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Abstract: In this survey paper, typical solutions that focus on the reduction in negative effects
resulting from the common-mode voltage influence in AC motor drive applications are re-examined.
The critical effectiveness evaluation of the considered methods is based on experimental results of
tests performed in a laboratory setup with an induction machine fed by an inverter. The capacity
of a common-mode voltage level reduction and voltage gradient du/dt limitation is discussed to
extend motor bearings’ lifetime and increase motor windings’ safety. The characteristic features of
the described solutions are compared and demonstrated using laboratory results.

Keywords: common-mode voltage; AC drive; voltage gradient; ground leakage current; bearing
current; common-mode disturbances

1. Introduction

Since the second half of the 20th century, dynamic development of energy conversion
methods using power electronic inverters has been observed. As a result, a new generation
of electric drives has been developed, whose DC current machines have been replaced by
AC current engines (induction and synchronous) supplied by power electronic converters.
Thanks to the development of advanced control methods, mechanical variables (torque
and angular velocity of the motor shaft) may be fully controlled. Modern electric drives
are independent of power source types, and most popular topologies are composed of
an indirect frequency converter with a controlled or non-controlled AC/DC converter
supplying a DC/AC inverter [1].

In most popular electric drives, basic three-phase full-bridge inverters are commonly
used; however, for medium- and high-power applications, multilevel inverters are also
applied [2]. Due to the application of fast-switching power transistors, modern variable-
frequency drives may operate with carrier frequencies up to 200 kHz [3,4]. It should be
noted that, nowadays, a tendency for increasing the switching frequency is still observed,
which enables a reduction in system dimensions, in order to increase power conversion
density, which allows improving inverters’ operational features. This trend is additionally
strengthened by the spreading of modern power electronic switches made with silicon
carbide SiC and gallium nitride GaN techniques [5,6].

Despite the unquestionable advantages of conventional two-level bridge inverters
(such as simplicity, low cost, various control strategies or susceptibility to modifications),
some disadvantages should also be indicated, which are mainly caused by the switch
commutation process under non-zero currents and voltages (hard switching). For hard
switching conditions, voltage gradients may exceed 10 kV /s, which results in a high du/dt
gradient in the voltage supplying the machine [7]. The long-line effect appears in the wire
connecting the motor and inverter. Due to an impedance mismatch between wires and
the motor, a wave reflection of the voltage at the line ends occurs (Figure 1) [6,8-10]. As a
result, a significant overvoltage may be observed at electrical machine terminals, whose
level may reach twice that of the inverter’s nominal supply voltage. Hence, the stress on
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the cables” and motor windings’ insulation increases, which is the reason for the decrease
in the insulation lifetime and reduces the drive’s mean time to failure (MTTF) [6,11,12].
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Figure 1. A phase voltage measured on the motor terminals (motor was connected to the inverter

through a cable of 2.5 m in length).

Another consequence caused by applying power inverters in electric drives is the
generation of electromagnetic interference emissions (EMI) [13]. It should be noted that the
level of generated EMI is one of the main criteria of AC drive inverters’ practical evaluation.
As a result of high du/dt gradients, undesirable high-frequency disturbance currents are
excited, which may be a significant danger for the electromagnetic compatibility of the
environment due to the possibility of interaction through magnetic and capacitive coupling
with other elements [14]. Considering the impact of generated disturbances on operational
features and the reliability of electric drives, a common-mode EMI reduction is one of the
most important challenges accompanying power inverters” application [15].

The main path of common-mode disturbance currents consists of wires connecting the
inverter to the motor and the PE protective ground wire as the return wire (Figure 2) [16,17].
The levels of generated common-mode perturbations are mainly determined by parasitic
capacitances between semiconductors and the radiator (usually grounded) [18]. However,
parasitic capacitive couplings between semiconductors and the grounded radiator, as well
as ground capacitances of DC link buses, C»; and Cp;, allow reducing the length of the
common-mode currents’ paths to the shortest possible loop, excluding impedance of the
supply grid [15].
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Figure 2. Common-mode currents’ propagation paths in electric drive fed by the voltage inverter (ground capacitances of

