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Abstract

A set S of vertices in a graph G is a dominating set if every vertex not in § is ad
jacent to a vertex in S. If, in addition, S is an independent set, then S is an inde-
pendent dominating set. The independent domination number i(G) of G is the
minimum cardinality of an independent dominating set in G. The independent
domination subdivision number sd;(G) is the minimum number of edges that must
be subdivided (each edge in G can be subdivided at most once) in order to increase
the independent domination number. We show that for every connected graph G on
at least three vertices, the parameter sd;(G) is well defined and differs significantly
from the well-studied domination subdivision number sd, (G). For example, if G is a
block graph, then sd,(G) < 3, while sdi(G) can be arbitrary large. Further we show
that there exist connected graph G with arbitrarily large maximum degree A(G)
such that sdj(G)>3A(G)—2, in contrast to the known result that
sd,(G) <2A(G) — 1 always holds. Among other results, we present a simple
characterization of trees T with sd;(7) = 1.
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1 Introduction

Domination subdivision in graphs is very well studied in the literature. In this paper,
we study independent domination subdivisions in graphs. A set S of vertices in a
graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. If, in
addition, S is an independent set, then S is an independent dominating set,
abbreviated ID-set, of G. The domination number, denoted y(G), of G is the
minimum cardinality of a dominating set of G, and the independent domination
number, denoted i(G), of G is the minimum cardinality of an ID-set in G. An
independent set of vertices in a graph G is a dominating set of G if and only if itis a
maximal independent set. Thus, i(G) is equivalently the minimum cardinality of a
maximal independent set of vertices in G. An ID-set of cardinality i(G) is called an
i-set of G. A survey on independent domination in graphs can be found in [6].

An edge uw in a graph G is subdivided by deleting the edge uw, and adding a new
vertex v and two new edges uv and vw. The added vertex v of degree 2 is called a
subdivision vertex. The domination subdivision number of a connected graph G of
order at least 3, denoted sdy(G), is the minimum number of edges that must be
subdivided (where no edge in G can be subdivided more than once) in order to
create a graph whose domination number exceeds that of G. The domination
subdivision number of a graph G was first formally defined in the 2000 paper by
Haynes, Hedetniemi and Hedetniemi [7], although the concept is attributed by the
authors in [7] to Arumugan, and studied further, for example, in [1, 4, 8, 12].

The independent domination subdivision number of a connected graph G of order
at least 3, denoted sd;(G), is the minimum number of edges that must be subdivided
(where no edge in G can be subdivided more than once) in order to create a graph
whose independent domination number exceeds that of G. This parameter was
introduced by Sharada and Soner at an international conference on discrete
mathematics in India in 2008, and subsequently studied by them in their 2010 paper
[11] in which they characterize the trees T satisfying sd;(T) = 3.

Although the independent domination subdivision number differs significantly
from the well-studied domination subdivision number, it has not received as much
attention in the literature. In this paper, we provide a more in-depth study of the
independent domination subdivision number of a graph. We proceed as follows. In
Sect. 1.1 we provide the necessary graph theory notation and terminology. Our main
results are presented in Sect. 2, and selected known results are given in Sect. 3. In
Sect. 4, we present a general upper bound on the independent domination
subdivision number. In Sects. 5 and 6 we study the independent domination
subdivision number of special classes of graphs such as complete bipartite graphs
and block graphs. In Sect. 7, we characterize trees T with sd;(T) = 1.

1.1 Notation
For notation and graph theory terminology we generally follow [9]. Specifically, let

G be a graph with vertex set V(G) of order n(G) = |V(G)| and edge set E(G) of
size m(G) = |E(G)|. If G is clear from the context, we simply write V and E rather
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than V(G) and E(G). A neighbor of a vertex v in G is a vertex adjacent to v. The
open neighborhood of a vertex v in G, denoted Ng(v), is the set of all neighbors of v
in G, while the closed neighborhood of v is the set Ng[v] = Ng(v) U {v}. If the
graph G is clear from the context, we write N(v) and N[v] rather than Ng(v) and
Ng[v], respectively. We denote the degree of a vertex v in G by dg(v) = [Ng(v)|. A
vertex of degree 1 in G is a leaf of G, and a vertex with a leaf neighbor is a support
vertex of G. A strong support vertex of G is a support vertex with at least two leaf
neighbors. The minimum and maximum degrees among all vertices of G are
denoted by 6(G) and A(G), respectively.

For a set S C V(G) of vertices in a graph G and a vertex v € S, we define the S -
external private neighborhood of a vertex v, abbreviated epng (v, S), as the set of all
vertices in V(G)\S that are adjacent to v but to no other vertex of S; that is,
epng(v,S) = {w € V(G)\S | No(w) NS = {v}}. We define an S-external private
neighbor of v to be a vertex in epng(v, S).

The distance between two vertices # and v in a connected graph G, denoted
dg(u,v) or simply d(u, v) if the graph G is clear from context, is the minimum
length of a (u, v)-path in G. The diameter of G is the maximum distance among all
pairs of vertices of G. The distance from a vertex v to the set S in G, denoted by
dg(v,S), is the minimum distance from v to a vertex of §; that is,
dg(v,S) = min{d(u,v) | u € S}.

We denote the path and cycle on n vertices by P, and C,, respectively. A
complete graph on n vertices is denoted by K, while a complete bipartite graph
with partite sets of size n and m is denoted by K, ,,. A star is the graph K x, where
k> 1. A double star is a tree with exactly two (adjacent) non-leaf vertices. Further if
one of these vertices is adjacent to ¢, leaves and the other to ¢, leaves, then we
denote the double star by S(¢;, ¢,). For example, the double star S(1, 1) is the path
P4. A block graph is a graph in which every block is a complete graph. In particular,
every tree is a block graph.

A rooted tree T distinguishes one vertex r called the root. For each vertex v # r
of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v
is any other neighbor of v. The set of children of v is denoted by C(v). A descendant
of v is a vertex u # v such that the unique (r, u)-path contains v. In particular, every
child of v is a descendant of v. A grandchild of v is the descendant of v at distance 2
from v. We let D(v) denote the set of descendants of v, and we define
D[v] = D(v) U {v}.

We use the standard notation [k] = {1,...,k}.

2 Main Result
In this paper, we continue the study of the independent domination subdivision
number of a graph. We first establish a general upper bound on the independent

domination subdivision number of a connected graph of order at least 3 in terms of
its maximum degree and its independent domination number.
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Theorem 2.1 If G is a connected graph of order at least3, then
sdi(G) < A(G) - i(G),

As a consequence of Theorem 2.1, the independent domination subdivision
number is well defined on the class of connected graphs of order at least 3. We state
this formally as follows.

