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Abstract—Fast replacement models have been playing an 
increasing role in high-frequency electronics, including the design of 
antenna structures. Their role is to improve computational 
efficiency of the procedures that normally entail large numbers of 
expensive full-wave electromagnetic (EM) simulations, e.g., 
parametric optimization or uncertainty quantification. Recently 
introduced performance-driven modeling methods, such as the 
nested kriging framework, alleviate some of the common difficulties 
pertinent to conventional modeling methods. These include the 
curse of dimensionality but also the need for rendering models to be 
valid for broad ranges of antenna parameters and operating 
conditions, as dictated by the design utility of the surrogates. The 
keystone of performance-driven methods is an appropriate 
confinement of the model domain so that the training data is only 
acquired in the regions containing high-quality designs. 
Identification of such regions is realized using a set of so-called 
reference designs pre-optimized for selected ensembles of 
performance requirements. The CPU cost of generating the 
reference points may be considerable and compromise the savings 
obtained by operating in a constrained domain. In this paper, a 
technique for automated, reliable and low-cost acquisition of the 
reference designs is proposed. Our methodology involves inverse 
sensitivities, iterative correction procedures, and accelerated 
feature-based gradient search with sparse Jacobian updates. It is 
validated using three microstrip antenna examples and 
demonstrated as an efficient tool for lowering the cost of building 
surrogate models within the nested kriging framework. The 
intended use of our approach is expedited construction of database 
designs for constrained modeling frameworks, construction of 
inverse surrogates as well as procedures for rapid re-design and 
dimension scaling of antenna structures. 

Index Terms— Antenna design; design optimization; surrogate 
modeling; EM-driven design; performance-driven modeling. 

I. INTRODUCTION

he importance of fast surrogate models in the development
and design automation of modern antenna structures has

been gradually increasing over the recent years [1]-[5]. Their 
primary role is to replace computationally expensive full-wave 
electromagnetic (EM) simulations when conducting procedures 
that require massive analyses of the structure at hand, in 
particular, parameter tuning [6], [7], statistical analysis [8]-[10], 
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multi-objective design [11]-[13], or tolerance-aware 
optimization [14], [15]. Among the two basic classes of 
surrogate models, the data-driven ones are by far the most 
popular due to their versatility and accessibility (e.g., through 
various toolboxes [16], [17], implemented in high-level 
programming environments such as Matlab [18]). Widely used 
techniques of this group include polynomial regression [19], 
kriging interpolation [20], radial basis functions [21], artificial 
neural networks [22], support vector regression [23], or 
polynomial chaos expansion [24].  
 Data-driven models are obtained using sampled simulation 
data and are typically fast to evaluate. However, their 
construction is hindered by the curse of dimensionality [25], 
i.e., a rapid growth of the number of training data samples
necessary to achieve the assumed accuracy, but also a related
problem, which is that usable models need to be valid over
broad ranges of the system parameters. Acquisition of the
training data over a large parameter space incurs considerable
CPU expenses, which may be prohibitive if the model domain
dimensionality becomes excessive. High nonlinearity of
antenna responses only aggravates the problem. Several
techniques were developed to mitigate these problems,
including high-dimensional model representation (HDMR)
[26], orthogonal matching pursuit (OMP) [27], least-angle
regression (LAR) [28], or variable-fidelity methods (co-kriging
[29], two-stage Gaussian process regression [30], Bayesian
model fusion [31], etc.).

The second class of surrogates are physics-based models, 
normally constructed by correcting the underlying low-fidelity 
models (e.g., equivalent networks or coarse-discretization EM 
simulations). These models are relatively immune to the 
dimensionality issues; however, they rarely exhibit universal 
approximation properties [32], their evaluation cost may be 
considerable [33], and their versatility is limited because the 
low-fidelity models are problem-specific [34]. Consequently, 
physics-based surrogates are mostly employed for local 
optimization purposes [35]. The popular techniques include 
space mapping [36], response correction methods (e.g., 
manifold mapping [37], adaptive response scaling [38]), or 
feature-based optimization [39].  
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Recently, the concept and implementation of performance-
driven modelling has been proposed [40], [41], where the issues 
related to the curse of dimensionality and wide ranges of 
parameters to be covered by the model are addressed by 
appropriate confinement of the model domain. As opposed to a 
conventional approach, where the surrogate is set up in a 
domain defined by the lower/upper bounds for the system 
parameters, the performance-driven methods seek for a region 
containing designs that are optimum or nearly optimum with 
respect to the performance figures relevant to the antenna 
structure at hand. The volume of such a region is significantly 
smaller than that of the interval-type of domain and focusing 
the modelling process therein allows for rendering reliable 
models using small numbers of training data samples and 
without formally restricting the ranges of the antenna 
parameters. Several variations of the performance-driven 
modelling methods have been proposed [40]-[45], with a 
notable example of the nested kriging framework [45], capable 
of handling arbitrary number of performance figures and 
allowing straightforward design of experiments and surrogate 
model optimization.  

The surrogate model domain in the performance-driven 
frameworks is defined using a set of reference designs, pre-
optimized for selected target vectors of the figures of interest 
(e.g., the antenna operating frequencies or permittivity values 
of the substrate the antenna is to be implemented on). These 
designs may be available from the prior design work with the 
same antenna structure but in some cases they have to be 
generated from scratch, which is a computationally expensive 
process, adding up to the overall cost of setting up the surrogate 
model. Furthermore, acquisition of the reference designs is 
difficult to automate because the optimization process has to be 
carried out over broad ranges of the target values of the figures 
of interest. A certain reduction of the number of reference 
designs can be achieved by using sensitivity data as 
demonstrated in [46] using gradient-enhanced kriging [47]. 
Notwithstanding, the problem remains because optimizing the 
antenna for significantly altered operating conditions is a non-
trivial task, which often requires incorporation of a certain 
amount of experience even to generate reasonable starting 
points (e.g., through parameter sweeping). It should also be 
mentioned that the sets of pre-optimized designs play important 
roles in setting up inverse surrogates (e.g., [48]-[51]), as well as 
in numerical procedures for expedited parameter tuning [52]. 
Consequently, the development of reliable algorithms for 
automated and fast rendering the databases of optimized 
antenna designs is of a practical necessity.  