transistors Tg; and Tgg are marked).
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A high du/dt of the common-mode (CM) voltage slopes excites significant peaks in the
leakage current circulating in a PE protective ground wire, which may provoke undesirable
operation of residual current circuit breakers, incorrect activation of fire alarms or various
sensor operation disturbances [19,20]. It should also be noted that some part of the CM
voltage at motor terminals is transferred to a non-grounded motor shaft, which results in an
occurrence of a shaft voltage ugy [21]. The shaft voltage influence results at bearing currents’
flow through motor bearings, and, sometimes, these currents are also closed through
bearings of the machine loading the motor [22]. The bearing currents cause pits, craters
or stripes that appear on the rolling surfaces of bearings, which leads to deterioration of
bearings and reduces the MTTF drive factor [18,23]. Especially destructive are electrostatic
discharge machining (EDM) bearing currents when insulating lubricating grease films in
rotating bearings are broken down due to exceeding the maximum withstand value by
the machine shaft voltage [24]. It should be noted that the probability of EDM current
occurrence depends on the CM voltage maximum value, and it increases according to the
growth of the CM voltage level [25,26].

The aim of this paper is a critical evaluation of selected methods focused on reducing
negative effects resulting from CM voltage impact. The comparative evaluation is based
on analysis of approaches presented in the literature and experimental tests of the selected
solutions. In the first part of this paper, a mechanism of CM voltage generation in an
electric drive fed by a conventional two-level bridge inverter is described. Next, a review
of methods and experimental results is presented in the form of tables and diagrams to
demonstrate the effectiveness of the compared solutions.

2. Mechanism of Common-Mode Voltage Generation in Electric Drive Fed by a
Conventional Hard-Switched Two-Level Bridge Voltage Inverter

In a hard-switched two-level bridge inverter (Figure 3), due to the application of a
high-capacity capacitor Cr, the inverter input voltage ur remains constant and is equal
to the supply voltage Upc [8]. Assuming that ground capacitance C,; = Cp», the voltage
between DC buses and the ground PE equals Upc /2 for a “+” bus and, adequately, —Upc/2
for a “—" bus. The values of inverter output voltages u4_pg, p_pg and uc_pg are determined
by an actual state of inverter transistors Tr;—Trs, and, exemplarily, for voltage uc pg, the
following relation may be formulated:

Upc
Uc_pg = UTF6 — TD 1)

motor frame
s i
T T, T 5

A H
A B Zo H
Ur L C 2 %ﬂ "
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Figure 3. Electric drive fed by a conventional hard-switched two-level bridge voltage inverter.

At steady state, voltage uc pr equals Upc/2 if transistor Trs is turned off, or uc pg =
—Upc /2 if transistor Trg is turned on. Analogous relations may be formulated for output
voltages u4 pg and up pg.
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Considering the scheme presented in Figure 3, where motor windings are represented
by impedance Zo, the value of a common-mode voltage uy pr results from

UN_pg = Uc_pg — Uc )

Moreover, the following relations are also valid:

UA pE = UN_PE +Ua, 3)
up pp = UN_pE + UB, 4)

which leads to
uA pg+up_pg +uc pp = 3uUN_pg +ua +up+uc. )

Assuming symmetry of motor windings’ impedances:
ug +ug+uc =0, (6)
Thus, the common-mode voltage uy pr is given by

UA_pE + UB_pE + UC_PE
= = = 7
- )

UN_PE =

The DC buses” ground capacitances Cy; and Cp; and capacitance Cpg (between the
grounded motor frame and a neutral point N of star-connected stator windings) form a
voltage divider; hence, e.g., for an inverter state of 000 related to Tr;, Try and T3, the
common-mode voltage uy pg is described by

u u Cn ®)
NPE=—Upc~——FT~ [~ -
- Cpl + sz + Cpg

However, in most cases, it can be assumed that Cpg << Cp; and Cp; = Cpp; hence, at
steady state, the common-mode voltage uy pg is only determined by a value of the supply
voltage Upc and by a state of inverter transistors Tr;—Trs. To summarize, for inverter
active states uy pr = = Upc/6 and uy pr = £ Upc/2 for the zero vectors 000 and 111.

