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Narutowicza 11/12, 80233 Gdansk, Poland

* Correspondence: jcieslin@pg.edu.pl

Abstract: The results of free convection heat transfer investigation from a horizontal, uniformly
heated tube immersed in a nanofluid are presented. Experiments were performed with five base
fluids, i.e., ethylene glycol (EG), distilled water (W) and the mixtures of EG and water with the ratios
of 60/40, 50/50, 40/60 by volume, so the Rayleigh (Ra) number range was 3 × 104 ≤ Ra ≤ 1.3 × 106

and the Prandtl (Pr) number varied from 4.4 to 176. Alumina (Al2O3) nanoparticles were tested
at the mass concentrations of 0.01, 0.1 and 1%. Enhancement as well as deterioration of heat
transfer performance compared to the base fluids were detected depending on the composition of
the nanofluid. Based on the experimental results obtained, a correlation equation that describes the
dependence of the average Nusselt (Nu) number on the Ra number, Pr number and concentration of
nanoparticles is proposed.

Keywords: free convection; horizontal cylinder; nanofluids; correlation equation

1. Introduction

Nanofluids have come to be seen as a new generation of coolants, both in single-phase
and two-phase systems, e.g., [1–4]. Furthermore, nanofluids or nanocomposites may be
used as a medium in thermal energy storage systems as sensible heat storage [5] and phase
change materials [6]. In sensible heat storage systems, the dominating mechanism of the
heat transfer is free convection. Contrary to forced convection [7,8], not many studies
dealing with the free convection of nanofluids exist today. Moreover, the greater part of
them are devoted to the free convection of nanofluids in enclosures of different, sometimes
very sophisticated, geometries and thermal conditions. A comprehensive review of free
convection of nanofluids in cavities is presented in [9].

Relatively few experimental studies have been carried out on free convection around
bodies immersed in nanofluids. Cieśliński and Krygier [10] experimentally established
the deterioration of heat transfer during the free convection of water–Al2O3 nanofluid
with 0.01% nanoparticle concentration by weight from a horizontal, electrically heated
tube covered with a metallic porous coating. Kiran and Babu [11] experimentally studied
free convection heat transfer using transformer oil–TiO2 nanofluids with various volume
concentrations from 0.05 to 0.2%, as the tested element served as an electrically heated
vertical cylinder. It was observed that the addition of nanoparticles up to 0.15% improves
heat transfer. For higher concentrations of TiO2 nanoparticles, degradation of heat transfer
was observed. The unique, closely related theoretical study to the present paper is the work
by Habibi et al. [12]. Habibi et al. analytically solved the problem of free convection from
a horizontal cylinder immersed in an unbounded water–Al2O3 nanofluid. Nanoparticle
concentration by volume ranged from 0 to 10%. It was established that the decisive
parameter influencing fluid motion and heat transfer around the horizontal cylinder is
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viscosity. Following Polidori et al. [13], two formulas were tested: Brinkman model [14]
and the Maïga et al. correlation [15]. Results of the calculations show that application of the
Brinkman model of nanofluid viscosity leads to a moderate increase in the Nu number with
increasing nanoparticle concentration (up to 20%). Contradictory results were obtained
using the Maïga et al. correlation. In this case, a distinct decrease in Nu number with
nanoparticle increase was detected. Building on the results of the parametric study, two
correlations (based on the Brinkman model and Maïga et al. correlation nanofluid viscosity
formulas) are proposed for the average Nu number of the alumina–water nanofluid in
terms of Ra number and nanoparticle concentration.

As seen in the presented literature review, there is a lack of experimental study dealing
with free convection heat transfer from a horizontal cylinder immersed in an unbounded
nanofluid. Geometry of the experimental container was designed such that the generated
motion of the fluid was not significantly affected by the free surface of the liquid, side walls
and bottom surface. In order to avoid influence of axial conduction on heat transferred
from the cylinder, the length-to-diameter ratio was made to be large. In the present work,
the results of free convection heat transfer performance from a uniformly heated horizontal
tube are discussed. Base fluids are ethylene glycol (EG), water (W) and mixtures of EG
and water at the ratios 60/40, 50/50 and 40/60 by volume. Alumina (Al2O3) nanoparticles
were tested at the mass concentrations of 0.01, 0.1 and 1%.