Corollary 2.2 For every connected graph G of order at least 3, the parameter
sdi(G) is well defined.

We next determine the independent domination subdivision number of a
complete regular bipartite graph.

Theorem 2.3 For k>4, sdi(Kix) = 3k — 2.

As a consequence of Theorem 2.3, we remark that sd;(G) can be arbitrarily large,
even when restricted to the class of connected bipartite graphs G.

Corollary 2.4 There exist connected graphs G with arbitrarily large maximum
degree A(G) such that sd;(G) >3A(G) — 2.

The following result shows that the independent domination subdivision number
can be arbitrary large, even for the classes of block graphs.

Theorem 2.5 There exist block graphs G such that sdi(G) = k for any arbitrary
positive (fixed) integer k.

Our final aim is to give a simple characterization of trees T with sd;(T) = 1. For
this purpose, let N (T) be the set of vertices in the tree T that belong to no i-set of T}
that is,

N(T)={veV(T)|vis in no i-set of T}.
Theorem 2.6 For a tree T of order at least 3, sdi(T) = 1 if and only if T has at least
one of the following two properties.

Py: A leaf of T belongs to the set N'(T).
Py:  An edge of T has both its ends in N'(T).

3 Known Results
In 2000 Haynes, Hedetniemi, and Hedetniemi [7] established the following upper
bound on the domination subdivision number of a graph.

Theorem 3.1 [7] Let G be a connected graph of order n>3. If u and v are two
arbitrary  adjacent  vertices each having degree at least2, then

sd,(G) <dg(u) + dg(v) — L.

As a consequence of Theorem 3.1, the domination subdivision number sdy(G) is
defined for every connected graph G of order n > 3. As a further consequence of
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Theorem 3.1, we have the following upper bound on the domination subdivision
number of a graph.

Corollary 3.2 [7] If G is a connected graph of order n>3, then
sd,(G) <d(G) + A(G) — 1.

In 2008 Favaron et al. [5] gave a construction showing that the domination
subdivision number can be made arbitrarily large.

Theorem 3.3 [5] For each pair of positive integers r and q such that r + q >4,
there exists a graph G with 6(G) = r and sd,(G) >r + q.

Dettlaff [3] proved in her PhD thesis that the domination subdivision number of a
block graph G is at most 3.

Theorem 3.4 [3] If G is a block graph, then 1 <sd,(G) <3.

As an immediate consequence of Theorem 3.4, we have that if T is a tree, then
1< sd;,(T) < 3. Recall that P, denotes a path on n vertices. For n > 3, we note that
i(P,) = [n/3], implying the following result first observed by Sharada and Soner
[11].

Observation 3.5 [11] For n>3,

1 if n=0(mod3)
sdi(P,) =¢ 3 if n=1(mod3)
2 if n=2(mod3).

4 A General Upper Bound

We note that if G = K;, then the independent domination number of G does not
change when its only edge is subdivided. Further we note that it possible that the
subdivision of an edge in a connected graph may decrease its independent
domination number. For example, if k > 2 and G is a tree with exactly two non-leaf
vertices both of which have k leaf neighbors, that is, if G is a double star S(k, k),
then i(G) =k + 1 but subdividing the edge joining the two non-leaf vertices
produces a graph G* with i(G*) = 2 <i(G).

However we show that the independent domination subdivision number is well
defined on the class of connected graphs of order at least 3. For each such graph, we
show there always exists some set of edges that can be subdivided (where each edge
can be subdivided at most once) in order to increase its independent domination
number.

Theorem 4.1 If G is a connected graph of order at least 3, then there exists an i-set
I of G such that the graph G* obtained from G by subdividing every edge incident
with a vertex of I satisfies i(G*) > i(G).

@ Springer


http://mostwiedzy.pl

A\ MOST

696 Graphs and Combinatorics (2021) 37:691-709

Proof Let G be a connected graph of order n > 3. Let I be an i-set of G with the
minimum possible number of vertices of degree 1, and let I be the complement of
the set 7, and so I = V(G)\I. We proceed further with the following claim. O

Claim 1 At least one vertex of I is not a leaf.

Proof Suppose, to the contrary, that every vertex of [ is a leaf. If two vertices of 1
have a common neighbor, say v, then the set (I\Ng(v)) U {v} is an ID-set of G of
cardinality less than I, contradicting the minimality of the set /. Hence, no two
vertices of I have a common neighbor. Thus, |I| = |I| = %n and each vertex outside /
has a unique neighbor in /. Let x be an arbitrary vertex of I, and let y be its unique
neighbor (in /). Since G is a connected graph of order at least 3, we note that the
vertex y has degree at least 2 in G. Thus the set (I\{x}) U {y} is a i-set of G that
contains fewer leaves than the set /, contradicting our choice of the set 1. O

By Claim 1, at least one vertex in the independent set I has degree 2 or more in
the graph G. Let

L={vel|dsv)=1}

and let I, = I\I;. By our earlier observations, |I| > 1. Possibly, I} = ). Let G* be
the graph obtained from G by subdividing every edge incident with a vertex of /. For
each vertex v € I, let

N; = Ng-(v)

be the set consisting of all neighbors of the vertex v in G*. Every independent
dominating set of G* must contain at least one vertex in Ng-[v] = N U {v} in order
to dominate the vertex v for every vertex v € I. Thus, i(G*) > |I| = i(G). We show
that i(G*) > i(G). Suppose, to the contrary, that i(G*) = i(G). Let I'* be an i-set of
G*, and so I* is an ID-set of G* and |I*| = i(G*) = |I|. In what follows we present a
series of claims describing some structural properties of G which culminate in the
implication of its non-existence.

Claim2 I, C I

Proof Suppose, to the contrary, that the vertex v € I, does not belong to the set I*
for some vertex v € I. By definition of the set I, we note that dg(v) >2. Let
Vi, V2,..., v be the neighbors of v in the graph G*. We note that the set N =
{v1,,va,..., v} of neighbors of v in G* is an independent set, and each vertex in this
set is a subdivided vertex of degree 2.