Considering Equation (1), it can be recognized that the value of derivative duc pg/dt
depends on the rate of change in transistor Trs’s voltage:

duc_pg _ dutre
dt dat 7’ ©)

Hence, the value of derivative duy _pg/dt is given by

dun pE _ d(uc pp —uc) _ dutre . dﬂ
dt dt dt dt -

(10)

Considering the scheme presented in Figure 3, the dominant part of a ground leakage
current ipg flowing in a PE protective wire from the motor to the inverter is closed in a loop
including a motor ground capacitance Cpg. Thus, the value of the current ipr is mainly
determined by a value of gradient duy _pg/dt, which is correlated with values of derivatives
dua pp/dt, dup pp/dt and duc pg/dt resulting from the rate of inverter transistors’ voltage
changes. It should also be noted that value of capacitance Cpr depends on the motor type,
and, typically, for motors with power from 1 to 50 kW, it varies from 2 to 10 nF [27,28].

3. Review of Methods Dedicated to CM Voltage Reduction and Limiting Negative
Effects Resulting from uy pg Voltage Impact

The problem of the measurement and reduction in negative effects resulting from
CM voltage impact arose with the dissemination of electric drives fed by voltage inverters.
One of the most important aspects affecting the MTTF value of electric drives results from
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bearing current occurrences in electric machines [19,22]. A shaft grounding, application of
conductive greases or dedicated shielded cables, as well as the use of insulated or hybrid
bearings, are proposed to reduce bearing currents [22,23,29]. Nevertheless, considering
the mechanism of excitation and character of bearing currents, it should be noted that
application of one chosen solution may cause a limitation of one type of bearing current and
a significant increase in other types of bearing current at the same time (see Table 1) [22].
For example, when one end of the motor shaft is grounded via a brush, EDM currents
may be completely reduced; however, the possibility of rotor ground current excitation
increases if a non-insulated clutch is applied between the motor and load.

Table 1. Effectiveness of the most commonly applied solutions dedicated to bearing current reduction.

Solution earing Current Type EDM Currents Circulating Currents Rotor Ground Currents

shielded cables

possible increase at higher

infl
fo mhience rotor shaft speed

partial reduction

grounding of one end of rotor shaft via

possible increase if a

effective, if an opposite non-insulated clutch is

complete reduction bearing is made as hybrid

brush bearing or insulated one applied between motor
and load
insulated bearings partial reduction partial reduction partial reduction
hybrid bearings complete reduction complete reduction complete reduction
A complete reduction in bearing currents is only provided when relatively expensive
hybrid bearings with ceramic rolling elements (Figure 4a) are applied at both ends of the
motor shaft. It must be also noted that application of insulated bearings with an insulating
layer placed at the outer bearing surface (Figure 4b) results in a partial reduction in EDM
currents—about 40 to 60% [22,23].
. insulating
ceramic layer
rolling
element metallic
rolling
inner race element
(metallic)
inner race
(metallic)
outer race outer race
(metallic) (metallic)

(a) (b)
Figure 4. Bearing cross-section: (a) hybrid; (b) insulated.

It should be noted that those solutions depicted in Table 1 do not affect the primary
source of bearing currents, which is a CM voltage excited by an inverter. In the consid-
ered inverter system, the highest possibility of destructive EDM current excitation occurs
for inverter zero states 000 or 111 when the uy pr voltage reaches its maximum values.
Hence, the possibility of a reduction in EDM current occurrence is only possible when
the amplitude of the CM voltage is efficiently limited. Basing on the literature review,
some exemplary solutions may be specified. In [8,30], specially dedicated active zero
voltage control (AZVC) modulation methods were proposed in which two opposite active
vectors with exactly the same duration are applied instead of inverter zero vector 000 or 111
(Figure 5). Theoretically, the application of the AZVC method enables a reduction in uy pr
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voltage maximum levels to =Upc/6. However, if inverter transistors are switched in two
different branches at the same time, undesirable spikes, whose amplitude exceeds +Upc/2,
may then be noted in the CM voltage waveforms [30]. Moreover, the application of the
AZVC method may decrease the quality of the motor current [8]. Another modification of
the modulation technique focused on CM voltage reduction is based on using the tri-carrier
PWM method with a fixed or adaptive carrier phase displacement angle [31,32]. As a result,
significant suppression of the CM voltage harmonic at the carrier frequency is reported, and
uy_pe voltage levels may be effectively reduced to £Upc /6. Additionally, a 50% reduction
in the leakage ground current may be achieved; however, an increase in the motor current
THD is a negative effect of the applied method [32]. Moreover, significant modifications of
inverter control algorithms are needed. It is worth mentioning that similar works have also
been carried out for multilevel inverters [33].