This paper proposes an algorithmic framework for low cost, 
reliable, and automated generation of antenna reference designs 
corresponding to the predefined target values of performance 
figures. Our approach involves an inverse surrogate model, 
which is constructed at the level of response features, and 
identified using sensitivities of the optimized antenna geometry 
parameters with respect to the figures of interest. The surrogate 
is used to yield a starting point for further tuning, realized by 
means of trust-region gradient search with Broyden-based 
Jacobian updates. Reliability of the optimization process is 

ensured by design specifications adaptation, which is launched if 
the initial design is not of sufficient quality or if direct 
optimization fails. The presented technique is demonstrated 
using several antenna structures with the databases of sizes up to 
ten designs rendered at the costs of less than a few dozen (up to 
30 or 40) of EM simulations per design. For comparison, the cost 
of creating the same databases using traditional approach (direct 
optimization occasionally aided by parameter sweeping to 
improve the starting points) is significantly higher, around a 
hundred EM simulations per design on the average. Application 
examples for performance-driven modeling and rapid re-design 
of antennas are also provided along with the analysis of the 
benefits enabled by the proposed methodology. The originality 
and the technical contributions of this work include: (i) the 
development of the novel algorithmic framework for low-cost 
acquisition of database designs for a variety of applications such 
as surrogate modeling, inverse modeling, or rapid dimension 
scaling, (ii) increasing reliability of the antenna parameter 
adjustment processes and reducing the need for the designer 
interaction (e.g., through supervised parameter sweeping), (iii) 
implementing a framework for design automation and antenna 
optimization within broad ranges of the operating conditions. All 
of these are of practical importance due to addressing some 
common challenges of EM-driven procedures, which are both 
imperative and ubiquitous in the design of modern antennas.  

II. DATABASE DESIGNS: PROBLEM STATEMENT. OBJECTIVE 

SPACE, RESPONSE FEATURES AND INVERSE SENSITIVITY

This section states the problem considered in the paper, i.e., 
the acquisition of a set of antenna designs, optimized for 
selected target values of performance figures of interest. We 
also introduce the necessary notation, in particular, the concept 
of the objective space. Some additional algorithmic 
components are also discussed, to be used in Section III, 
specifically, the response features and feature-based assessment 
of design quality, as well as the inverse sensitivity (the gradients 
of the optimum antenna geometry parameters with respect to 
the figures of interest) and its estimation method. 

A. Objective Space and Design Optimality. Problem Statement

Let x = [x1 … xn]T be the vector of designable parameters of
the antenna structure under design. Typically, xk are the antenna 
dimensions. The parameter space X is defined as an interval [l 
u], where l = [l1 … ln]T and u = [u1 … un]T are the lower and 
upper bounds for the parameters, so that we have lk  xk  uk, 
k = 1, …, n. 

Consider the performance figures Fk, k = 1, …, N, and the 
objective vector F = [F1 … FN]T. The figures Fk might be the 
intended operating frequencies of a multi-band antenna, the 
target bandwidth, but also the material parameters, e.g., the 
relative permittivity of the substrate the antenna is to be 
implemented on. The objective space F is defined using the 
lower bounds lF = [lF.1 … lF.N]T and upper bounds uF = [uF.1 … 
uF.N]T for Fk, so that F  F if and only if lF  F  uF (inequalities 
understood component-wise). 

Given the target vector F, the design problem is to find 
* *( ) arg min ( , )U U 

x
x F x F  (1) 
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where U is a scalar merit function to be minimized. The 
function U is related to the performance figures Fk, and its 
particular formulation depends on the problem. Let us consider 
a few examples that clarify the above concepts and notation.  
 Example 1. Suppose that the goal is to improve the 

matching of a multi-band antenna at the intended 
operating frequencies f0.k, k = 1, …, N. In this case, the 
performance figures will be Fk = f0.k, and the merit 
function can be defined as  

 11 1 11( , ) max | ( , ) |,...,| ( , ) |NU S F S Fx F x x          (2) 

 Example 2. Consider a circular polarization antenna that 
is supposed to operate at the center frequency f0 with a 
fractional bandwidth B (symmetric w.r.t. f0) so that the 
antenna is well matched in that bandwidth (i.e., |S11|  –10 
dB over B) and the axial ratio AR  3 dB over B. Assuming 
that B is fixed and the goal is to design the antenna for a 
specific frequency f0, the only performance figure would 
be F1 = f0, and the merit function may be defined as  

 
1 1

2

1 1
2 2

( , ) max ( , )
B B

F f F

U AR f c
         
   

 x F x x          (3) 

where  

1 1

11

1 1
2 2

| ( , ) | 10
( ) max ,0

10B B
F f F

S f
c

         
   

   
 

x
x            (4) 

Here, minimization of the axial ratio over the required 
bandwidth (centered at f0) is the primary objective, 
whereas the matching condition is controlled using the 
penalty term c(x) ( being a positive penalty factor) that 
quantifies a possible violation of the condition |S11|  –10 
dB. 

 Example 3. Consider the antenna to be designed for the 
center frequency f0, so that the fractional impedance 
bandwidth is at least B (symmetric w.r.t. f0), and the 
average realized gain is maximized within the same 
bandwidth. Assuming that both the center frequency and 
the bandwidth are to be optimizable goals, the 
performance figures are F1 = f0 and F2 = B. The merit 
function could be defined as  

1 2

1 2

(1 /2)1
1 2 (1 /2)

( , ) ( ) ( , ) ( )
F F

F F
U F F G f df c




  x F x x       (5) 

where, G(x,f) is the realized gain (as a function of the 
parameter vector x) at the frequency f, whereas c(x) is a 
penalty term, similar to that used in Example 2. 

 Example 4. Consider a UWB antenna operating in the 
frequency range 3.1 GHz to 10.6 GHz. The goal is to 
reduce the antenna footprint A(x) while ensuring |S11|  –
10 dB within the UWB frequency range. The antenna is to 
be implemented on the substrate of permittivity r and the 
height h, both being parts of the objective space (i.e., the 
antenna is to be designed to minimize its footprint for a 
specific dielectric substrate within a prescribed ranges of 
permittivity and height). Thus, we have F1 = r, F2 = h, 
and the merit function is defined as  

( , ) ( ) ([ ] )T T TU A c x F x x F                   (6) 

where c(x) is a penalty term, similar to that used in 
Example 2 but this time it is a function of the objective 
vector F = [F1 F2]T = [r h]T because the antenna reflection 
also depends on the substrate parameters. 

B. Response Features. Feature-Based Design Quality 
Assessment 

The response feature technology [39], [53] allows us to 
explore a specific structure of the antenna responses (e.g., the 
presence of resonances) to reduce the computational cost of the 
optimization and modelling procedures. This comes from an 
observation that the coordinates of appropriately defined 
feature points depend in a less nonlinear manner on the 
geometry parameters of the structure than the original outputs 
(typically, frequency characteristics). Consequently, it might be 
beneficial to re-define the design problem from the original, 
e.g., minimax formulation, to that involving the response 
features [39]. Furthermore, feature-based formulation often 
makes local optimization routines sufficient in situations where 
the conventional problem statement would call for a globalized 
search [54].  