By supposition, v ¢ I*. Renaming vertices if necessary, we may assume that
vy € I" in order to dominate the vertex v. We note that every vertex in [ is at
distance at least 4 from every other vertex of / in the graph G*. In particular, for
distinct vertices x and y in I, the sets Ny and Ny are disjoint and there is no edge
joining a vertex in Ny and a vertex in N. In order to dominate the vertex vy, either

vy € I* or the (unique) neighbor of v, that belongs to the set I belongs to the set I*.
Thus, the set I* contains at least one vertex from each of the sets Ng:[w] for every
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vertex w € I\{v}, and contains at least two additional vertices to dominate the
vertices in Ng:[v]. Therefore, |I*|>|I| 4+ 1, contradicting our supposition that
[ = 1]. O

By Claim 2, I, C I*.
Claim 3 The set I, dominates the set I in the graph G.

Proof Suppose, to the contrary, that there is a vertex w € I that is adjacent to no
vertex of [; in the graph G. Thus, no neighbor of a vertex in the set /; is adjacent to
the vertex w in the graph G*. Therefore, the vertex w is not dominated by any vertex
in I* that belongs to one of the sets N for every x € [;. By Claim 2, we have
L, C I*, implying that I* NN = () for every vertex v € I,. Thus, no vertex of I*
belongs to one of the sets N} for every x € I;. Thus, in order to dominate the vertex
win G*, the set I* must contain at least one vertex that belongs to the set 7, implying
that |I*| > |I| 4 1, a contradiction. d

By Claim 3, the set I; dominates the set I in the graph G. Thus, every vertex in I
has at least one neighbor in G that belong to the set I;.

Claim 4 Every vertex in I has at least one neighbor in G that belong to the set I,.

Proof Suppose, to the contrary, that there is a vertex w € I that has no neighbor in
G that belongs to the set I;. Let I, be the set of neighbors of w that belong to the set
I, that is, I,, = I N Ng(w). By supposition, every neighbor of w in I belongs to the set
I, noting that 7 is a dominating set of G. Thus, I,, C I; and |I,,| > 1. Since G is a
connected graph of order at least 3, we note that the vertex w has degree at least 2 in
G.The set I', = (I\I,,) U {w} is an ID-set of G, implying by our earlier observations
that i(G) <|I'| = |I| — |I,| + 1 <|I| = i(G). Hence we must have equality through-
out this inequality chain. In particular, this implies that |/,,| = 1 and the set I, is an
i-set of G. However, the set I, contains fewer vertices of degree 1 that does the set /,
contradicting our choice of the set /. O

By Claim 3, every vertex in [ has at least one neighbor in G that belong to the set
I,. By Claim 4, every vertex in [ has at least one neighbor in G that belong to the set
L. Let w be an arbitrary vertex in I and let I,, be the set of neighbors of w in G that
belong to the set /, that is,

I, = I N Ng(w).

Thus, |I,| = [l NN+ |I, N L| > 141 =2. The set I', = (I\I,) U {w} is an ID-

set of G of cardinality |I},| = |I| — |I,| +1<|I| =2+ 1 <|I|, contradicting the

minimality of the set /. This completes the proof of Theorem 4.1. U
Theorem 2.1 now follows as an immediate consequence of Theorem 4.1.
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5 Complete Bipartite Graphs

In this section, we show that the independent domination subdivision number can be
arbitrary large, even for special classes of graphs such as connected bipartite graph.
We also show that the independent domination subdivision number differs
significantly from the domination subdivision number. The following result
determines the independent domination subdivision number of a complete bipartite
graph.

Theorem 5.1 For k>2,

3k—3 if ke {23}

i (Kie) = {3k 2 if k>4

Proof Fork>2,let G = Ky, and let X and Y be the partite sets of G. If k = 2, then
Kix = Cq and sd;(C4) = 3 = 3(k — 1). Hence in what follows, we may assume that
k > 3. We note that i(G) = k and that both X and Y are i-sets of G. We establish first
a lower bound on sd;(G). O

Claim 5 If k = 3, then sdi(G) >3k — 3, while if k>4, then sd;(G) >3k — 2.

Proof Let E’' be a smallest possible set of edges of G that need to be subdivided in
order to increase the independent domination number of G. Thus, E' C E(G) and
sdi(G) = |E'|. We show that |[E'| >3(k — 1). Let G’ be a graph obtained from G by
subdividing the edges in the set E’. By our choice of the set E’, we note that
i(G) > i(G) =k.

If the set X is a dominating set of G, then since X is an independent set it is an
ID-set of G’, implying that i(G’) <|X| = i(G), a contradiction. Hence, the set X is
not a dominating set of G’. Therefore there must exist a vertex y € ¥ not dominated
by the set X in G'. This implies that every edge incident with y in G is subdivided
when constructing G'. Analogously, reversing the roles of X and Y, we have that the
set Y is not a dominating set of G’ and there must exist a vertex x € X such that
every edge incident with x in G is subdivided when constructing G'. Let E, and E,
be the edges of G incident with x and y, respectively. Thus, E, U E, C E’ and every
edge of E,UE, is subdivided when constructing G'. We note that
|ExUE,| =dg(x) +dg(y) —1 =2k — 1. Let X ={x1,x2,.., %} and
Y={y1,y2,--» v}, where x=x; and y=y;. Let Y, =Y\{y;} and Ilet
Xl = X\{xl }

Claim 5.1 If no vertex in X| dominates the set Y, or if no vertex in Yy dominates the
set Xy, then sdi(G) >3k — 2.

Proof Suppose that no vertex in X; dominates the set Y;. This implies that at least
one edge joining each vertex of X; with some vertex of Y is subdivided when
constructing the graph G'. Since the set X; is an independent set, at least |X;| such
edges are subdivided. Further each such edge incident with a vertex of X; and a
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vertex of ¥; does not belong to the set E,UE,. Hence,
|E'|>|ExUE|+[Xi|=Q2k—1)+(|X]-1)=2k—1)+ (k—1) =3k — 2.

Analogously interchanging the roles of X and Y, if no vertex in Y; dominates the set
X\, then |E'| >3k — 2. The desired result follows noting that sd;(G) = |E'|. O

By Claim 5.1, we may assume that there exists a vertex x' € X; that dominates
the set Y, for otherwise sd;(G) > 3k — 2 and the desired result follows. Analogously
interchanging the roles of X and Y, we may assume that there exists a vertex y € ¥,
that dominates the set X;. Renaming vertices if necessary, we may assume that
x' = x, and y = y,. Thus, the only edge incident with x, in G that is subdivided
when constructing G’ is the edge x,y;, and the only edge incident with y, in G that is
subdivided when constructing G’ is the edge x;y,. We note that the vertex x,
dominates the set Y} in G’, and the vertex y, dominates the set X; in G'.