V3 %.(010) V24(110)
. Vour
(011)  v,(000) £~ /" Vi,
Ve V(1) (100
(001), Vs (101)% Vs
S AL
ouT E
TS TS Ts Ts =1,
(@) (b)

Figure 5. Principle of inverter output voltage forming: (a) classic space vector pulse width modulation
(SVPWM); (b) active zero voltage control modulation.

Another approach is based on using specially dedicated active common noise canceller
circuits (ACCs) [34,35]. In ACCs, the reduction in CM voltage levels is ensured by the
formation of an appropriate compensation voltage, which is added to the phase voltages
through a transformer Ty placed between the motor and inverter (Figure 6) [36]. The
solution provides a reduction in uy _pg voltage levels of more than 90% regardless of the
inverter transistors’ state [34]. Additionally, if an ACC operates in a configuration with an
active common-mode filter, 20 dB of the average CM voltage attenuation for a frequency
higher than 10 MHz is reported [36]. However, the four windings’ transformer T, should
be capable of operating with a high switching frequency which significantly increases the
complexity of the system. As a result, the application of Mn-Zn ferrite as the magnetic core
of the transformer is proposed to ensure CM voltage suppression in a range of frequencies
up to several MHz [36]. It should also be noted that application of an ACC requires access
to both DC link buses between the rectifier and inverter. In the case of commercially
available high-integrated devices, this requirement is often difficult to realize because
manufacturers do not usually make these terminals available to users.
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Figure 6. Active common noise canceller.

If a three-phase motor M is equipped with open stator windings, it may be fed by a
dual two-level inverter in the configuration of inverters X and Y, which are supplied by
voltage source Upc (Figure 7) [37,38]. In the presented configuration, a zero voltage vector
is formed as a combination of opposite active vectors generated by inverters X and Y. A
full synchronization between inverter X’s and inverter Y’s transistors’ switching moments
should be ensured to provide proper operation of the solution. As a result, control systems
and control algorithms become complicated. As it is reported in [39], the presented solution
ensures CM voltage maximum level suppression to =Upc/3; however, due to the high
complexity, it is not widely used in practical applications.

: ________________ 1 r-—————~~~ T T 7 |
! | |

I I | I

| I | I

. _lx _|x oM x|_ x|_ x|_l

C A N A
=5 B {LF B |
LAY C’ |

Ue | i / 1 ~—" 1IN N Ny |
SR C DR D D

| | | |

I 1 — I

| inverter X } | inverter Y :

Figure 7. Dual two-level inverter.

Interesting results are found when a soft-switched inverter is used to feed an electric
machine. In such inverters, additional resonant circuits are used to ensure switching
transistors under zero voltage (ZVS) or zero current conditions (ZCS) [40]. In comparison
with hard switching, soft switching results in reduced du/dt and di/dt gradients of voltages
and current waveforms during commutation processes, which enables the limitation of
the duy_pg/dt value below 500 V/us. Parallel quasi-resonant DC link inverters (PQRDCLI)
with a quasi-resonant circuit placed between the inverter and supply source Upc seem to
be an especially attractive alternative for a basic two-level bridge inverter (Figure 8a) [41].
As a result of the resonant process, the inverter input voltage ur is periodically reduced to
zero to form zero voltage notches, which provides ZVS conditions of all inverter transistors
(Figure 8b). In PQRDCLI, a quasi-resonant circuit is activated only during the inverter’s
main transistors’ switching processes, and it becomes inactive for the rest of the time [41].
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This allows reducing the total power losses generated and the EMI level in a quasi-resonant
circuit and enables implementation of control methods based on SVPWM modulators,
which are widely used in hard-switched inverter control algorithms [42].

