. For example, the authors give approximate parame
ters of such pipes as follows: lengths L ∈ [300 − 900] m (that is 1000 −

3000 ft) and D ∈ [0.1 − 0.25] m (or 4 − 10 inches). Taking into account 
the limit values in such a situation, as well as the smallest considered 
value of the friction coefficient λ = 0.001, we obtain the range of the 
pipe mechanical coefficient as ΠM ∈ [1,2 − 9], which indicates our 
rough working condition (note that the inverse of ΠM is used when 
calculating the pipe factor for the rough conditions). 

6. Factoring consequences and relations 

It is worth emphasizing that the applied set of inequalities (Eq. (35) 
and (36)) should be considered in a holistic way to get the right result. If 
one of the above conditions is met, the working conditions should be 
qualified into one of these categories (smooth or rough). If none of these 
conditions are met, pipeline operating conditions are classified as in
definite, from now on referred to as the third case (iii). 

Since we generally have two different pressure correction factors, ϑS
p 

and ϑR
p , we must also consider the composed case (iv) where both con

ditions are met simultaneously. As a consequence of the above, this 
situation can occur when the following condition is met: 

ϑR
p ϑS

p < 1 (37) 

By inserting values of the pressure corrector factors Eq. (31) and Eq. 
(32), one obtains: 

4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p2

o

p2
i − p2

o

pi − po

pi + po

√

< 1 (38) 

If this condition is met, then of course the situation is different from 
the indefinite one (neither smooth nor rough). Namely, smooth and 
rough areas intersect (have a common part). It also means that some
times the pipeline operating conditions do not correspond individually 
to any of the three basic technology classes highlighted above. 

Condition given by Eq. (38) can be rearranged as: 

Z. Kowalczuk and M.S. Tatara                                                                                                                                                                                                              

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Journal of Natural Gas Science and Engineering 91 (2021) 103953

8

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p2

o

(pi − po)(pi + po)

(pi − po)

(pi + po)

√

< 0.25 (39)  

po

(pi + po)
< 0.25 (40)  

to obtain a ratio of outlet to inlet pressure that fulfills the CFL exclusion 
condition: 

po

pi
<

1
3

case ​ (iv) (41) 

Interestingly, case (iv) can only occur if the pressure ratio is lower 
than the above threshold. Therefore, it turns out that the very analysis of 
the pressure ratio gives us an indication of whether or not the described 
complex case (iv) occurs. 

Further analysis of the relationship between ΠR and ΠS shows that 
the feasible locations of pipelines on the ΠR–ΠS plane are hyperbolically 
bounded. This can be demonstrated as follows: By multiplying our two 
analytic pipe indicators (S/R), shown in Eq. (33) and Eq. (34), and using 
the above evaluations of the expression ϑR

p ϑS
p, we obtain the following 

relationship: 

ΠRΠS = ϑR
p ϑS

p = 4
po

(pi + po)
(42) 

Since po ∈< 0.01, pi > (see Table 1), the right-hand side of Eq. (42) 
lies in the range < 0,2 >. Therefore, the following holds: 0 ≤ ΠRΠS ≤ 2. 
Thus the ‘pipe factors’ relation on the ΠR–ΠS plane is bounded by the 
positive ΠR and ΠS axes and the following hyperbolic curve: 

ΠR =
2

ΠS (43)  

7. Final results 

To select a specific value of μopt, we suggest the procedure in Fig. 7. 
First, check whether the condition of the pipeline in question can be 
classified as rough. If so, check if the pumping conditions also fall under 
the smooth conditions of the pipeline. If so, take μopt = min{ΠR,ΠS}. 
This is case (iv), where smooth and rough operating areas intersect and 
the pipeline’s pumping conditions do not fall into only one of the two 
defined technological classes.5 If the conditions are classified as rough, 
but not smooth, this is pure case (i) when μopt = ΠR. A similar situation 
occurs when the pipeline conditions are classified as smooth, but not 

rough, and we have case (ii) and μopt = ΠS. If the pipeline conditions 
under consideration cannot be classified as smooth or rough, we have 
case (iii) where the CFL condition is sufficient, i.e. μopt = 1. The pro
posed method of determining the Courant number maximizes the 
chance that the system will be stable, even if the maximum stability 
margin is not reached. 