2. Experimental Setup
2.1. Experimental Apparatus

The main parts of the experimental stand were the test container, horizontal tube,
power system, DAQ-module and LabVIEW-based data measuring and data processing
system. The test container made of PMMA had inner dimensions of 160 × 160 × 500 mm—
Figure 1.
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Figure 1. Scheme of the experimental setup.

The container is thermally insulated with Styrodur. In order to fulfil the condition of
free convection in an unbounded nanofluid, the geometry of the tested thermal system
was carefully designed. The confinement ratios are as follows: HT/D = 20.5, HB/D = 13.5
and SW/D = 7.5. The details of the thermal system are discussed in [16]. Twelve resistance
thermometers of type Pt100 and tolerance class B were used to measure liquid temperature.
The resistance thermometers were produced by TC Direct (Mönchengladbach, Germany).
A stainless steel tube with OD of 10 and 0.6 mm wall thickness was used as a test heater.
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With L = 15 D, the tube was long enough to neglect influence of side walls on heat trans-
fer [17–19]. The tube was heated by Joule heat. Two resistance thermometers Pt100 were
used to measure inside temperature of the heating tube. Power supply was adjusted by
a panel of two auto-transformers—Figure 1. Data recording and management was done
using a Texas Instruments DAQ-module and LabVIEW 2015 (National Instruments, Austin,
TX, USA). Experiments were conducted under steady state conditions. Steady state was
assumed to have been reached when the temperature difference between the cylinder’s
wall and liquid was less than 0.1 K [20]. A successive steady state was established by in-
creasing the current to the heating section. A new steady state was reached after 15–20 min.
Maximum electrical power supplied to the tube was 120 W (q ≈ 20 kW/m2).

2.2. Nanofluid Preparation

The tested fluids were ethylene glycol, distilled water and mixtures of ethylene glycol-
distilled water (60/40), (50/50) and (40/60) by volume. For the nanoparticles, alumina
(Al2O3) was used. The nanoparticles had a spherical form and their diameter was in a range
from 5 to 250 nm, while their mean diameter was 47 nm according to the manufacturer
Sigma Aldrich Ltd. (Munich, Germany). The nanofluids were tested at nanoparticle mass
concentrations of 0.01, 0.1 and 1%. The nanofluids were prepared with the two-step method.
The first step was the preparation of the concentrated nanofluid in laboratory glasses of
250 mL. Then, the nanoparticles were suspended in a base fluid and put into an ultrasonic
bath for 1 h. The ultrasonic washer Elmasonic S180H from Elma Schmidbauer GmbH
(Singen, Germany) worked at a frequency of 37 Hz and effective power of 200 W. Next, the
concentrated nanofluids were mixed with the rest of the base fluid until the volume of 10 L
was prepared. Finally, the fluid was homogenized with a high-speed homogenizer X1740
from CAT GmbH (Tübingen, Germany) with a speed of rotation of 12,000 rpm for 1 h. As
an example, Figure 2 shows photographs of the tested ethylene glycol-based nanofluids.
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2.3. Nanofluid Properties

The literature results show a key role of the effective thermal conductivity and the
effective viscosity of nanofluids in free convection heat transfer. Therefore, in order to
avoid ambiguity in the interpretation of the present results, the thermal conductivity and
the viscosity of the tested nanofluids were determined experimentally [21]. The developed
present correlations for the thermal conductivity and the effective viscosity of the tested
nanofluids are listed in Tables 1 and 2, respectively.
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Table 1. Correlations for the thermal conductivity of the tested nanofluids.

Liquid Correlation Equation Number

Water kn f = kb f (1 + 0.1046ϕm
0.2388 (100/dp

)3.14·10−3
) Equation (1)

EG kn f = kb f (1 + 0.0193
(

kp
kb f

)6.15·10−3

ϕm
0.0738 (100/dp

)9.76·10−5
) Equation (2)

Water/EG (60:40) kn f = kb f = 1.428·10−3T Equation (3)
Water/EG (50:50) kn f = kb f = 1.334·10−3T Equation (4)
Water/EG (40:60) kn f = kb f = 1.166·10−3T Equation (5)

Table 2. Correlations for the dynamic viscosity of the tested nanofluids.