D,
I‘E;_ motor frame
H T_l_ g _| DFj AQDFQ_' DF.'i :_ M :
U ' 2 T Te, Tes I |
> |¢ & ATy =—
F L E |G AR ="
g F _| DF4_| DF5_| DFG : | : :: |ﬂ
1}1_ 'g Tea Tes Tes : CPE—'_—:
g- ‘ | —_——— e ——
H Un PE UsH
i G D
Tow T e
|PE B
(a)
Ur
Ol >
t
(b)

Figure 8. Concept of the parallel quasi-resonant DC link inverter (PQRDCLI) with two insulating switches T7,D; and T,D;:
(a) scheme; (b) ur zero voltage notches.

In [20,43], PQRDCLI topologies with two insulating switches T7,D; and T,D, placed
in DC link buses were presented, which ensures separation of the motor from the supply
voltage Upc during inverter transistors’ switching (Figure 8a). As a result, CM voltage lev-
els are limited to =Upc/6 (in comparison to £Upc/2 for a hard-switched inverter); hence,
the maximum levels of the motor shaft are also significantly reduced, which decreases the
possibility of EDM current occurrence. It should also be noted that the ground leakage
current ipr and shaft-grounding current at PQRDCLI operation are also limited (by about
five times in comparison with a hard-switched inverter). As it is reported in [20,44], in
comparison with a hard-switched inverter, a reduction in the du/dt gradient during switch-
ing processes in PQRDCLI results in a decrease in the generated conducted disturbances,
especially in the range of frequencies from 0.6 to 15 MHz. However, the higher PORDCLI
topology complexity, which results in more complicated control algorithms and an increase
in costs, is the main disadvantage of soft-switched inverters. Moreover, further works
are still necessary to optimize component parameters of the quasi-resonant circuits that
should improve the energy efficiency of the considered solutions. It should also be noted
that the common use of modern semiconductors produced with wide-gap materials may
encourage further wider practical use of soft-switched inverters due to the limitation of
problems resulting from the fast switching of transistors [45].

One of the basic methods focused on reducing negative effects resulting from CM
voltage impact is the application of passive filters. This approach is relatively simple,
and its adoption into electric drives does not require any modification of the inverter
construction, which is often needed if more advanced solutions are implemented [46].
Hence, using the additional motor chokes, the sine-wave filters, the du/dt chokes and
the common-mode chokes is the most popular solution met in commercial applications.
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It should be noted that these techniques do not require any modifications of the motor
construction, and hence they can be applied to various motor types.

Due to the low complexity, additional motor chokes installed between the motor
and inverter are willingly used (Figure 9). This solution enables smoothing the motor
current and a reduction in du/dt voltage gradients at the motor terminals. The inductance
of motor chokes depends on the motor power, and it varies from tens of pH for high-
power drives to a single mH for low-power applications. It is worth mentioning that a
permissible fundamental frequency voltage drop at the motor choke inductance Lp at rated
load conditions should not exceed 5% [8].

motor choke

3x400V {______________: :—_ED___E
DC AC T |l Y Y\ -
() | | —/—
: | | | L~ | 3~
|
|

Figure 9. Electric drive with motor choke.

The typical sine-wave filters are low-pass LC filters (Figure 10) smoothing inverter
output voltage waveforms, which enables forming motor currents and voltage waveforms
to a near sinusoidal profile. The most popular topology of the sine-wave filter is composed
of inductors Lg and star-connected capacitors Cg, as presented in Figure 10 [5,47]. It is
worth mentioning that more complicated solutions with an increased number of inductors;
with a neutral point of capacitors Cs connected alternatively to inverter DC buses or to
a midpoint of capacitors forming the DC link; or with a neutral point grounded are also
proposed [27,48,49]. However, these solutions are more complicated, and their application
often requires intervention in the internal inverter construction.

sine-wave filter

3x400V ! |1 Ls |
—PO—+\ DC Ac h—Lon ,
| | - | —~
—0—4 ac pc \[m 22 —
i : i Cs| | J_ i
|
i |

Figure 10. Electric drive with a sine-wave filter.