8. Verification and secondary analysis - peculiarities and teasers 

To verify the correctness of our result, we performed 1000 simula
tions with random parameters (within the ranges listed in Table 1). The 
distribution of the optimal stability margin in terms of the ΠS and ΠR 

functions, together with the final results of the classification, is shown in 
Fig. 8. 

Note that most of the points classified as smooth operating condi
tions are over the line μopt = ΠS, and the ones classified as rough con
ditions are exactly on the line μopt = ΠR. 

We can also show the same classification results, bounded according 
to relationship Eq. (43), on the ΠR–ΠS plane, with the isolated gray 
square (iv). Such a projection is presented in Fig. 9. Note that the area 
spanned by case (iii) of the original CFL (sufficient) condition is very 
small compared to other cases (it contains only about 5% of all cases). 

It is also interesting to combine the results from Figs. 8 and 9 in a 3D 
chart, shown in Fig. 10, with auxiliary planes limiting the possible point 
locations of the pipeline conditions. The conditions classified as rough 
lie exactly on the pink surface, therefore we can precisely specify the 
value of μopt for these cases. The indefinite (green) class of conditions are 
subject to the CFL condition (μopt = 1). 

In some approximation, the remaining pipeline working conditions, 
classified as smooth, require μopt taken between two planes: blue or 
bluish (safe option) and the upper limit μopt = 1 (at the green level). Note 
that regardless of this, some of the smooth pipeline conditions need 
exactly μopt = 1. Nevertheless, in the proposed procedure, when calcu
lating the value of μopt for any smooth pipe condition, we use the indi
cated lower boundary. In this way, numerical stability is ensured by a 
very simple method in all cases of smooth pipeline working conditions. 

The complex shape of the optimal μopt surface for smooth conditions 
is difficult to precisely describe mathematically based on physical pa
rameters, thus at this stage, we give here only an approximate descrip

Fig. 7. Procedure for selecting the optimal values of the Courant number. The 
part denoted as CFL refers to the case where the CFL condition is sufficient, and 
CFL denotes the cases where the CFL condition is not sufficient. 

Fig. 8. Results of pipeline classifications in terms of functions ΠS (a) and ΠR 

(b), where the points are classified as smooth (⋄), rough (∘), or indefinite (× ). 
Note that cases (iv) representing both smooth and rough conditions are (re) 
classified to a safer version (smoother or rougher). 

5 A deeper study is necessary to give an even more specific clue (see also 
Appendix C). 
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tion based on some lower (bluish) and upper (greenish) bounding plane. 
Scatter plots of smooth conditions in terms of ΠS, ΠR and μopt are pre
sented in Figs. 11–13 using different views. 

As shown in Figs. 8 and 12, there are minor anomalies which indicate 

the approximate nature of the limiting restriction. However, it was 
confirmed that the numerical stability is also maintained for these points 
using the setting μ = ΠS. 

To verify the above results, we also performed simulations of the 
flow process based on the μopt value calculated in accordance with the 
procedure shown in Fig. 7, for random values of physical flow param
eters, represented by the Π factor selected from the ranges described in 
Table 1. These experiments showed the convergence of all simulations, 
and thus the correctness of the proposed method. In conclusion, case (iv) 
can also be classified as pressure driven. 

This Monte Carlo simulation used to validate the model was an 
experiment separate from the initial/first Monte Carlo simulation used 
to analyze the phenomenon and derive the procedure. Thus the first one 
was used to find the most optimal value of the Courant number (based 
on the linearized model), while the second Monte Carlo experiment was 
used to verify the developed procedure (using the nonlinear model). 