Liquid Correlation Equation Number

Water µn f = 664.06ϕm
0.0151t0.0236µ1.939

b f Equation (6)
EG µn f = 1.11ϕm

0.0061µ1.017
b f Equation (7)

Water/EG (60:40) µn f = 1.13ϕm
0.0106µ1.003

b f Equation (8)
Water/EG (50:50) µn f = 1.14µ0.9906

b f Equation (9)
Water/EG (40:60) µn f = 2.83ϕm

0.0094t0.279µ1.3237
b f Equation (10)

Density and specific heat of the tested nanofluids were determined by use of the
Equations (11) and (12) proposed by Pak and Cho [22], respectively

ρn f = ϕvρp + (1 − ϕv)ρb f (11)

cp,n f = ϕvcp,p + (1 − ϕv)cp,b f (12)

The thermal expansion coefficient was determined from the equation proposed by
Khanafer et al. [23]

βn f =
(1 − ϕv)βb f ρb f + ϕvρpβp

ρn f
(13)

Thermophysical properties of the base fluids were obtained from the data provided in
the ASHRAE Handbook [24]. The appropriate correlations are shown in Table 3.

Table 3. Correlations for the thermophysical properties of the base fluids.

Parameter Water EG

Thermal conductivity [W/(mK)] kb f = 1.974·10−3·T kb f = 8.49·10−4·T
Viscosity [Pa s] µb f = 1.435·10−5·e 1226.8

T µb f = 1.6·10−7·e 3440
T

Density [kg/m3] ρb f = 1107.6 − 0.3708·T ρb f = 1331.2 − 0.732·T
Specific heat [J/(kgK)] cpb f = 5603 − 9.2129·T + 0.0149·T2 cpb f = 1062.3 + 4.507·T

Thermal expansion coefficient [1/K] βb f =
(

9.3158·10−3t − 4.7211
t2

)
·10−3 βb f = 0.00065

The properties of alumina (Al2O3) nanoparticles are shown in Table 4.

Table 4. Properties of Al2O3 nanoparticles.

Thermal
Conductivity [25] kp

[W/(mK)]

Density [26] ρp
[kg/m3]

Specific Heat [26] cpp
[J/(kg K)]

Thermal Expansion
Coefficient [27] βp

[1/K]

35 3600 765 8.46 × 10−6

2.4. Stability of the Tested Nanofluids

Stability of the nanofluids is a critical factor in the application of nanofluids that can
alter not only the thermo-physical properties of nanofluids but also the thermal character-
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istics of the heating surface [28–30]. For this study, the stability of the tested nanofluids
was estimated by the turbidity measurement using WTW device Turb 430 IR from Xylem—
WTW (Weilheim in Oberbayern, Bavaria, Germany). The measurement principle of this
device is based on the spectrophotometry method. The nephelometric turbidity units
(NTUs) were recorded and found to be slightly changed over the period of performed
testing—a period exceeding 14 days. A single NTU value of the turbidity was calculated as
an average of three measurements. Figure 3 shows the turbidity of EG-based nanofluids as
a function of time. For these nanofluids, the turbidity was measured for a period of 11 to
13 days. It was found that the stability of the tested EG-based nanofluids is satisfactory for
the tested period. After 13 days, the maximum turbidity change of 26% was observed for
the nanoparticle concentration of 0.01%.
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The change in water-based nanofluids’ turbidity is substantial for lower nanoparticle
concentrations (Figure 4). The turbidity decreased during the first 3 days by 73 and 72% for
nanoparticle mass concentrations of 0.1 and 0.01%, respectively, a decrease in the turbidity
results from the sedimentation process. Surprisingly, the turbidity of the nanofluid with
1% nanoparticle concentration is almost constant over the period of 7 days.

2.5. Data Reduction and Measurement Uncertainty

The algorithm of the data reduction as well as the procedure of measurement un-
certainty estimation were the same as in the case presented in [16]. According to the
calculations shown in [16], the maximum errors for the heat flux and heat transfer coeffi-
cient were estimated to be ±4.2 and ±5.5%, respectively.
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3. Results
3.1. Validation of the Research Methods

A number of experimental tests using base fluids, i.e., water, EG and water/EG mix-
tures, were conducted in order to validate the present experimental setup and procedure.
The present experimental results are compared with the recognized Churchill and Chu
correlation recommended for uniformly heated, isolated horizontal cylinders immersed in
unbounded fluid [31].