Considering the sine-wave filter topology as it is presented in Figure 10, inductance
Lg forms a resonant circuit with filter capacitance Cg, whose resonant frequency f; is given

as follows [5]:
1

=—— 11
fr 2mty/LsCs (1)

Filter parameters must be selected to meet the following requirements:
fout < fr < fswr (12)
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where f,,; is a fundamental output frequency and fs;, is a switching frequency resulting
from the carrier frequency. If the resonant frequency f; is significantly lower than frequency
fsw, additional damping resistors do not have to be applied because some damping is
achieved by the loss in the filter inductor Lg core. From Equation (11)’s results, inductance
Lg should be large to reduce capacitance Cs; however, its maximum value is limited by a
permissible fundamental frequency voltage drop (it should be less than 5%). The proposed
sine-wave filter design methods are usually based on analysis of inverter transistors’
switching frequency; nevertheless, methods basing on the analysis of the motor impedance
are also described [5]. A typical value of inductance Lg varies from hundreds of uH to
several mH, and the value of capacitance Cg reaches several pF.

Comparing with motor chokes, the cost of sine-wave filters is higher. Moreover,
implementation of a sine-wave filter requires modification of a motor control algorithm
due to the introduction of an additional phase shift between voltages and motor currents
by the filter [50]. It should also be noted that the application of sine-wave filters results
in additional power loss generation on filter elements, which may be significantly higher
than reported for other solutions [5,51].

The main task of the du/dt chokes installed between the motor and inverter is the
reduction in du/dt voltage gradients affecting the motor. The inductance of the du/dt
chokes is significantly lower than that of motor chokes or sine-wave filters, and it ranges
from a single uH to hundreds of pH. If wires connecting the inverter and motor are long
(more than 10 m), application of specially dedicated du/dt filters is also proposed [6,7].
Such filters are composed of a passive LC filter and an overvoltage reduction circuit [52]
(Figure 11). Values of inductance Lpr and capacitance Cpr are lower than in sine-wave
filters, which results in a lower cost and smaller dimensions. Application of du/dt filters
enables a reduction in the du/dt gradient of less than 400 V/uS and limiting overvoltage
to 1.3-Upc [52,53]. However, practical implementation of du/dt filters requires access to
both DC link buses of the inverter, which, in many commercial devices, cannot be ensured.
Hence, in comparison with other simpler solutions, the usability of du/dt filters is limited.

du/dt filter

3x400V

DC AC

‘—®—i' AC oc \

chassis/ radiator | mm -

,,,,,, q--=—----

Figure 11. Electric drive with an exemplary du/dt filter presented in [52].

In order to reduce common-mode current values, common-mode (CM) chokes in-
stalled between the motor and inverter are widely used (Figure 12a) [8]. A CM choke
introduces additional impedance in the common-mode disturbance currents’ flow loop
between the motor and a common-mode voltage source Ucys (inverter), which results in a
reduction in CM (Figure 12b). Three-phase CM chokes are composed of three symmetrical
windings wound on a common core—usually, toroidal cores are used (Figure 12c) [54].
The mutual inductance between each winding is identical. For symmetrical three-phase
currents flowing between the motor and inverter, a resultant flux in a CM choke core is
zero; hence, in that case, CM choke impedance may be neglected [8]. As a result, CM
chokes do not take part in differential-mode disturbance reduction. The CM choke param-
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eters should be fitted to avoid saturation of the core by the current flowing through the
windings [3,55]. It should also be noted that the problem of CM choke design is still actual,
and it is discussed in many papers [3,17,54].

CM choke motor frame

CM choke r M

1
ae N oc

—————a

(a)

(c) (d)

Figure 12. Electric drive with a CM choke: (a) application scheme, (b) equivalent circuit for common-mode components, (c)
CM choke realization, (d) view of commercial CM choke type BE1871/720 uH (TTI).

4. Experimental Results

The effectiveness of the most popular selected solutions basing on alternative ap-
plication of a motor choke, a du/dt choke, a CM choke and a sine-wave filter (in the
configuration presented in Figure 10) was verified experimentally in a laboratory setup
with a 7.5 kW induction motor type Sg132 M4 fed by a commercial inverter, Parker AC10
10G-44-0170-BF (7.5 kW, 17A, 3 x 400 V). The parameters of the used chokes and filter
were fitted to the motor and inverter requirements according to procedures described in
application notes and the available literature [8].