9. Conclusions 

The article has discussed the issue of discretization and numerical 
stability of systems emulating the flow process. The aggregated state- 
space model has been derived from the base discrete-time model, 
which was linearized using an analytically determined steady-state 
solution. 

Two-stage linearization leading to Eq. (22) is a method for calcu
lating the state transition matrix (Ac) for effective stability analysis using 
standard numerical means. 

The linearization procedure is a key point in our methodology for 
determining the stability margin, while maximizing the stability margin 
serves the system’s robustness to destabilization as well as its accuracy 
and convergence speed. 

The development proposed in this work leads to an interesting 
categorization, in which we take into account the technological, me
chanical, geometric, physical, mathematical and numerical conditions 
specific to the process of medium flow in a pipeline. Thanks to the 
appropriate mathematical modeling, we have obtained a useful model 
together with the appropriate categorization of such processes that lead 
to the correct selection of the optimal Courant number and result in 

Fig. 9. Results of pipeline classifications on the ΠS–ΠR plane of pipe factors, 
where points (pipelines) are classified as smooth (⋄), rough (∘ ) or indefinite (×
) conditions. Cases (iv) representing smooth-rough pumping conditions are in 
the gray area. The brown line indicates the upper boundary, limiting the 
possible arrangement of the pipeline conditions on the ΠS–ΠR plane. 

Fig. 10. Courant coefficients for pipeline conditions classified as smooth (red), 
rough (black), or indefinite (green). The blue (bluish) plane denotes the lower 
boundary on μopt for smooth pipe conditions, the pink plane represents the exact 
values of μopt for rough conditions and the green piece of a horizontal plane 
(μopt = 1) shows the exact upper boundary for the indefinite/CFL pipeline 
operating conditions. 

Fig. 11. Distribution of pipeline operating conditions classified as smooth in 
terms of indexes ΠS and ΠR and μopt . The blue (bluish) plane means the lower 
boundary for μopt , and the green (greenish) plane – the upper boundary. 
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suitably conditioned implementations. 
The final dichotomous model was derived from the results of the 

Monte Carlo simulation in which the influence of each parameter (in the 
full multivariate system) on the optimal Courant number was estimated 
and consolidated. In this way, taking into account the generally known 
laws of physics and using numerical methods and mathematical anal
ysis, simple and useful analytical relationships (parameterization) 
describing the flow process were obtained. 

Importantly, the analysis of the relationship between the pipeline 
operating conditions, ΠR and ΠS, showed an interesting, hyperbolic 

limitation of the feasible locations of the modeled pipelines on the 
ΠR–ΠS plane. Moreover, for the indefinite class of pumping conditions in 
pipelines (which, however, are only a small subset of the possibilities in 
the parameter space), it turns out that the CFL condition is (truly) suf
ficient. 

However, in the case of smooth and rough pipeline operating con
ditions, the CFL condition is insufficient, and other methods of defining 
the discretization parameters should be used. Parameters of flow me
chanics were introduced that allowed us to provide a common formula 
for dichotomous calculation of μopt , separately for smooth and rough 
pipeline operating conditions. The analysis of various sets of pipeline 
parameters showed that it is difficult to get to the indefinite/CFL region 
of operating conditions, because it requires the use of an impractical 
ratio of inlet and outlet pressure. For the practical selection of the 
Courant number using the formula to calculate μopt , four possible classes 
(i)-(iv) of pipeline operating conditions are distinguished: (i) rough, (ii) 
smooth, and (iii) indefinite, as well as (iv) classified as both smooth and 
rough. It is surprising that there are three cases where the CFL condition 
is insufficient. 

We must emphasize here the importance of the indirect attribute of 
the mathematical model of the pipeline, which is its scale. Namely, small 
scale pipes contribute to the smooth class, while large scale pipes 
contribute to the rough class. This aspect is evident as the phenomenon 
of pipe reclassification occurring in the iterative calculation of the 
optimal Courant number, when the resulting discretization grid con
verges to the appropriate case. One consequence of analyzing the scale 
issue is that you should not mis-scale, such as by using short sampling 
times for long pipelines. 