Nu =

0.6 +
0.387(Raq/Nu)1/6[

1 +
( 0.559

Pr
) 9

16

] 8
27


2

(14)

As an example, Figure 5 shows comparison of the predictions from the present devel-
oped empirical correlation for water [16]

Nu = 0.4017 Ra0.2109
q Pr0.166 (15)

and the predictions obtained from the Churchill and Chu correlation (Equation (14)). The
Churchill and Chu correlation underestimates predictions from the developed Equation (15)
with a satisfactory maximum deviation of 3.4%.

3.2. Influence of Nanoparticle Concentration on Heat Transfer

The experimental investigation on EG-based nanofluids was performed for heat flux
from 2000 to 14,000 W/m2. The corresponding temperature difference ranged from 8 to
38 K.

Experimental results (Figure 6) revealed that the addition of nanoparticles results
in an increase or decrease in the Nu numbers depending on nanoparticle concentration
compared to pure EG. A slight increase in Nu number was recorded for nanoparticle mass
concentration of 0.1%. For the nanoparticle concentrations of 0.01 and 1%, a decrease in
Nu number was noted. The highest decrease in the Nu number was observed for the
nanoparticle concentration of 1% and amounted 12% in comparison to pure EG. The red
line in Figure 6 represents the developed empirical correlation for pure EG.

Nu = 0.4673 Ra0.231Pr0.096 (16)
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An experimental investigation of water-based nanofluids has been performed for heat
flux from 2000 to 22,000 W/m2. The corresponding temperature difference ranged from 3
to 25 K.

Similar to the EG–Al2O3 (0.1%) nanofluid, the water–Al2O3 mixture with a nanopar-
ticle mass concentration of 0.1% exhibits an increase in Nu number compared to pure
water. The maximum increase in Nu number was about 7% for the minimum Ra number—
Figure 7. A decrease in the Nu numbers was observed for the water–Al2O3 mixture with
a nanoparticle mass concentration of 0.01% compared to pure water. No influence of
nanoparticles on the Nu numbers was observed for the water–Al2O3 nanofluid with a
nanoparticle mass concentration of 1%—the measurement points overlap the red line
representing a developed empirical correlation for pure water.

Nu = 0.374 Ra0.2613Pr0.16. (17)
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The experimental investigation of EG/water (60/40) mixture-based nanofluids was
performed for heat flux from 2000 to 21,000 W/m2. The corresponding temperature
difference ranged from 4 to 35 K.

Experimental results show that the addition of nanoparticles with a mass concentration
of 0.1% leads to an increase in the Nu numbers within the whole range of Ra numbers with
a maximum of 15% for the minimum Ra number—Figure 8.
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A distinct decrease in the Nu numbers compared to the base fluid was noted for the
nanofluid with 0.01% nanoparticle concentration with the average difference of about 8%.
For the nanofluid with a nanoparticle mass concentration of 1%, the Nu numbers are higher
than for the base fluid with Ra < 500,000. For higher Ra numbers, the Nu numbers are
lower than for the base fluid with a maximum of 5% difference.

The experimental investigation of EG/water (50/50) mixture-based nanofluids was
performed for heat flux from 2000 to 20,000 W/m2. The corresponding temperature
difference ranged from 4 to 30 K.

Experimental investigations show an increase in the Nu numbers within the whole
range of the Ra number for the nanoparticle concentration of 0.01 and 0.1%—Figure 9. For
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the nanoparticle mass concentration of 1%, a decrease in the Nu numbers in comparison
to pure EG/water (50/50) mixture was observed with a maximum of 6% for the highest
Ra number. The red line in Figure 9 represents the developed empirical correlation for the
EG/water (50/50) mixture.

Nu = 1.7053 Ra0.1626 (19)
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The experimental investigation on EG/water (40/60) mixture-based nanofluids was
performed for heat flux from 2000 to 22,000 W/m2. The corresponding temperature
difference ranged from 4 to 31 K.

Experimental results show an increase in the Nu numbers for the nanoparticle mass
concentration of 0.1% within the whole range of the Ra numbers tested with a maximum
of 5% for the maximum Ra number—Figure 10.
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Figure 10. For the nanofluid with a nanoparticle mass concentration of 1%, the Nu numbers
are higher than for the base fluid for Ra < 400,000. For higher Ra numbers, the Nu numbers
are lower than for the base fluid.