Let X, = X\{x1,x,} and let ¥, = Y\{y1,y2}. Let y;; be the subdivided vertex of
G’ corresponding to the edge x;y; of G for i € [k]. If the set X, dominates the set Y,
in G', then the set X, U {x;,y1,}, for example, is an ID-set of G’ noting that the set
X5 dominates the vertex V2, implying that i(G") <|Xa|+
{x1,y12}] = |X2] + 2 = |X| = i(G), a contradiction. Hence, the set X, does not
dominates the set Y, in G'. Therefore there must exist a vertex y” € ¥, not
dominated by the set X, in G’. This implies that every edge joining y” with a vertex
of X, in G is subdivided when constructing G’. Analogously interchanging the roles
of X and Y, the set ¥, does not dominates the set X, in G’, implying that there must
exist a vertex x” € X, not dominated by the set ¥, in G'. This implies that every
edge joining x” with a vertex of Y, in G is subdivided when constructing G'.
Renaming vertices if necessary, we may assume that x” = x3 and y” = y;.

Let E,, be the set of edges of G joining x3 with vertices of Y», and let E,, be the
set of edges of G joining y3 with vertices of X,. Thus, E,, U E,, C E' and every edge
of E,UE,, is subdivided when constructing G’. We note that
|Ey, UE,,| =(k—2)+ (k—2)—1=2k—5. By our ecarlier observations,
E.UE,UE,, UE, CF, and SO sdi(G) = |[E'| > |[EcUE, UE,, UE,,|
=|E\UE,|+ |E, UE,,| = (2k — 1) + (2k — 5) =4k — 6. Thus if k=3, then
sdi(G) >4k — 6 =3k — 3, while if k>4, then sdj(G)>4k —6>3k —2. This
completes the proof of Claim 5. O

Claim 6 If k = 3, then sdi(G) <3k — 3.

Proof Let X = {x;,xp,x3} and ¥ = {y1,y2,y3}. Let x = x; and y = y;, and let E,
and E, be the set of edges of G incident with x and y, respectively. Let
E* =E,UE,U{x;y,}. Let G* be the graph obtained from G by subdividing the
edges of G that belong to the set E*. Let y; ; be the subdivided vertex of G* resulting
from subdividing the edge x;y; for i € [3], and let x; ; be the subdivided vertex of G*
resulting from subdividing the edge x;y; for i € [3]. We note that x;; =y ;. Let w
be the subdivided vertex of G* resulting from subdividing the edge x,y,. We show
that i(G*) > i(G) = 3. Let I* be an i-set of G*.

In order to dominate the vertex xj;, we have that I* N {xi,y,x1,} # 0. If
x1,1 € I, then in order to dominate the four subdivided vertices incident with x or y

@ Springer


http://mostwiedzy.pl

A\ MOST

700 Graphs and Combinatorics (2021) 37:691-709

different from x; |, we need at least four additional vertices in /*, and so in this case
|I*| >5. If {x,y} CI*, then we need at least two additional vertices in I* to
dominate the four vertices in {x, x3,y2,y3}, and so |[*| > 4. Hence, we may assume
that exactly one of x and y belong to the set I*, for otherwise |I*| >4, as desired. By
symmetry, we may assume that x € /*. In order to dominate the vertex y, at least one
of yi» and y;3 belongs to I*. If y;, € I, then we need at least two additional
vertices in I* to dominate w and y3, while if y; 3 € I*, then we need at least two
additional vertices in I* to dominate y; , and y,. Thus in both cases, |I*| > 4. Hence,
i(G*) = [I'| >4 > i(G), implying that sd;(G) <|E*| = 6 = 3k — 3. O

Claim 7 If k>4, then sdi(G) <3k — 2.

Proof LetX = {x1,x3,...,x} and Y = {y1,¥2,...,yx}- Let x = x1 and y = y1, and
let E, and E, be the set of edges of G incident with x and y, respectively. Let
e; = x;y; for i € [k], and let E' = {e»,...,ex}. Let E* = E, U E, UE'. We note that
|E*| = |[E;UE)| 4+ |E'| = (2k— 1)+ (k—1) =3k —2. Let G* be the graph
obtained from G by subdividing the edges of G that belong to the set E*. Let y;;
be the subdivided vertex of G* resulting from subdividing the edge x;y, for i € [k],
and let x; ; be the subdivided vertex of G* resulting from subdividing the edge xiy;
for i € [k]. We note that x; ; = y1 ;. The set X U {y;} is an ID-set of G* (as is the set
YU{x}), and so i(G)<|X|+1=k+1=i(G)+1. We show that
i(G)=k+1=i(G)+ 1.

Let N, and N, be the set of subdivided vertices adjacent to x and y, respectively,
in G*, and so N, = {xy; | i € [k]} and N, = {y;,; | i € [k]}. Let w; be the subdivided
vertex in G’ corresponding to the edge x;y; of G for i € [k]. In particular, we note
that N, NN, ={wi}, and so w;=x;3=y1;. Let ¥y =Y\{y} and let
X, = X\{x;}. Let I be an i-set of G*. In order to dominate the vertex w;, we
have that I* N {xy,y;, w1} # 0.

Suppose firstly that I* N {x,y} = (. In this case, w; € I*. Since x ¢ [* and y & I*,
in order to dominate the 2(k — 1) subdivided vertices in G* that belong to the set
(Ny UNy)\{w1}, we need at least 2(k — 1) additional vertices in I*, implying that
K| >1+2(k—-1)=2k—1>k+ 1.

Suppose secondly that |I* N {x,y}| = 1, and so w; ¢ I*. By symmetry, we may
assume that x € I*, and so y ¢ I*. In order to dominate k — 1 vertices in N,\{w, } we
note that |I* N {x;,y1,;}| = 1 for each i € [k]\{1}. Further in order to dominate the
vertex y, we note that I* N (N,\{w; }) # 0. Renaming vertices if necessary, we may
assume that the vertex y;, € I*, and so x, ¢ I*. But then at least one additional
vertex is needed in /* in order to dominate the subdivided vertex w, in G*, implying
that |[I*|>1+ (I[N = 1)+ 1 =|Ny|+1=k+ 1.