To clarify this, let us consider an example of a multi-band 
antenna to be optimized in the sense of (2) (Section II.B). 
Typically, the feature points of the input characteristic would 
be related to the location of the antenna resonances as well as 
the frequencies corresponding to –10 dB levels of |S11| (e.g., for 
the purpose of bandwidth manipulation), see Fig. 1. In general, 
the vector of antenna feature points will be denoted as p(x) = 
[p1(x) … pL(x)]T. In our example, the locations of the 
resonances are sufficient for reformulating the problem (2), 
specifically, their frequencies fr.k and levels lr.k, k = 1, …, N. 
These will be used as the response features. Thus, the feature 
vector can be written as p(x) = [fr.1(x) … fr.N(x) lr.1(x) … 
lr.N(x)]T. The problem (2) can be then reformulated using the 
feature-based objective function UF as 

 

2

.11

.1 .

.

( )

( , ) max ( ),..., ( )

( )

r

F r r N

N r N

fF

U l l

F f


  
       
     

x

x F x x

x

     (7) 

The optimum design according to (2) is the same as that 
according to (7). However, the functional landscape of UF() is 
much more regular than that of U() and solving (7) generally 
requires less computational effort than solving (2). This is 
illustrated in Fig. 2 using an example of a dual-band antenna. 

In practice, generating the database designs for various 
objective vectors F requires re-design of the antenna for various 
operating frequencies. Regardless of additional specifications 
that need to be satisfied (e.g., maximization of gain or 
bandwidth), allocating the operating frequency (or frequencies) 
at the target values is the primary goal. This is because handling 
other antenna characteristics (e.g., improving the matching) is 
normally easier after the operating band is properly allocated.  
 

 
Fig. 1. Response features shown for the example of a dual-band antenna: 
exemplary reflection characteristic (—), feature points corresponding to the 
antenna resonances (o), feature points corresponding to –10 dB levels (). 
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The optimization framework proposed in this work employs 
a so-called assessment function fa(x,F) = fa(p(x),F), defined 
using the response features, which is to serve this particular 
purpose, i.e., to evaluate the distance between the actual and 
target objective vector of the antenna at hand. 

The function is defined individually for each case; for the 
sake of clarity, let us consider a few examples: 
 Example 1: (cf. Example 1 of Section II.A) Assume that 

the goal is to improve the matching of a multi-band 
antenna at the intended operating frequencies f0.k, k = 1, 
…, N. The performance figures will be Fk = f0.k, and the 
response features are p(x) = [fr.1(x) … fr.N(x) lr.1(x) … 
lr.N(x)]T, where fr.j and lr.j are the frequency and level of the 
jth resonance. We will denote as Fextr(x) = [fr.1(x) … 
fr.N(x)]T the actual (extracted from the EM response) 
objective vector at the design x. The assessment function 
will be then defined as 

2

.11

.

( )

( , ) ( )

( )

r

a extr

N r N

fF

f

F f

  
        
     

x

x F F F x

x

         (8) 

 Example 2: (cf. Example 3 of Section II.A) Consider the 
antenna to be designed for the center frequency f0, so that 
the fractional impedance bandwidth is at least B, and the 
average realized gain is maximized within the same 
bandwidth. The performance figures are F1 = f0 and 
F2 = B. For the purpose of defining the assessment 
function, we consider the feature points corresponding to 
the antenna resonance (fr and lr) and the –10 dB points 
determining the antenna bandwidth (fL.j and lL.j, j = 1, 2). 
If, at a particular design x, we have lr > –10 dB, we assign 
fL.j = fr and lL.j = lr. Using these, the assessment function 
can be defined as  

.1 .2
1( , )

3
L r L

a

f f f
f F

 
 x F                      (9) 

 In this case, Fextr = [(fL.1 + fr + fL.2)/3 B]. In general, the 
assessment function can be defined as fa(x,F) = ||F – 
Fextr||, with Fextr set up to make this definition consistent 
with particular definitions (here, (8) and (9)). 

C. Inverse Sensitivity and Its Estimation 

The next component of the proposed optimization 
framework is the inverse sensitivity, i.e., Jx(F) = x/F = 
U*(F)/F. The entries Jjk

x of the Jacobian Jx(F) are the partial 
derivatives of the (optimized) antenna parameters xj with 
respect to the performance figures Fk.  

The problem is that these derivatives are not available 
directly and cannot be computed using finite differentiation. 
Below, we provide a simple procedure for their estimation 
which is partially analytical, and partially relies on 
optimization.  

We will denote by J(x) the Jacobian matrix of the EM 
antenna model R at the design x,. We will also denote as d = [d1 
… dN]T a vector of perturbations of the performance figures. At 
the first step, we find the perturbed reference designs x(k) 
corresponding to vectors [F1 …  Fk + dk  …  FN]T 

( )
1arg min ( ,[ ... ] )k T

k k NU F F d F 
x

x x                (10) 

The initial approximation x(k.0) of x(k) will be obtained using 
the first-order Taylor expansion RL of the EM model R  

 
(a) 

 
(b) 

Fig. 2. Conceptual illustration of the benefits of feature-based versus minimax 
formulation of the parameter tuning problem: (a) initial design (thick dashed 
line), design optimized for target frequencies 3.0 GHz and 5.5 GHz (thick solid 
line), and the family of antenna characteristics along the line segment 
connecting these two designs parameterized by 0  t  1 (thin solid lines); (b) 
minimax objective function (2) (- - -) and feature-based objective function (7) 
(—) versus parameter t. Note that the feature-based objective function is more 
regular, and the target design can be reached from the given initial point through 
local search routine, which is not the case for the minimax formulation. 
 