Figure 11 illustrates the impact of nanoparticle concentration on the Nu numbers for
water-based (Figure 11a) and EG-based (Figure 11b) nanofluids for selected heat fluxes.
As expected, the Nu numbers increase with heat flux increase for all tested nanofluids.
Experimental data show that independent on heat flux and base fluid, the Nu numbers
reach a kind of optimum for the nanoparticle mass concentration of 0.1%.
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3.3. Present Correlation

Putra et al. [32] correlated their experimental results of water-based nanofluids using
an Nu-type correlation in the form Nu = CRan. However, as it was shown in [17],
Nu number is a function of Ra number as well as Pr number. Xuan and Roetzel [33]
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suggested that the correlation equation for nanofluids should include a concentration of
the nanoparticles.

A multidimensional regression analysis based on the least squares method was used
to develop a correlation equation for the Nu numbers for free convection of water–Al2O3,
EG–Al2O3 and the mixtures of water and EG at the ratios of 60/40, 50/50, 40/60 by
volume of nanofluids of different nanoparticle concentration from horizontal cylinder in
an unbounded fluid.

Nucorr = 0.63Ra0.23Pr0.053(1 − ϕ)2.64 (21)

Figure 12 shows the comparison of the experimental results for all tested nanofluids
with the predictions made from the developed correlation (Equation (21)). For 85% of
points, the difference between experimental data and corresponding predictions is lower
than ±10%. Considering the complexity of the examined process, the obtained agreement
is satisfactory. The developed correlation is valid for the Ra number range 3 × 104 ≤ Ra
≤ 1.3 × 106, the Pr number range 4.4 < Pr < 176 and the mass concentrations of alumina
nanoparticles 0.01% ≤ ϕm ≤ 1%.
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4. Discussion and Conclusions

Free convection heat transfer from a horizontal cylinder immersed in nanofluids
was studied. The experimental setup was designed in order to fulfil requirements of free
convection in an unbounded fluid.

In order to ensure wide range of Ra numbers, five base fluids were investigated, i.e.,
water, EG and water–EG mixtures: (60/40), (50/50) and (40/60) by volume. Alumina
(Al2O3) nanoparticles were tested at the mass concentrations of 0.01, 0.1 and 1%.

Stability of the tested nanofluids as a fundamental issue of the potential application of
the nanofluids was studied very carefully.

As it was established in [12,13,23,34], evaluation of the impact of nanoparticles on
free convective heat transfer depends on the determination of the thermophysical prop-
erties of the analyzed nanofluids. Depending on the formulas adopted to calculate major
properties, such as thermal conductivity and viscosity, contradictory results regarding the
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influence of nanoparticles were found. Therefore, the present study’s correlations for the
calculation of thermal conductivity and viscosity of the tested nanofluids are based on
actual measurements.

Present experimental data show that the addition of alumina nanoparticles to water,
EG and mixtures of water and EG results in an increase or decrease in the Nu numbers
depending on the nanoparticle concentration. An optimum of the Nu numbers was
observed for the nanoparticle mass concentration of 0.1%.

A heat transfer correlation equation for the nanofluids has been developed and verified
for various Ra numbers, Pr numbers and nanoparticle mass concentrations.
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Nomenclature

a Thermal diffusivity (m2/s)
cp Specific heat (J/(kg K))
D Outer diameter of heated cylinder (m)
g Gravitational acceleration (m/s2)
h Heat transfer coefficient (W/(m2 K))
HB Distance between periphery of cylinder and bottom wall (m)
HT Submersion depth (m)
k Thermal conductivity (W/(m K))
Nu= hD

k Nu number (-)
Pr Pr number (-)
q Heat flux (W/m2)

Ra= gβ(Tw−Tf)D3

νa Ra number related to temperature difference (-)

Raq= gβqD4

kνa Ra number related to heat flux (-)
SW Distance between periphery of cylinder and side wall (m)
t Temperature (◦C)
T Temperature (K)
∆T Temperature difference (K)
Greek Symbols
β Thermal expansion coefficient (1/K)
µ Dynamic viscosity (Pa s)
ν Kinematic viscosity (m2/s)
ϕ Nanoparticle concentration (-)
ρ Density (kg/m3)
Subscripts
bf Base fluid
f Fluid
m Mass
nf Nanofluid
p Particle
v Volume
w Wall
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