Suppose thirdly that {x,y} C I*. In this case, we need at least k — 1 additional

vertices in [* to dominate the k— 1 vertices wj,ws,...,wr. Therefore,
[I*|>2+(k—-1)=k+1. In all cases, we have shown that
i(G*) =|I*| 2k + 1 > i(G), implying that sd;(G) < |E*| = 3k — 2. O

The desired result of Theorem 5.1 now follows immediately from Claims 5, 6,
and 7 . O
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Fig. 1 The graph G4

F = K4
V2 V3

Theorem 2.3 is a special case of Theorem 5.1 when k > 4. By Theorem 2.3, we
remark that the result of Theorem 3.1 for the domination subdivision number does
not hold for the independent domination subdivision number. Thus, the independent
domination subdivision number differs significantly from the domination subdivi-
sion number.

6 Block Graphs

We consider next the class of block graphs, where we recall that a block graph is a
graph in which every block is a complete graph. In this section we prove
Theorem 2.5. Recall its statement.

Theorem 2.5. There exist block graphs G such that sd;(G) = k for any arbitrary
(fixed) positive integer k.

Proof Fork = 1, we take G = P, where n = 0 (mod 3). For k = 2, we take G = P,
where n = 2 (mod 3), while for k = 3, we take G = P, where n = 1 (mod 3). By
Observation 3.5, we note that sd;(G) = k in each of these cases. Hence, we may
assume that k>4, for otherwise the result is immediate. For k>4, let G; be
obtained from a complete graph F = K; on k vertices with vertex set V(F) =
{v1,v2,..., v} by attaching k pendant edges to each vertex of the complete graph F.
For example, when k = 4 the graph Gy is illustrated in Fig. 1, where the darkened
vertices form an i-set of G4. We note that i(Gy) = 1 + (k — 1)k = k* — k + 1 since
every i-set of Gy contains one vertex of F and all (k — 1)k leaves of Gy not adjacent
to the selected vertex of F.

We show firstly that sd;(G) > k. Let E' C E(Gy) be an arbitrary subset of k — 1
edges. Let G’ be the graph obtained from G by subdividing the k — 1 edges in the set
E.

Suppose firstly that E’ contains at least one edge of the complete graph F.
Renaming vertices if necessary, we may assume that viv, € E’. Let v be the
subdivided vertex in G’ resulting from subdividing the edge v;v,. Let W be the set of
k — 2 subdivided vertices of G’ different from v. Let W, be the set of subdivided
vertices of G’ resulting from subdividing pendant edges of G incident with v; or v,
(possibly, Wi = (). Let W, be the set of vertices in W\ W, that have a leaf neighbor
in G', and let W5 be the set of vertices in W\ (W, U W) that are adjacent to neither
vy nor v, in G'. We note that |W;| 4+ |W,| 4+ |W;| <|W]|. Let L; be the set of leaves of
G’ incident with a vertex in Wy, and let L, be the set of leaves in G’ adjacent to a
vertex in V(F)\{vi,v2}. We note that |L,| = |W,|, |Lz| = (k — 2)k — |W>|. We now
consider the set
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D= {V],Vz} UL] UL2 U WzU W3.
The set D is an ID-set of G, and so
i(G") <|D| =2 + |Li| + |La| + [Wa| + W3]
=2+ [Wi| + ((k = 2)k — [Wa|) + [Wy| + [W3]
=2+ [Wi|+ (k — 2)k + |W3]
<k —2k+2+|W|
=k —2k+2+ (k-2)

=i —k
<k*—k+1
= i(Gy).

This, if E’ contains at least one edge of the complete graph F, then i(G') <i(Gy), a
contradiction. Hence, E’ contains no edge from the complete graph F. Thus, every
edge of E’ is a pendant edge of G. Since |E’| <k, at least one vertex of F is such that
none of its incident pendant edges belong to the set E’. Renaming vertices if nec-
essary, we may assume that v is such a vertex of F. In this case, we let L consist of
all leaves of G that are not adjacent to vi. The set LU {v;} is an ID-set of G/,
implying that i(G')<|L|+ 1= (k— 1)k + 1 =k* —k+ 1 =i(Gy). Thus, if E' C
E(Gy) is an arbitrary subset of k — 1 edges, then we have shown that removing the
set of edges E' from G does not increase the independent domination number. This
proves that sdi(G) >k, as desired.

To prove that sd;(G) <k, let u; be an arbitrary leaf neighbor of the vertex v; in G
for all i € [k]. Let e; = w;v; for i € [k], and let E* = {e1, ea,...,ex}. Let G* be the
graph obtained from G by subdividing the k edges that belong to the set E*. Let I* be
an arbitrary i-set of G*. By the minimality of /*, the set I* contains exactly one
vertex from the complete graph. Renaming vertices if necessary, we may assume
that v; € I*, implying that u; ¢ I*. In order to dominate the leaves of G* that are not
adjacent to v in G* and are different from u, the set I* contains at least (k — 1)k
additional vertices. Thus, i(G*) = |[I*| >2 + (k — 1)k = k* — k + 2 > i(G;). Hence,
sdi(Gy) < |E*| = k. As observed earlier, sd;(G) > k. Consequently, sd;(G) = k. O

Recall that by Theorem 3.4, if G is a block graph, then 1 <sd,(G) < 3. However
by Theorem 2.5, we can construct a block graph G such that sd;(G) is arbitrary
large. This shows once again that the independent domination subdivision number
differs significantly from the domination subdivision number.

7 Trees
In this section, we present a proof of Theorem 2.6. We remark that our
characterization given in Theorem 2.6 is along similar lines to that presented by

Benecke and Mynhardt [2, Theorem 2] for the domination subdivision number. (In
[2, Theorem 2], however, we note that the set A'(T) is defined with respect to the

@ Springer


http://mostwiedzy.pl

A\ MOST

Graphs and Combinatorics (2021) 37:691-709 703

domination number; that is, N(T) ={v € V(T) | vis in no y-set of T}.) We
also remark that our proof of the necessity part of the proof of Theorem 2.6 is along
similar lines to the proof presented in [2, Theorem 2].
We are now in a position to present a proof of Theorem 2.6. Recall its statement.
Theorem 2.6. For a tree T of order at least3, sdi(T) = lif and only if T has at
least one of the following two properties.

Pi: A leaf of T belongs to the set (7).
P, An edge of T has both its ends in NV (T).

Proof We first prove the sufficiency. We proceed with the following two claims.
Claim 8 [f the tree T has property Py, then sdi(T) = 1.