 

( ) ( ) ( ) ( )L    R y R x J x y x                           (11) 

specifically, by minimizing 
1( ,[ ... ] )T

k k NU F F d Fx  

calculated from RL, in the vicinity of x. Given x(k.0), the design 
is then refined using a conventional trust region algorithm  

( . 1) ( )

( . ) ( )
1

, || ||
arg min ( ,[ ... ] )

k i i

k i i T
L k k NU F F d F

 
 

x x x
x x         (12) 

where x(k.i) is the series of approximations to x(k), and (i) is the 
trust-region radius adjusted adaptively using the standard trust-
region rules [55]. The objective function UL

(i) is defined using 
the linear model of the form of (11) with the Jacobian matrix 
updated in each iteration using the rank-one Broyden formula 
[56]. Using these mechanisms, the computational cost of 
generating the perturbations x(k) can be kept low, typically at the 
level of 2n EM antenna simulations, where n is the number of 
independent parameters of the antenna. 
 Let [F1

(k) … FN
(k)]T be the actual values of the performance 

figures corresponding to x(k), extracted from R(x(k)). As the 
perturbations dk are small, we have 

( ) ( )

1

( )[ ]
N

k x k
l l lr r r

r

x x J F F


   x                        (13) 

which can be rewritten in the matrix form as  
x

FX J A                                        (14) 

where 
(1) ( )N    X x x x x                           (15) 

and 
(1) ( )

1 1 1 1

(1) ( )

N

F
N

N N N N

F F F F

F F F F

  
   
   

A


  



                     (16) 

The matrix AF is nonsingular because its diagonal elements 
are dominant over the off-diagonal entries by construction of 
the perturbed designs. Thus, (15) can be solved analytically as 
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1x
F
J XA                                        (17) 

 The Jacobian Jx will be used to generate an initial 
approximation of the database designs as explained in 
Section III.  

III. ALGORITHMIC FRAMEWORK FOR LOW-COST DATABASE 

DESIGN ACQUISITION 

 This section formulates the proposed framework for database 
design acquisition. It involves the components described in 
Section II. The presentation is divided into several parts. In 
Section III.A, we discuss the use of the inverse surrogate to 
generate the initial designs. Section III.B formulates the 
parameter tuning procedure, whereas Section III.C outlines the 
entire framework, which is then summarized using the flow 
diagram. Numerical verification of the procedure will be 
provided in Section IV along with the application examples for 
performance-driven surrogate modelling of antenna 
components. 

A. Inverse Surrogate. Generating Initial Designs 

Let F(k)  F, k = 1, …, p, be the set of objective vectors that 
determine the design database to be acquired, denoted as xF

(k) = 
U*(F(k)) (cf. (1)). Without loss of generality, we may assume 
that F(1) is the vector closest to the center of gravity of the set 
{F(k)}, i.e., Fc = p–1kF(k). The first design xF

(1) = U*(F(1)) is 
obtained using direct search, e.g., through feature-based 
optimization [39] to reduce the computational cost of the 
process. Using this design as well as the inverse sensitivity 
Jx(F(1)) found as described in Section II.C, we set up a linear 
(inverse) surrogate of the form 

(1) (1) (1)( ) ( ) ( )x
F   s F x J F F F                    (18) 

The initial design xF
(k.0) for finding the database design xF

(k) 
can be generated as  

( .0) ( )( )k k
F x s F                                   (19) 

The benefits of using the inverse surrogate, apart from the 
fact that the inverse model directly produces the antenna 
parameter vector without the need of launching the 
optimization process, are similar to those pertinent to the 
response feature approach. In particular, the relationship 
between the performance figures and geometry parameters is 
less nonlinear than the relationship between the parameters and 
antenna outputs. This is illustrated in Fig. 3, showing the 
reflection response of the ring slot antenna considered in 
Section IV at the design x(1) optimized for the frequency f0 = 4.5 
GHz and implemented on the substrate of relative permittivity 
r = 3.5, which is the objective vector F(1). The initial design 
x(2.0) obtained using the inverse surrogate for F(2) = [f0 r]T with 
f0 = 4.0 GHz and r = 4.4 is of good quality, whereas the design 
obtained by optimizing the forward linear model of the form of 
(11) is considerably worse in terms of allocating the operating 
frequency of the antenna. This was despite the fact that a 
reasonable value of the search radius (normally not available 
beforehand) was used when optimizing the forward model. For 
the objective vector F(3) = [f0 r]T with f0 = 3.0 GHz and r = 3.0 
(i.e., farther away from F(1)), the benefits of using the inverse 
surrogate are even more pronounced. Although the prediction 
of the inverse model is not perfect, it is significantly better than 
that of the forward one. 

Another benefit of the inverse surrogate is that it allows for a 
rapid correction of the design (at the cost of just one EM 
simulation) if necessary. A correction can be realized as 
follows. Let Fextr

(k) be the actual objective vector extracted from 
EM simulated antenna responses at the design xF

(k.0) obtained as 
in (19). The prediction error F is then calculated as the 
difference between the target and the actual objective vectors, 
i.e., 

( ) ( )k k
extr  F F F                                   (20) 

The corrected design can be then obtained as 
( .0) ( )

. ( )k k
F corr   x s F F                              (21) 

In other words, the correction (21) accommodates the 
prediction error and improves the design by reevaluating the 
inverse surrogate upon including F. The source of the error is 
a nonlinear dependence between F and x, which is merely 
approximated by the linear inverse surrogate (18). The effect of 
correction has been illustrated in Fig. 4. 

 
 

 
(a) 

 

(b) 
Fig. 3. Inverse surrogate for initial design generation shown for a ring-slot 
antenna considered in Section IV. Reflection response at the center design x(1) 
= U*(F(1)) (), design prediction obtained using the inverse surrogate (18) (—
) and the forward model (11) (- - -): (a) design x(2) corresponding to the objective 
vector F(2) = [f0 r]T with f0 = 4.0 GHz and r = 4.4, and (b) design x(3) 
corresponding to the objective vector F(3) = [f0 r]T with f0 = 3.5 GHz and r = 
3.0. Note that prediction of the inverse model is significantly more reliable. The 
vertical lines denote operating frequencies at the center design (- - -), and the 
target (—). 

 

 

Fig. 4. Design correction (21) illustrated for an exemplary ring slot antenna of 
Section IV. Reflection response at the center design x(1) = U*(F(1)) (), design 
prediction obtained using the inverse surrogate (18) (- - -) and the corrected 
design (21) (—). The data has been shown for the objective vector F(3) = [f0 r]T 
with f0 = 3.5 GHz and r = 3.0.  
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B. Feature-Based Parameter Tuning 

Given the initial point xF
(k.0), the optimization process will be 

continued using the trust-region (TR) gradient based algorithm 
similar (12). Whenever possible, the original formulation of the 
design problem (1) will be replaced by the feature-based 
formulation (cf. Section II.B). Thus, the optimum database 
design xF

(k) will be obtained through a series of approximations 
xF

(k.i) generated as 

( . )( ) ( )

( . 1) ( ) ( )

;
arg min ( , )

k ii i
F

k i i k
F FU

   


x d x x d
x x F              (22) 

i = 1, 2, …, where UF
(i) is the feature-based objective function 

evaluated using the first-order Taylor expansion model LF
(k.i) of 

R of the form  
  ( . 1) ( . ) ( . ) ( . )( ) ( ) ( )k i k i k i k i

F F F F
    L R x J x x x                  (23) 

The Jacobian J is estimated using finite differentiation in the 
first iteration and updated using the Broyden formula [56] 
afterwards. The trust region is defined through its lower and 
upper bounds x(i) – d(i)  x  x(i) + d(i), where the inequalities are 
understood component-wise. The size vector d(i) is adjusted 
using the standard TR rules [55]. Using an interval-type of TR 
region eliminates the need for variable scaling, which is 
especially important when the parameter ranges vary 
significantly (e.g., transmission line lengths versus line gaps, 
etc.).  