In view of the above, the developed formula Eq. (28), in particular 
Eq. (33) and Eq. (34), receives an interesting interpretation and appli
cation as a technological pipeline classifier. To a large extent, Eq. (28) 
can also be seen in practice as a balanced stream model. To sum up, Eq. 
(28) represents the common stream model, technological pipe factor, 
pipeline classifier and Courant number Eq. (28), different for both 
smooth and rough cases. 

The proposed procedure was numerically verified in simulation tests, 
which confirmed the correctness and illustrated the usefulness of the 
obtained results. 

9.1. Additional remarks 

Modeling the flow process and converting it into a discrete structure 
is difficult from many points of view. Due to the widespread use of 
computers for the practical, numerical implementation of such discrete 
models, the problem of their stability is of the utmost importance. 

In general, taking into account, for example, the consequences of 
limited physics, our project may be subjected to conditions other than 
those for which it was designed. The complexity of this issue often 
manifests itself in the sensitivity or instability of the implemented sys
tem. In some practical cases, certain empirical rules have been estab
lished that must be strictly followed. Nevertheless, a purely theoretical 
explanation is always welcome as it sheds new light on the field and may 
even enable new or more efficient applications. 

It is interesting that the structure of the state-space model used 
contains only physical and geometrical parameters, while, for example, 
the influence of flow velocity is included in the numerical parameters of 
the state matrix (and dichotomously also in the state vector). 

The proposed classification is based on the basic technical pipeline 
parameters (numerical and mechanical, i.e. geometric, and physical). 
We distinguished smooth working conditions (characterized by a rela
tively smooth surface, short and wide sections of the pipe, and small 
numerical scale), rough (with a relatively rough surface, long and nar
row sections of the pipe, and large scale), and indefinite (‘intermediate’ 
conditions between them, and excluding them). 

In addition to the provided convenient mesh selection method for the 

Fig. 12. Distribution of smooth pipeline conditions on the ΠS–μopt plane with 
the lower and upper (plane) boundaries represented as two limiting lines. 

Fig. 13. Distribution of smooth pipeline operating conditions in the ΠS–ΠR–μopt 
space, where the lower boundary plane for μopt is marked as blue/bluish and the 
upper boundary plane is green/greenish. 
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numerical implementation of the pipeline flow model upon which the 
discrete-in-time-and-space computer model is built, the rough operating 
condition category (i) implies the need to spend a significant amount of 
energy on fluid displacement, while the second operating class (ii) re
quires little effort to push the fluid through the pipeline. 

To some extent, our approach to discretization/modeling can be 
interpreted in accordance with the certainty equivalence principle, as 
explained in Appendix B. 

It should also be noted that the presented analysis was performed for 
horizontal pipelines (with zero slope angle), which is a widely used 
assumption that greatly simplifies the considerations (see e.g. (Bonzanini 
et al., 2017)). Other studies (Kowalczuk and Tatara, 2018, 2020) show 
that inclusion of elevation in the model slightly changes the value of μopt 
(for small angles, the impact is small) – of course, outside a small vicinity 
of the zero mass flow, where the model becomes sensitive to changes in 
the angle of inclination. However, due to the limited space, this issue has 
been omitted in this report. 

An interesting extension of this work could be the confrontation of 
our parameterization method with the results of (Konangi et al., 2018) 
to determine the relationship between the two studies. 
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Appendix A 

AFlow Process Matrices 

The matrices A ∈ R(N+1)×(N+1), B ∈ R(N+1)×(N+1) and C ∈ R(N+1)×(N+1) of the pipeline flow process model are defined as follows: 

(44)  

(45)  

(46)  

where Γn± = Yn
2 ± b, Hk

0 = 4c
3 −

λν2

⃒
⃒
⃒x̂

k
(n/2+1)

⃒
⃒
⃒

2DS2uk
1

, Hk
N = 4c

3 −
λν2

⃒
⃒
⃒x̂

k
(n/2+1)