Proof Suppose that the tree T has property P;. Let u be a leaf of T such that
u € N(T), and let v be its neighbor. Consider the tree 7’ obtained from T by
subdividing the edge uv and let w be the resulting subdivided vertex adjacent to u
and v in T'. Let I’ be an i-set of 7. We note that either u € I’ or w € I'. Suppose
firstly that w € I'. In this case, the set / = I'\{w}) U {u} is an ID-set of T. Since
u € N(T), the set I is not an i-set of 7T, implying that i(T") = |I'| >i(T) + 1.
Suppose secondly that u € I'. If v & I, then we can replace u in I’ with the vertex w,
and obtain i(7") > i(T) + 1, as in the previous case. If v € I, then the set I'\{u} is
an ID-set of 7, implying that i(T) < |I'| — 1 = i(T") — 1. Thus in all cases we have
i(T") > i(T). Therefore, subdividing only one edge of 7, namely the edge uv,
increases the independent domination number. Thus, sd;(T) = 1. O

Claim 9 [f the tree T has property Py, then sd;(T) = 1.

Proof Suppose that the tree T has property P,. Let ¢ = uv be an edge of T such that
both u € N(T) and v € N(T). We note that in this case neither u nor v is a leaf in 7,
and so dr(u) >2 and dr(v) >2. Let T, and T, be the components of the tree T — uv
that contain the vertex u and v, respectively. Let I be an i-set of T, and let [,, and I,
be the restriction of the set I to the trees T, and T,, and so I, =INV(T,) and
I, =INV(T,). By our earlier observations, u & I, and v ¢ I,. If I, is not an i-set of
T,, then |I,| > i(T,). In this case, if I is an i-set of 7}, then the set I U ], is an ID-
set of T, and so i(T) <|I}| + |I,| <|L| + |I,| = |I| = i(T), a contradiction. Hence, I,
is an i-set of T, and so i(T,) = |I,|. Analogously, i(T,) = |I,|. If there is an i-set of
T, that contains the vertex u, then such a set can be extended to an i-set of T by
adding to it the set I,, contradicting the supposition that u € A(T). Hence,
u € N(T,). Analogously, v € N(T,).

We now consider the tree T’ obtained from 7T by subdividing the edge uv and let
w be the resulting subdivided vertex adjacent to u and v in T”. Let I be an i-set of 7.
In order to dominate the vertex w, we note that I’ N {u,v,w} # (0. Let I/ and I/ be
the restriction of the set I’ to the subtrees T, and T, of 7', and so I, = I' N V(T,,) and
I =rnv(T,).

Claim 9.1 Ifw &I, then sdi(T) = 1.

@ Springer


http://mostwiedzy.pl

A\ MOST

704 Graphs and Combinatorics (2021) 37:691-709

Proof Suppose that w ¢ I'. We show that in this case, we must have
| N {u,v}| = 1. Suppose, to the contrary, that {u,v} C I'. We note that I/, and [,
are ID-sets of T, and T, respectively. By supposition, u € I/, and v € I. By our
earlier observations, u € N (7,), implying that the set [/, is not an i-set of 7,,, and so
|Il| >i(T,) + 1. Analogously since v € N(T,), we have |I/|>i(T,)+ 1. Thus,
(T =1l''=|I|+ || >i(T,) + i(T,) +2 =i(T) + 2. However the set [, U1, U
{w} is an ID-set of T, implying that i(T') <|L,| + |L,|+ 1=1i(T,) +i(T,)+
1 =i(T) + 1. Thus we have shown that i(T) + 2 <i(T") <i(T) + 1, a contradiction.

Hence, |I' N {u,v}| =1, and so exactly one of u and v belong to the set I'.
Renaming u and v if necessary, we may assume that u € I’ (and therefore that
v & I'). In this case, the set I is an ID-set of T. However since u € N (T), the set I’ is
not an i-set of T, implying that i(T’) = |I'| > i(T). Therefore, subdividing only one
edge of T, namely the edge e = uv, increases the independent domination number.
Thus, sd;(T) = 1. O

By Claim 9.1, we may assume that w € I', for otherwise the desired result,
namely sd;(7) = 1, follows. Thus, u & I’ and v &€ I’ since the set I’ is an independent
set. If the set I/, is not an ID-set of T, then this implies that /, dominates all vertices
of T, except for the vertex u. In this case, the set I = (I'\{w}) U {u} is an ID-set of
T. However since u € N(T), the set I is not an i-set of 7, implying that
i(T") = |I'| = |I| > i(T). Hence we may assume that the set [/, is an ID-set of 7}, and
analogously  that the set [, is an ID-set of 7,. Thus,
(T)y=1I'\=|L|+ ||+ 1>iT,) +i(T,) +1=i(T) + 1. Hence if w € I, then
i(T') > i(T). This completes the proof of Claim 9. O

The proof of the sufficiency follows from Claims 8 and 9 . To prove the
necessity, suppose that sd;(7) = 1. Thus by subdividing only one edge of T, say the
edge uv, we increase the independent domination number. Let 7’ be the tree
obtained from T by subdividing the edge uv and let w be the resulting subdivided
vertex adjacent to u and v in T". Let I’ be an i-set of T’. By supposition, i(7") > i(T).

Suppose that either u or v, say u, is a leaf of T. If the vertex u belongs to some i-
set I of T, then the set (I\{u})U{w} is an ID-set of 7', implying that
i(T")<|I| = i(T), a contradiction. Hence, u € N'(T). Therefore we may assume
that neither u nor v is a leaf of 7, for otherwise the tree T has property P; as desired.
Thus, dr(u)>2 and dr(v)>2. If both u € N(T) and v € N(T), then T has
property P, as desired. Hence we may further assume that at least one of u and v,
say u, belongs to some i-set of 7.

Let 7 be an i-set of T that contains the vertex u. Let Ny(v)\{u} = {vi,..., v}
where k =dy(v) — 1 > 1. Let T; be the component of T — vv; that contains the
vertex v; for i € [k]. Let I; be the restriction of I to the tree T; for i € [k]; that is,
I; = 1IN V(T;). Further, let E, be the set of k edges incident with v different from the
edge uv, and let T, be the component of T — E, that contains the vertex v. Finally,
let 1, be the restriction of the set [ to the tree T, and so I, = I N V(T,). We note that
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k
I=L,u || Jn] and i(T) =1l =L+ |l
ic[k] i=1

We proceed further with the following series of claims.
Claim 10 The vertex u is the only neighbor of v that belongs to the set I.

Proof Suppose, to the contrary, that the vertex v; € I for at least one i € [k]. This
implies that the set I is also an ID-set in the tree T’, and so i(T")<i(T), a
contradiction.