C. Optimization Framework 

Here, we outline the operation of the entire optimization 
framework proposed in this paper. The framework utilizes the 
components described in Sections II as well as the routines 
formulated in Sections III.A and III.B as the building blocks. 
The input parameters of the procedure are the following: 

 EM simulation model R of the antenna under 
optimization; 

 Definition of the response features p for the model R (cf. 
Section II.B); 

 Objective vectors F(k)  F, k = 1, …, p, for which the 
database designs are to be acquired; 

 Assessment function fa(x,F) = fa(p(x),F) (cf. Section 
II.B) and the acceptance threshold fa.max for fa (to be used 
to either accept or reject the initial design produced by 
the inverse surrogate); 

 Maximum number of objective vector relaxations jmax; 
 Maximum acceptable value of the objective function 

UF.max. 
The role of the assessment function and the acceptance 

threshold is to determine whether the quality of the design 
produced at the particular stage of the optimization process is 
sufficient to move on to the next stage. If the assessment is 
negative, typically, a new (corrected) design is produced, or the 
design specifications are temporarily relaxed (at most jmax 
times) to enable approaching the original target in smaller steps. 
The design obtained through local tuning is considered 
acceptable if the corresponding objective function value does 
not exceed UF.max. 

The operating flow of the proposed optimization procedure 
can be summarized as follows: 
1. Assign F(1) as the objective vector closest to Fc = p–1kF(k);  
2. Obtain the first design xF

(1) = U*(F(1)) using direct search 
(typically, using feature-based optimization [39]); 

3. Estimate the inverse sensitivity matrix Jx(F(1)) as in 
Section II.C; 

4. Using Jx(F(1)), set up the inverse surrogate s(F) (18); 
5. Set the design counter to k = 2; 
6. Using the inverse surrogate s(F), find the initial design 

( .0) ( )( )k k
F x s F ; 

7. If  fa(xF
(k.0))  fa.max,  

Go to Step 15;  
else  

Calculate the error ( ) ( )k k
extr  F F F  (20); find the 

corrected design ( .0) ( )
. ( )k k

F corr  x s F F  (21), and, if 

fa(xF.corr
(k.0)) < fa(xF

(k.0)), set xF
(k.0) = xF.corr

(k.0); 
end 

8. If fa(xF
(k.0))  fa.max,  

Go to Step 15; 
end 

9. Set j = 1 (local counter); 
10. Extract the actual objective vector Fextr at the design xF

(k.0); 

calculate the updating factor .max
( )

min 1,
|| ||

a
k

extr

f
t

 
  

 F F
; 

11. Update the objective vector as ( ) ( )( )k k
tmp extr extrt  F F F F ; 

12. Update the initial design as ( .0) ( )arg min ( , )k k
F F tmpU

x
x x F ; 

the problem is solved using TR gradient search (cf. 
Section III.B);  

13. Set j = j + 1; 
14. If  ( fa(xF

(k.0))  fa.max AND t = 1 ) OR j > jmax (use Ftmp
(k) in 

place of F(k) when evaluating fa), 
Set xF

(k) = xF
(k.0) and go to Step 16;  

else  
Go to Step 10; 

end 
15. Find xF

(k) as ( ) ( )arg min ( , )k k
F FU

x
x x F ; the problem is 

solved using the TR gradient search (cf. Section III.B); 
16. Store the design xF

(k) along with the corresponding actual 
value of the objective vector Fextr

(k). Set k = k + 1;  
17. If k  p go to 6; 
18. END. 

The first four steps of the procedure (Steps 1-4) are executed 
to prepare the inverse surrogate (18) as discussed in Section III.A. 
Steps 5 through 17 are performed in a loop to generate all p 
database designs. The initial design generated in Step 6 is either 
accepted based on the assessment function value, in which case 
it undergoes further tuning (Step 15), or it is rejected and the 
correction is made (cf. (20), (21)). If the corrected initial design 
is not accepted, the auxiliary tuning process is launched for 
relaxed objective vector calculated based on the performance of 
the current design (Steps 10 and 11). In Step 12, the TR algorithm 
is initially executed with the Broyden updates, which requires 
just one EM antenna analysis per algorithm iteration. In the case 
of failure (i.e., UF(xF

(k.0)) > UF.max), another round is launched 
using full finite-differentiation updates. The series of auxiliary 
tuning runs is terminated once the relaxed specifications become 
sufficiently close to the original ones or the maximum number of 
these is exceeded.  

The overall assumption of the procedure is that the required 
database designs can be found for the antenna at hand, i.e., it is 
possible to optimize the structure for all objective vectors F(k), 
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and that the local tuning is sufficient if the initial design is 
sufficiently close to the target. If this assumption is not satisfied, 
the procedure would still operate but some of the designs may not 
adhere to the original targets. The operation of the procedure is 
also explained using the flow diagram presented in Fig. 5. 
 

Set F(1) (design closest to 
Fc = p-1SkF

(k))

Find xF
(1) = U*(F(1))

Estimate Jx(F(1)) (inverse sensitivity)

Set up inverse surrogate s(F)

Calculate error F and find corrected 
design xF.corr

(k.0)

j = 1 
(local counter)

Update objective vector Ftmp
(k)

Update initial design
( .0) ( )arg min ( , )k k
F F tmpU

x
x x F

j = j + 1

Store {xF
(k),Fextr

(k)}; k = k + 1

fa(xF
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Fig. 5. Flow diagram of the proposed optimization procedure for generating 
database designs. 