⃒
⃒
⃒

2DS2uk
2

, 

Hk
n =

4c
3
−

λν2

⃒
⃒
⃒
⃒x̂

k
(n/2+1)

⃒
⃒
⃒
⃒

DS2

(

x̂k
(n/2+1+N/2) + x̂k

(n/2+2+N/2)

)

for n= 2, 4,…,N − 2  

and DW(θ) ∈ RW×W denotes a diagonal matrix with diagonals equal to θ. 
And the matrices D and E of the model Eq. (10) are given as: 

(47) 

Note that the above principal symbols A, B, C, D and E without any subscript refer to the matrices of the base model Eq. (10) of the pipeline flow 
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process. 
BCertainty equivalence and pseudo-time stepping 

In control theory, there is the principle of certainty equivalence (CE), which says that the actual values of the state and parameters can be replaced 
by their estimates when determining the control action. In other words, we assume that the estimates obtain true values of the respective quantities. 
When the estimates change, the control signal is recalculated, i.e. adjusted to current situation (Isermann, 1981). This is also a direct consequence of 
the separation principle, which states that state observation or identification is independent of the control calculations. CE is also a simplification 
paradigm that allows us to break down a problem into sub-problems and then compile a complete solution to the overall problem. 

Certainly, pseudo-time-stepping can also be interpreted from the CE point of view, since we first estimate the steady state and then perform 
computational flow calculations assuming the certainty of such an estimate. 

It should be noted that the described method can be implemented as adaptive in time (mesh selection) and/or iterative in time (step by step 
emulation). The adaptive approach, especially in changing conditions (excitations), complies with the CE principle – at each stage, after calculating 
the steady state (p and q) from the current pressure measurement (p), we can re-estimate the new grid (mh). Then, treating mh (or time step Δt itself) as 
reliable and optimal, we calculate the new steady state, which allows us to re-determine the new optimal mesh. This procedure can be repeated either 
every time or every few steps. 

The next implementation of the CE principle can be seen in the leak detection and isolation (LDI) task. Until leakage occurs, the coefficient of 
friction is estimated in real-time (this is required because it may change during pipe operation; see, e.g. (Wang and Ghidaoui, 2018),). When a leak is 
detected, the friction value is fixed (i.e. we are sure to some extent that this value is true) and used for isolation and identification purposes. 

C Discretization grid 

The pipeline discretization scheme is shown in Fig. 1, however, it mainly explains the issue of spatial discretization. To describe the dynamics of the 
object, you also need to consider the mesh parameter and scaling (time or space dimension). In this way, we come to the total discretization grid, 
which is illustrated in Fig. 14.  

Fig. 14. Visualization of the discretization grid.  

In the grid of Fig. 14, the most important element is the relationship between the steps of time and space, which is represented by the slope of the 
dotted-blue line6 shown in Fig. 15. The slope corresponds to grid parameter mh. It is clear that thinking about spatial discretization Δz lower than Δzs is 
not rational, because in time equal to Δt information will jump by this distance quantum (Δzs = νΔt).   

Fig. 15. The limit quantum of information distance applicable at the time step is associated with the surrogate speed of sound propagation. Above line ν is the 
allowed region for the grid parameters (mh), as shown by the dotted-blue lines. 

By imposing the CFL condition on the presented graph, we get the angle (pencil of the line) representing the permissive discretization grids lying 

6 In the adaptive case, the line may be represented by a polyline with a variable slope. 
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below the boundary line corresponding to the Courant number equal to 1, as well as the region excluded due to the CFL criterion. Such circumstances 
are visualized in Fig. 16, where the (differently described) plane t − z is used.  

Fig. 16. Discretization grid with a natural interpretation of CFL. The shaded region contains values in which νΔt/Δz > 1 (i.e. when the CFL criterion is not met).  