By Claim 10, the vertex u is the only neighbor of v that belongs to the set /; that
is, v € epny(u,I).

Claim 11 The following hold for all i € [k].

(@) The set I; is an i-set of T;.
(b) The vertex v; does not belong to any i-set of T; for all i € [k]

Proof Since v ¢ I, we note that the set [; is an ID-set of T;. If [; is not an i-set of T;
for some i € [k], then replacing the set [; in I with an i-set of T; produces an
independent set of T of cardinality less than /I, a contradiction. Hence, /; is an i-set
of T; for all i € [k]. This proves part (a). To prove part (b), suppose, to the contrary,
that there is an i-set of T; that contains the vertex v; for some i € [k]. Such an i-set
can be extended to an i-set of T by adding to it the set /, and the i-sets I; of T; for
Jj € [k]\{i}. However as observed in the proof of Claim 10, such an i-set of T'is also
an ID-set of T’, and so i(7") <i(T), a contradiction. Hence, vertex v; does not
belong to any i-set of 7; for all i € [k]; that is, v; € N(T;) for all i € [k]. O

Claim 12 v e N(T,) and v € N(T).

Proof Suppose that there is an i-set, say D,, of T, that contains the vertex v. In
particular, we note that i(7,) = |I,| = |D,|. In this case, the set (I\7,) U (D,\{v}) U
{w} is an ID-set of T’, implying that i(T") < |I| — |I,| + |D,| — 1+ 1= |I| =i(T), a
contradiction. Hence, the vertex v does not belong to any i-set of T,; that is,
veN(T,).

Suppose next that there is an i-set, say S, of T that contains the vertex v. Let S, be
the restriction of S to the tree 7, and so S, = SN V(T,). Since v € S,, we note that
the set S, is an ID-set of T,. However since v € N/ (T,), the set S, is not an i-set of
T,, implying that |S,| >i(T,) + 1. Let S; be the restriction of S to the tree 7; for
i € [k]; that is, S; = SN V(T;). If |S;| > i(T;) for all i € [k], then

k k
i(T) = IS = 1S + DI 2 i(T) + 1+ 3 _ilT) = i(T) + 1,

a contradiction. Hence, |S;| <i(T;) for at least one i € [k]. For such an i € [k], the set
S; is not an ID-set of T;. However, S; is an ID-set of 7; — v;, implying that S; U {v;}
is an ID-set of 7; of cardinality |S;| + 1 <i(T;). Consequently, |S;| = i(T;) — 1 and
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the set S;U{v;} is an i-set of 7; that contains the vertex v;, contradicting
Claim 11(b). Hence, there is no i-set of T that contains the vertex v; that is,

veN(T). O

By Claims 11 and 12, for every edge vv; of T where i € [k], we have v € N'(T)
and v; € N(T); that is, the edge vv; of T has both its ends in N(T) for i € [k].
Hence, the tree T has property P,. This completes the proof of the necessity. [l

As a consequence of Theorem 2.6 we present a simple proof that the independent
domination subdivision number of a tree is at most 3. For this purpose, if v is a
support vertex in a tree T, we denote by L, (T) the set of leaf neighbors of v in 7. If
the tree T is clear from context, we simply write L, rather that L,(T).

Theorem 7.1 If T is a tree of order n>3, then 1 <sd;(T) <3.

Proof Let T be a tree of order n > 3. If sd;(T) = 1, then the desired result follows.
Hence we may assume that sd;(7) > 2. Thus by Theorem 2.6, the tree T has neither
property Py nor P,. In particular, for each leaf v of T there exists an i-set, D, of T
such that v € D,, and for each edge uv of T there exists an i-set, D,,, of T such that
[{u,v} N D,,| = 1. Since T is a tree of order n >3 satisfying sd;(7) > 1, we note
that 7 not a star, and so diam(7) > 3.

Suppose that diam(7) = 3, and so T is a double star S(¢, ¢,) for some integers
by >y > 1. If £, > ¢y, then T has property P;, a contradiction. Hence, ¢, = ¢;. If
£=1, then T = P4 and sdi(T) = 3. If £>2, then subdividing two non-adjacent
edges (that have no vertex in common) results in a tree 7' with
i(T)=4+2> ¢ +1=iT), implying that sd;(7) = 2. Hence we may assume
that diam(T) > 4, for otherwise 2 < sd;(7T) <3 and the desired result holds.

Among all longest paths in 7, let P:viv,.. Viiam(T)+1 be chosen so that the
degree of v; is as large as possible. We now root the tree T at the vertex vgiam(r)+1-
We note that every child of v; in the rooted tree T is a leaf; that is, L,, = C(v,). Let
A and B be the set of children and grandchildren, respectively, of the vertex v3 in the
rooted tree 7. We note that each vertex of B is a leaf of T and is at distance 2 from
v3 in T. Further, every descendant of v3 belongs to the set A U B. We proceed further
with the following series of claims.

Claim 13 [f dy(v;) >3, then the vertex vs is a support vertex.

Proof Let dr(v,) > 3 and suppose, to the contrary, that the vertex v3 is not a support
vertex of 7. Thus each child of v has at least one leaf neighbor. Since the child v,
of v3 has at least two leaf neighbors, we note therefore that |B| > |A|+ 1. As
observed earlier, every leaf belongs to some i-set of 7. Let I be an i-set of T that
contains the leaf v;. We note that every child of v; is a leaf, and so, L,, = C(v,).
Since v, ¢ I, we note that L,, C 1. If v3 ¢ I, then (I\L,,) U {v,} is an ID-set of T of
smaller cardinality than |I| =i(T), a contradiction. Hence, v3 € I. This in turn
implies that BCI. If vy has at least two neighbors in [/, then let
I' = (I\(BU{vs}))UA. If v3 is the only neighbor of vs in I, then let
"= (I\(BU{vs})U(AU{vs}). In both cases, I* is an ID-set of T, and so
i(T) = |I"| <|I| — |B| + |A| < |I| = i(T), a contradiction. O
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Claim 14 If dr(vy) > 3, then sdi(T) = 2.