IV. DEMONSTRATION CASE STUDIES 

The proposed optimization framework is demonstrated in 
this section using three examples of microstrip antennas, 
specifically, a dual-band uniplanar dipole antenna and a ring-
slot antenna considered in [43] as verification cases for the 
nested kriging framework, as well as a quasi-Yagi antenna that 
will be used to illustrate the warm-start optimization procedure 
[48]. This allows us to put our methodology in the right 
application context, as performance-driven modelling and rapid 
dimension scaling are representative applications that require 
generation of the database designs. In these cases, the algorithm 
is employed for the assumed objective space, relevant to the 
modelling/design tasks at hand. For comparison, the same 
designs are obtained using a traditional method, which is by 
executing independent optimization runs with initial designs 
produced through experience-driven parameter sweeping. 
Afterwards, the designs are applied as reference points for 
setting up the nested kriging surrogate model or the surrogate-
assisted warm-start optimization framework. This allows us to 
emphasize the computational benefits offered by the presented 
approach, where fast rendering of the reference points enables 
considerable savings in terms of the overall cost of surrogate 
model setup. 

A. Case I: Dual-Band Uniplanar Dipole Antenna 

 Consider a dual-band uniplanar dipole antenna shown in Fig. 
6 [57], implemented on RO4350 substrate (εr = 3.5, h = 0.76 
mm). The design variables are x = [l1 l2 l3 w1 w2 w3]T, other 
parameters are fixed (see [43] for details). The computational 
model model R is simulated in CST Microwave Studio 
(~100,000 cells; simulation time 1 minute). In [43], the task was 
to render a surrogate model of the antenna input characteristics, 
which was supposed to be valid within the objective space 
defined by the following ranges of the operating frequencies: 
2.0 GHz ≤ f1 ≤ 3.0 GHz for the lower band, and 4.0 GHz ≤ f2 ≤ 5.5 
GHz for the upper band. The modeling framework referred to as 
nested kriging, requires a certain number of so-called reference 
designs x(j), j = 1, …, p. These are employed to set up an auxiliary 
first-level model, subsequently utilized to define the constrained 
domain of the surrogate model. In [43], the reference designs 
corresponded to the following pairs of f1 and f2 (frequencies in 
GHz): [2.0 4.0], [2.6 4.0], [3.0 4.0], [2.3 4.5], [2.8 4.7], [2.2 5.0], 
[2.7 5.3], [2.0 5.5], [2.4 5.5], and [3.0 5.5]. 
 As described in Section III, the pair [2.2 5.0]T was selected as 
F(1) (the vector closest to Fc = p–1kF(k)). The design xF

(1) = 
U*(F(1)) was found using feature-based optimization [39] at the 
cost of sixty EM analyses of the antenna. In the next stage, the 
inverse sensitivity Jx was estimated using the methodology of 
Section II.C. The CPU cost of this stage was 33 antenna 
simulations. The remaining database designs were obtained using 
Steps 5 through 18 of the algorithm of Section III.C, using the 
assessment function of the form of (8) and the acceptance 
threshold fa.max = 0.3. It turns out that this verification case was 
not difficult for the proposed procedure, in particular, the initial 
designs generated by the inverse surrogate satisfied the condition 
fa(xF

(k.0))  fa.max for all k = 2, …, p. Thus, neither the initial design 
correction (Step 7) nor objective relaxation (Steps 10-12) were 
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necessary. The final tuning was performed using the trust-region 
gradient search (Step 15) at the level of response features. The 
average computational cost of finding the database points is 26 
antenna simulations (per design). The overall cost including all 
aforementioned contributors (antenna optimization for F(1), 
estimating inverse sensitivity, and identification of the remaining 
designs) is only 264 EM analyses of the antenna. For comparison, 
the same database designs were found using a conventional 
approach, i.e., through direct gradient-based optimization, 
starting from the design xF

(1) in each case. Even though feature-
based approach was used, the total cost amounts to 930 EM 
analyses. Optimization involving minimax formulation (cf. (2)) 
was even more expensive as it required a certain amount of 
parameter sweeping in order to generate reasonable starting 
points for some of the database designs. The total cost of it was 
1201 EM simulations of the antenna. Table I shows the summary 
of the optimization cost for conventional and proposed 
approaches. Figure 7 shows the antenna responses at the selected 
database designs indicating good alignment of the resonances 
with the target operating frequencies. 
 As mentioned before, the database designs were used as the 
reference points for setting up the nested kriging surrogate model 
of the antenna of Fig. 6. The details of the technique can be found 
in [43]. In short, the nested kriging employs two kriging 
interpolation metamodels. The first-level (inverse) model sI is 
constructed using {F(j),x(j)}, j = 1, …, p, to approximate the region 
containing designs that are optimum with respect to all vectors F 
within the considered objective space. The image of the objective 
space through sI is extended to establish the domain of the final, 
second-level surrogate. As indicated in [43], confining the model 
domain this way has profound effects on the predictive power of 
the surrogate and allows us to render reliable models over broad 
ranges of geometry parameters and operating conditions of the 
antenna.  

Figure 8 shows the responses of the nested kriging surrogate 
(obtained using N = 400 training samples) as well as the EM 
simulated antenna characteristics at the selected test locations. The 
average relative RMS error of the model is only 2.6%. Table II 
summarizes the computational cost of setting up the model for two 
scenarios concerning reference point acquisition: conventional 
(feature-based) and the method proposed in this work. It should 
also be mentioned that the traditional kriging surrogate constructed 
for the same antenna without domain confinement exhibits the 
error of almost 10% when using 400 training samples, which is 
four time higher than that of the nested kriging. The technique 
proposed in this work results in 50 percent savings over 
conventional reference design acquisition when using feature-
based formulation. The savings over reference design generation 
using minimax formulation are even higher (59 percent). 

 

 

 
Fig. 6. Dual-band uniplanar dipole antenna: geometry [57]. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Dual-band dipole antenna: reflection response at the selected database 
designs found using the proposed optimization framework (frequencies in 
GHz): (a) [f1 f2] = [2.6 4.0], (b) [f1 f2] = [2.8 4.7], (c) [f1 f2] = [2.7 5.5], (d) [f1 
f2] = [2.4 5.5]. Target operating frequencies marked using vertical lines. 

 

 
Fig. 8. Dual-band dipole antenna: reflection response at the selected test designs 
for the nested kriging surrogate constructed using 400 training samples (o). EM 
simulation results at the same test locations are marked using the solid line (—). 