The excluded area results from the fact that spatial discretization does not allow the dynamics of changes in the information observed to be 
captured. Because time is an abstract and artificial quantity here, the reasoning proposed relates to spatial discretization. From a practical point of 
view and taking into account the surrogate speed of sound, we can say that for Δz lower than Δzs, the insertion of a measuring point in a segment of this 
length is pointless, because in the time between two successive computational steps the information flies over such a segment and therefore is not 
measurable in it. Therefore, the forbidden region does not allow the effect of information transfer. We can imagine this as a gap between seeing and 
hearing lightning (because light travels faster than sound), or as a discrepancy between seeing and hearing an airplane. On the other hand, the lines 
below the boundary line are suitable to represent the optimal mesh matched to the detailed experimental settings (technological flow conditions). 

In may be interesting to consider the following example: the length of the designed pipe is L = 30 km, the (surrogate) speed of sound is ν = 341 m
s , 

the sampling time is Δt = 200 ms, and according to the given formula, we calculated μopt = 0.134. In this way, we can specify the spatial step Δz as 
Δz = Δtν

μopt
, which gives Δz ≈ 508.95 m. Because the pipeline should be divided into an even number of N sections, spatial step Δz must be rounded up, 

observing the CFL condition (see Fig. 16). In other words, it is best if the adopted Δz is greater than the calculated one and divides the pipeline (L) into 
an even integer number of segments. In this example, taking N = 58, the spatial step can be set to Δz = 30000

58 = 517.24 [m]. 
Note that you are not required to use a fixed value of mh. However, we provide a formula for quickly calculating the value of mh in any step based on 

the latest data. The proposed procedure implements the methodology for determining the optimal stability margin, i.e. it makes the simulation the 
most resistant to destabilization. 

Several sample pipelines were analyzed to show how the value of μopt changes in subsequent iterations of the process of recalculation of Δz, which, 
due to its entangled nature, requires repeated use of the same data to calculate the optimal μopt. The parameters of these pipes are shown in Table 3, 
while the results of the iterative calculation of the number of segments and coefficient μopt along with the categorization of pipes (i)-(iv) are shown in 
Fig. 17. To fine-tune the procedure of Fig. 7, in the case of (iv), Courant number μopt was determined based on the average value of the two pipe factors 
(smooth and rough).   

Table 3 
Parameters of the sample pipelines.   

Example 1 Example 2 Example 3 Example 4 Example 5 

Length [km] 30 30 5000 500 500 
Diameter [m] 0.5 0.5 0.4 0.6 0.4 
Friction coefficient [-] 0.018 0.0018 0.03 0.002 0.02 
Initial number of segments 44 40 200 40 20 
Inlet pressure [bar] 80 20 15 15 15 
Outlet pressure [bar] 1 10 10 10 10 
Sampling time [s] 0.2 0.2 200 200 200  
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Fig. 17. Examples of the evolution of the optimal Courant number μopt and the optimal number of segments in subsequent iterations; with the categorization of the 
pipe marked as (#) for rough class (i), ($) – smooth class (ii), (@) – indefinite case (iii), (&) variant (iv). 

This graph shows that sometimes it takes a few iterations to find the optimal value of μopt (we recommend 10–20 iterations). In examples 1–2 (short 
pipes, small scale), we use small sampling times, while in examples 3–5 (long pipes, large scale) we consider relatively large sampling times. Small 
scale pipelines tend to remain in the smooth cases (ii) or (iv) (with a small μopt and a medium or large number of segments N). In turn, large scale pipes 
consistently converge to the other two distinguished cases (i) (with a small μopt and a medium or low N) or (iii) (the CFL case with a high μopt and a 
medium N). We can also observe intriguing patterns when reclassifying pipes related to the selected sampling time scale. In Fig. 17 we can see, for 
example, that Example 4, initially assigned to the (wrong) smooth type (ii), is temporarily reclassified to the rough class (i), and then converts to a 
stable indefinite case (iii) (the CFL, neither smooth nor rough). 