Proof Let dr(v,)>3. By Claim 14, the vertex v is a support vertex. Let y be an
arbitrary leaf neighbor of v3, and let T’ be the tree obtained from T by subdividing
the edges viv, and v3y with the new subdivided vertices u; and u,, respectively. Let
I’ be an i-set of T'. Suppose firstly that v3 € I'. In this case, y e I', v € I' and
[{u1,vi} NI'| = 1. If uy € I', then we can replace u; with v; in I’. Hence we can
choose I’ so that v; € I'. We now let I* = I'\{y}. Suppose secondly that v3 ¢ I’. In
this case, |{up,y}NI'|=1 and |D[v,JNI'|=2, where note that
Dv;] = L,,(T) U {v,}. Hence we can choose I’ so that y € I’ and {v;,vo} C I
We now let I* = I'\{v; }. In both cases, |I*| = |I'| — 1 and the set I* is an ID-set of
T, and so i(T) <|I*|<|I'| = i(T"), implying that sd;(T) = 2. O

Claim 15 If dr(v2) = 2 and v is a support vertex, then sd;(T) < 3.

Proof Let dr(v;) = 2 and suppose that v; is a support vertex. Let y be an arbitrary
leaf neighbor of v3, and let 7’ be the tree obtained from 7 by subdividing the edges
viVa, v2v3 and v3y with the new subdivided vertices u;, u and us, respectively. Let
I' be an i-set of T'. Suppose firstly v3 € I'. In this case, {u;,y} C I’ and we let
I = (I'\{u1,y}) U{v1}. Suppose secondly that v3¢&I’. In this case,
[{ur,vi}nr'| =1, {ug,va} NI'| =1 and |{uz,y} NI'| = 1. Hence we can choose
the set I’ so that {uy,u,uz} C I', and we let I* = (I'\{u1,uz,u3}) U {v2,y}. In both
cases, [I*] = |I'| — 1 and the set I* is an ID-set of T, and so i(T) < |I*| <|I'| = i(T"),
implying that sd;(7) < 3. O

Claim 16 If dr(v2) = 2 and vs is not a support vertex, then sdi(T) <3.

Proof Let dr(v;) = 2 and suppose that v3 is not a support vertex. By our choice of
the vertex v,, we note that each child of v; is therefore a support vertex of degree 2.
Let T be the tree obtained from 7T by subdividing the edges v{v,, vov3 and v3v4 with
the new subdivided vertices uy, u, and us, respectively. Let I’ be an i-set of 7.
Suppose firstly vs €I'. In this case, w3 &I, |[{u,vi}NI'|=1 and
[{uz,v2,v3} NI'| = 1. Hence we can choose the set I’ so that {u,u} C I, and
we let I* = (I'\{u1,u2}) U {v2}. Suppose secondly v4 ¢ I’ and v3 € I'. In this case,
{uy,v3} C I' and we let I* = (I'\{uy,v3}) U {v2}. Suppose thirdly u3 € I'. In this
case, [{ur,vi}NI'| =1 and [{uz,v2} NI'| = 1. Hence we can choose the set I’ so
that {u;,u,} C I'. Further we can choose I’ so that if dr(v3) >3, then the set I’
contains all grandchildren of v; different from v;. We now let
I' = (IMN\{u1,uz,uz}) U {vy,v3}. In all three cases, |I*| = |I'| — 1 and the set I* is

an ID-set of T, and so i(T) <|I*|<|I'| = i(T"), implying that sd;(7T) < 3. O
The proof of Theorem 7.1 follows from Claims 14, 15 and 16 . O
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8 Open Problems

We close with some open problems that we have yet to settle. By Theorem 2.1, if G
is a connected graph of order at least 3, then sd;(G) <A(G)-i(G). A natural
question is to find a general upper bound on the independent domination subdivision
number of a connected graph G in terms of its maximum degree A(G).

Problem 1 Does there exists a constant C such that every connected graph G
satisfies sd;(G) < C - A(G)? If so, determine the smallest such constant C.

By Corollary 2.4 we know that the constant C in Problem 1, if it exists, satisfies
C >3. By Theorem 7.1, if T is a tree of order n>3, then 1<sd;(7) <3, and in
Theorem 2.6 the trees T satisfying sd;(7) = 1 are characterized. It remains an open
problem to characterize the trees T satisfying sd;(7) =2 or sdi(T) = 3. We state
this problem formally as follows.

By Theorem 2.5, the independent domination subdivision number of a block
graph can be arbitrary large. However as remarked earlier, the independent
domination subdivision number of a tree is at most 3.

Problem 2 Determine classes of graphs different from the class of trees for which
the independent domination subdivision number is bounded above by a constant.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http:/
creativecommons.org/licenses/by/4.0/.

References

1. Aram, H., Sheikholeslami, S.M., Favaron, O.: Domination subdivision numbers of trees. Discret.
Math. 309(4), 622-628 (2009)

2. Benecke, S., Mynhardt, C.M.: Trees with domination subdivision number one. Aust. J. Combin. 42,
201-209 (2008)

3. Dettlaff, M.: Liczba Podzialowa dla Dominowania w Grafach. Gdansk University of Technology,
Gdansk (2015)

4. Favaron, O., Haynes, T.W., Hedetniemi, S.T.: Domination subdivision numbers in graphs. Util.
Math. 66, 195-209 (2004)

5. Favaron, O., Karami, H., Sheikholeslami, S.M.: Disproof of a conjecture on the subdivision domi-
nation number of a graph. Graphs Combin. 24, 309-312 (2008)

6. Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and recent results. Discret.
Math. 313, 839-854 (2013)

7. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T.: Domination and independence subdivision
numbers of graphs. Discuss. Math. Graph Theory 20(2), 271-280 (2000)

8. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Jacobs, D.P., Knisely, J., van der Merwe, L.C.:
Domination subdivision numbers. Discuss. Math. Graph Theory 21(2), 239-253 (2001)

9. Henning, M.A., Yeo, A.: Total Domination in Graphs (Springer Monographs in Mathematics) 2013.
ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

AN\ MOST

Graphs and Combinatorics (2021) 37:691-709 709

10. Sharada, B.: Independent domination critical and stable graphs upon edge subdivision. J. Comput.
Math. Sci. 6(6), 298-304 (2015)

11. Sharada, B., Soner, N.D.: A characterization of trees based on independent domination subdivision
number. Proc. Natl. Acad. Sci., India, Sect. A 80(4), 289-294 (2010)

12. Sharada, B., Soner, N.D.: On the domination subdivision numbers of trees. Aus. J. Combin. 46,
233-239 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://mostwiedzy.pl

	Independent Domination Subdivision in Graphs
	Abstract
	Introduction
	Notation

	Main Result
	Known Results
	A General Upper Bound
	Complete Bipartite Graphs
	Block Graphs
	Trees
	Open Problems
	Open Access
	References