 
TABLE I  DUAL-BAND ANTENNA: OPTIMIZATION COST OF DATABASE 

DESIGN GENERATION 

Optimization 
technique 

Computational cost& 

Total* Per design 

Conventional 
(minimax)# 

1201 120.1 

Conventional (feature-
based)$ 

930 93.0 

Proposed in this work 264 26.4 
&Computational cost expressed in number of EM analyses of the antenna structure under 
optimization. 
#Gradient-based optimization using minimax formulation (cf. (2)) with starting points 
adjusted using auxiliary parameter sweeping. 
$Feature-based optimization (cf. (7)) with starting point adjusted using auxiliary 
parameter sweeping. 
*The database set consists of 10 designs. 
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TABLE II  DUAL-BAND ANTENNA: COMPUTATIONAL COST OF 

CONSTRUCTING THE NESTED KRIGING SURROGATE 
 

Computational cost 
component# 

Method of generating reference designs 

Conventional 
(feature-based 
formulation) 

This work 

Reference design 
acquisition 

930 264 

Training data 
acquisition$ 

400 400 

Total cost 1330 664 
#Cost expressed in the number of EM analyses of the antenna structure. 
$EM simulations necessary to acquire training data samples for second-level surrogate 
construction. 
 

B. Case II: Ring-Slot Antenna 

 Consider a slot antenna shown in Fig. 9 [58], implemented on 
a 0.76-mm-thick substrate. The geometry parameters are x = [lf ld 
wd r s sd o g]T. The substrate permittivity εr is one of the objective 
space components. The feed line width wf is calculated for a given 
εr to ensure 50 ohm input impedance. The EM model is 
implemented in CST (~300,000 cells, simulation 90 s). The 
modeling task considered in [43] was to construct a surrogate 
model of the antenna input characteristics, valid over the 
objective space defined by the following ranges of the operating 
frequency f and the substrate permittivity εr: 2.5 GHz  f  6.5 
GHz, and 2.0  r  5.0. Similarly as before, the surrogate is to 
be constructed using nested kriging. The reference designs are 
selected to correspond to the following pairs of f and εr 
(frequency in GHz): [f, εr] = [2.5 2.0], [4.5 2.0], [6.5 2.0], [2.5 
3.5], [4.0 3.5], [5.0 3.5], [6.5 3.5], [2.5 5.0], [4.5 5.0], and [6.5 
5.0]. 
 The objective vector [5.0 3.5]T was selected as F(1) (the 
vector closest to Fc = p–1kF(k)). Feature-based optimization 
[39] was employed to find xF

(1) = U*(F(1)) at the cost of 85 EM 
analyses of the antenna. The inverse sensitivity Jx was 
estimated as in Section II.C at the cost of 45 antenna 
simulations. The remaining designs were found using the 
algorithm of Section III.C, using the assessment function of the 
form of (8) and the acceptance threshold fa.max = 0.5. This 
problem is more challenging from the optimization perspective, 
and, in some cases, the correction of the initial design (Step 7) 
and objective relaxation was necessary. The final tuning was 
performed using the trust-region gradient search with the 
feature-based formulation.  

 

 
Fig. 9. Ring-slot antenna: geometry (feeding line shown using dashed lines) 
[58]. 
 

The average cost of identifying the database points is only 37 
antenna simulations (per design). The overall cost is 368 EM 
analyses. As a benchmark, the same database designs were found 
using a conventional approach with both the minimax and 
feature-based formulations. The corresponding costs are gathered 
in Table III. Note that the proposed approach enables 
considerable computational savings: 64 percent over 
conventional method with minimax formulation and 57 percent 
over conventional method with feature-based formulation. Figure 
10 shows the antenna responses at the selected database designs.  

The database designs were applied to construct the nested 
kriging surrogate of the antenna of Fig. 9. A brief outline of the 
modeling procedure has been provided in Section IV.A. found 
in [43]. Figure 11 shows the responses of the surrogate 
(obtained using N = 400 training samples) along with the EM 
simulated antenna characteristics at the selected test locations. 
The average relative RMS error of the model is only 3.1%. 
Table IV summarizes the computational cost of setting up the 
model for two scenarios concerning reference point acquisition: 
conventional (feature-based) and the method proposed in this 
work. The proposed technique enables 40 percent savings over 
conventional reference design acquisition when using feature-
based formulation. The savings over reference design 
generation using minimax formulation are as high as 46 
percent.  

 

  
                             (a)                                                          (b) 

 
                             (c)                                                          (d) 
Fig. 10. Ring-slot antenna: reflection response at the selected database designs 
found using the proposed optimization framework (frequencies in GHz): (a) [f r] 
= [5.0 3.5], (b) [f r] = [2.5 5.0], (c) [f r] = [4.5 2.0], (d) [f r] = [6.5 3.5]. 

 

 
Fig. 11. Ring-slot antenna: reflection response at the selected test designs for the 
nested kriging surrogate constructed using 400 training samples (o). EM 
simulation results at the same test locations are marked using the solid line (—). 
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TABLE III  RING-SLOT ANTENNA: OPTIMIZATION COST OF DATABASE 

DESIGN GENERATION 
 

Optimization 
technique 

Computational cost& 

Total* Per design 

Conventional 
(minimax)# 1012 101.2 

Conventional (feature-
based)$ 

864 86.4 

Proposed in this work 368 36.8 
&Computational cost expressed in number of EM analyses of the antenna structure under 
optimization. 
#Gradient-based optimization using minimax formulation (cf. (2)) with starting points 
adjusted using auxiliary parameter sweeping. 
$Feature-based optimization (cf. (7)) with starting point adjusted using auxiliary 
parameter sweeping. 
*The database set consists of 10 designs. 

 
TABLE IV  RING-SLOT ANTENNA: COMPUTATIONAL COST OF 

CONSTRUCTING THE NESTED KRIGING SURROGATE 
 

Computational cost 
component# 

Method of generating reference designs 

Conventional 
(feature-based 
formulation) 

This work 

Reference design 
acquisition 

864 368 

Training data 
acquisition$ 

400 400 

Total cost 1264 768 
#Cost expressed in the number of EM analyses of the antenna structure. 
$EM simulations necessary to acquire training data samples for second-level surrogate 
construction 
 

It should be reiterated that the traditional kriging surrogate 
constructed for this antenna without domain confinement 
exhibits the error of over 25% even when using 800 training 
samples [43], which makes it unsuitable for design purposes. 
This indicates that the initial cost of rendering the reference 
design is unavoidable to construct a reliable model. Still, the 
proposed approach allows us to reduce it in a considerable 
manner. 

C. Case III: Quasi-Yagi Antenna 

 Our last demonstration case is a quasi-Yagi antenna with a 
parabolic reflector (Fig. 12) [59], implemented on a 1.5-mm-
thick substrate. The EM model is simulated in CST. The design 
variables are x = [W L Lm Lp Sd Sr W2 Wa Wd g]T (all dimensions 
in mm). The parameter W1 (feed line width) is calculated for a 
given substrate permittivity r to ensure 50-ohm input 
impedance. 