At this stage of the research, we can conclude that for small scale pipes, the appropriate (ultimate) class should generally be smooth (ii) (or in 
particular (iv)), while for large scale pipes – rough (i) or indefinite/CFL (iii). Therefore, it seems that the common variant (iv) is more strongly 
associated7 with the smooth class (ii). Moreover, at all costs, you should not enter mis-scaling,8 such as using a short sampling time for long pipelines. 
However, further analysis of this problem is needed. 

In addition to the aforementioned recalculation of the spatial discretization step, in some situations (systems), it is possible to manipulate the 
sampling time. If possible, calculating the optimal Courant number while changing the sampling time will not reclassify the pipe, but may change the 
scale of the problem. Consider the following example: the length of the designed pipe is L = 30 km, the surrogate speed of sound is ν = 341 m

s , the 

space step is Δz = 1 km and according to the formula given, we calculate μopt = 0.134. In this way, we can specify the time interval as Δt =
Δzμopt

ν , 
which gives Δt ≈ 392.96 ms. As a result of quantization (Kowalczuk, 1989), sometimes only some discrete values of the sampling time can be set, then 
the obtained value should be rounded down, observing the CFL condition (see Fig. 16). 

D Emulation procedure 

To clarify the proposed methodology in a practical algorithmic form, we present a useful emulation procedure below. It is based on input data in 
the form of the pressure and mass flow rate measured at both ends of a pipe. As a result of processing, we obtain a complete pressure distribution and 
mass flow rate along the entire pipe. In addition, friction coefficient and leak detection data can be estimated in the target LDI procedure. 

Step 0. Initialize the time index and all known parameters: length, diameter, surrogate speed of fluid sound, desired number of segments, as well as 
the coefficient of friction.9 

Step 1. Measure the inlet and outlet pressures and mass flow rates, and enter them into the model. 
Step 2. (CFL part) Check if the measured pressure changed significantly (with respect to previous iteration). If yes, recalculate the optimal time 

7 This relationship is due to the fact that cases (ii) and (iv) take place for small scale pipelines.  
8 Compare the parameterization of the examples described in Table 3.  
9 The friction coefficient can be assessed initially from the pipe documentation and fluid parameters (Kowalczuk and Tatara, 2020). 
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step and compare it10 with the system sampling period.11 Otherwise, use the previous value of the time step. 
Step 3. Calculate the steady state conditions (flow and pressure) as well as the a priori state vector itself. 
Step 4. Calculate fixed-value matrix Ac in the proximity of the operating point, and then calculate the state vector estimate at the given time 

(including local pressures and mass flow rates). 
Various extensions are possible. In the case of LDI, these can be the next two steps: 
Step 5. Perform the procedure for estimating the friction coefficient.12 

Step 6. Run a detection algorithm to check for leaks. 
Step 7. Only if a leak is detected, go into isolation and leak identification mode. 
Step 8. Update the time index and go to Step 1. 
This closes the entire LDI procedure, without going into further detail. Note that the presented algorithm fits within the adaptive framework. It may 

also be designed for pseudo-time-stepping to a steady state, i.e. for iteratively implementing locally optimized pseudo-time steps. 
The matrix Ac is linearized around the operating point associated with the predicted local steady state. We assume that this value is sufficiently 

accurate to obtain the proper linearization effect of the matrix in the vicinity of this steady state. This, in turn, allows us to provide a simple analytic 
model that can be analyzed using standard numerical tools. 

E Glossary 

In Table 4 the most important nomenclature used throughout the paper is collected and discussed.  

Table 4 
Glossary of the most important terms with explanations.  

Term Meaning 

Optimal Courant number The μ coefficient that assures the maximal stability margin 
Critical Courant number The μ coefficient for which the considered model becomes unstable 
Maximum stability 

margin 
The distance from the unit circle of the maximal eigenvalue of the state transition matrix (positive if the eigenvalue is inside the circle, negative if it is 
outside) 

Pumping conditions Either rough, smooth or indefinite region of operation  
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