The antenna of Fig. 12 will be utilized as a verification case 
for the warm-start optimization procedure [48], where a set of 
database designs was used to construct two kriging 
metamodels: (i) an inverse model (similar to sI of the nested 
kriging) employed to generate the initial design for further 
tuning, and (ii) a forward model of antenna response 
sensitivities. The latter allowed for jump-starting the gradient-
based tuning process, executed with the trust-region framework 
and the Broyden update [56].  

The specific design task was to optimize the antenna for a 
given center frequency f0 and to ensure 8-percent fractional 

bandwidth (symmetric w.r.t. f0). This was to be done for the 
assumed substrate permittivity r. Another goal was to maximize 
the average realized gain within the same bandwidth (cf. (5)). The 
objective space is defined by the following ranges: 2.5 GHz ≤ f0 
≤ 5.0 GHz and 2.5 ≤ r ≤ 4.5. The database designs correspond to 
the pairs [f0 r] (frequencies in GHz): [2.5 4.5], [3.5 4.5], [5.0 4.5], 
[2.5 2.5], [5.0 2.5], [3.5 2.5], [4.5 3.5], and [3.0 3.5]. 

In this case, although Fc = p–1kF(k)) = [3.75 3.5]T, the vector 
[3.5 4.5]T is selected as F(1), which is because the sensitivity of 
optimum antenna parameters with respect to the substrate 
permittivity is significantly lower than with respect to the 
operating frequency. The design xF

(1) = U*(F(1)) was found at the 
cost of 105 EM analyses of the antenna. The cost of estimating 
the inverse sensitivity Jx was 39 antenna simulations. The 
remaining designs were found using the algorithm of 
Section III.C, using the assessment function (9) and the 
acceptance threshold fa.max = 0.3. From the point of view of 
generating the database design, this problem is the most 
challenging out of the three considered in this work because the 
response feature technique cannot be directly applied. 
Consequently, in most cases, both the initial design correction 
(Step 7) and objective relaxation was required. The average cost 
of identifying the database points is around 43 antenna 
simulations (per design) with the overall cost equal to 342 EM. 
The cost of finding the database designs using a conventional 
approach was 1899 EM analyses (cf. Table V). Thus, the 
computational savings due to the proposed methodology are as 
high as 82 percent. The antenna responses at the selected 
database designs have been shown in Fig. 13. 

As mentioned before, the database designs are used to 
implement the warm-start optimization framework [48]. It is 
validated by optimizing the antenna for the selected objective 
vectors (the ensembles of the antenna operating frequency and 
substrate permittivity). The selected results have been shown in 
Fig. 14. Clearly, reducing the set up cost of the framework by a 
factor over eighty percent, as achieved by means of accelerated 
generation of the database designs, is highly desirable from a 
practical design perspective.  

 

 

 
Fig. 12. Quasi-Yagi antenna: geometry [59]: top layer (top), bottom layer 
(bottom). 
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  (a)     (b)   

  (c)                                               (d) 
Fig. 13. Quasi-Yagi antenna: reflection (top) and realized gain (bottom) 
characteristics at the selected database designs found using the proposed 
optimization framework (frequencies in GHz): (a) [f0 r] = [5.0 4.5], (b) [f0 r] 
= [4.5 3.5], (c) [f0 r] = [3.0 3.5], (d) [f0 r] = [3.5 4.5]. 

(a) 

(b) 

(c) 
Fig. 14. Quasi-Yagi antenna: reflection (black) and realized gain (gray) 
responses at the initial () and the optimized (—) designs corresponding to the 
target objective vectors: (a) f0 = 4.2 GHz, r = 2.5, (b) f0 = 3.8 GHz, r = 3.5, 
and (c) f0 = 3.0 GHz, r = 4.4. The initial designs are generated by the inverse 
model constructed using the database designs (cf. [57]). 

TABLE V  QUASI-YAGI ANTENNA: OPTIMIZATION COST OF DATABASE 

DESIGN GENERATION 

Optimization technique 
Computational cost& 

Total* Per design 

Conventional# 1899 237.4 

Proposed in this work 342 42.7 
&Computational cost expressed in number of EM analyses of the antenna structure under 
optimization. 
#Gradient-based optimization using formulation (5) with starting points adjusted using 
auxiliary parameter sweeping. 
*The database set consists of 8 designs.

V. CONCLUSION

The paper presented an optimization framework for 
expedited acquisition of database designs, i.e., optimized sets 
of antenna parameters corresponding to selected values of 
performance figures (e.g., an operating frequency) or material 
parameters (e.g., substrate permittivity). The ensembles of such 
designs are important for performance-driven modelling 
procedures, construction of inverse surrogates, or rapid re-
design (dimension scaling) of antenna structures. At the same 
time, carrying out multiple optimization runs for different 
performance requirements is a challenging endeavour, which 
entails considerable computational expenses. The methodology 
proposed in this work alleviates these difficulties and enables 
accelerated acquisition of the database designs by means of 
inverse sensitivities and inverse surrogate modelling as well as 
feature-based tuning procedure.  

Our framework has been comprehensively validated using 
three antenna structures. Superiority over conventional 
optimization procedures involving experience-driven initial 
design appointment has been conclusively demonstrated with 
the speedup from 57 to 82 percent with the average of over 70 
percent for a range of considered benchmark set. Another 
benefit of the presented approach is to enable design 
automation, specifically, generation of the entire set of database 
designs without user supervision. This may not be possible for 
a traditional approach, especially when the designs are to be 
generated for broad ranges of antenna operating conditions. The 
proposed technique can be useful for expedited construction of 
database designs for constrained modeling procedures, building 
the inverse surrogates, as well as implementing frameworks for 
rapid re-design and dimension scaling of antenna structures. 

A comment should be made concerning the scalability of the 
presented method. Based on the presented evidence of three test 
cases of increasing dimensionality (six, eight, and ten 
parameters) as well as average costs of databased design 
acquisition (26, 37, and 43 EM analyses per design), it seems 
that the dependence of the computational expenses and the 
number of parameters is weaker than linear. This is to be 
expected because of the fact that the computational costs are 
mainly determined by the dimensionality of the objective space, 
which is normally low (one, two, or three), which is another 
benefit of the incorporation of inverse modeling techniques. 

The employment of EM simulation tools to antenna design, 
in particular, EM-driven optimization, is widespread and still 
growing. The authors believe that the methodology presented 
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in this work may become a stimulus for the development of yet 
better and more reliable optimization methods that would 
alleviate the difficulties related to high cost of massive 
simulations, especially within scenarios involving the 
execution of repetitive optimization runs or similar tasks. 
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