4.1. Common-Mode Impedance Characteristics

Installation of a filter or chokes between the inverter and motor affects the impedance
of the common-mode disturbances’” main propagation path. The common-mode impedance
Zc frequency characteristics of a circuit composed of a cable, motor and chokes or a
filter were obtained using the impedance analyzer Keysight E4990A in the configuration
presented in Figure 13. Frequency characteristics Z¢(f) were measured between the short-
circuited input terminal ABC and a PE protective wire. Two cables of the same type
(four wires, non-shielded) but different lengths (1 m and 10 m) were applied during the
performed test.
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Z¢(Ohm)

Motor
Cable
Separating A
transformer —__ Y "M
230V B Fiter N
; — Y™
Impedance o) chokes
analyzer L YT
PE E

[

Figure 13. A common-mode impedance Z¢ measurement setup.

At the first step, a motor common-mode impedance characteristic was measured. As
it is presented in Figure 14a, the impact of motor capacitive components is distinguishable
in almost the full considered range of frequencies, with a dominant impact of capacitance
Cpg between the stator windings and grounded motor frame in a range of frequencies up
to 50 kHz. An impact of cable parasitic components is especially recognized at a higher
frequency range (more than 2 MHz), and it increases with the cable length, which results
in the appearance of additional resonances (Figure 14b,c).

108

Zc(Ohm)

108 104 10° 108 107
f(Hz)

(@)

108

Zc(Ohm)

10°

104 105 108 T 10° 10¢ 105 106 107
f(Hz) f (Hz)

(b) (c)

Figure 14. Measured impedance Z(f) frequency characteristics: (a) motor; (b) motor with 1 m cable; (¢) motor with 10 m

cable.

The application of the du/dt choke Lpr = 0.31 mH type 3RTU-21 (Trafeco) does not
affect the impedance Z¢(f) characteristics in the frequency range up to 500 kHz regardless
of the cable length (Figure 15). A left shift in resonant frequencies is noticed at a higher
frequency, which results from the additional du/dt choke inductance implemented in the
total loop inductance. Using the motor choke (3RTM Lp = 3.8 mH/18A, Trafeco) results in
a noticeable increase in the Z¢ impedance value in the frequency range from 300 kHz to
2 MHz (Figure 16). It is worth mentioning that this effect is less visible for a longer cable
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(Figure 16b). Moreover, additional resonance at the frequency of 300 kHz is also excited
for both considered cables’ lengths. Similar results are noticed when the sine-wave filter
composed of an inductor Lg = 3.8 mH and a capacitor Cg = 15 uF is applied (Figure 17). For
a 10 m cable, a decrease in resonant frequencies from 50 to 20 kHz and from 90 to 60 kHz is
observed, which results from the interaction between the impedances of the filter, motor
and cable parasitic components (Figure 17b).

105 H H R 105
‘ """ motor + du/dt choke + cab'e‘ ------ motor + du/dt choke + cable
NG i motor + cable : motor + cable
104 - 101 \ S
e N
— 108 | — 10° |
g NS E
e <}
[&]
N 102 N 102
101 101
100 : : 5 100 e Il
108 10¢ 105 108 107 108 100 105 108 107
f(Hz) f(Hz)
(a) (b)

Figure 15. Measured impedance Z(f) frequency characteristics: (a) motor + du/dt choke (Lpr = 0.31 mH) + 1 m cable; (b)
motor + du/dt choke (Lpr = 0.31 mH) + 10 m cable.

100 105 .
----- motor + motor choke + cable ‘ | -=---- motor + motor choke + cable
motor + cable N motor + cable
10¢ N T L LT 100 i : R
N \\'
= 10° \ - 108 \ i il
3 0 £ N
S / 6 P \u’f\\
> i Qo .
N H O \
102 ! N 02 AR NS
A o i ?
10" \J( . 101
10° 108 108 107 10° 10¢ 108 108 107
f(Hz) f(Hz)
(a) (b)

Figure 16. Measured impedance Z¢(f) frequency characteristics: (a) motor + motor choke (Lp = 3.8 mH) + 1 m cable; (b)
motor + motor choke (Lp = 3.8 mH) + 10 m cable.
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Figure 17. Measured impedance Z(f) frequency characteristics: (a) motor + sine-wave filter (Lg = 3.8 mH, Cg = 15 uF) +
1 m cable; (b) motor + sine-wave filter (Lg = 3.8 mH, Cg = 15 uF) + 10 m cable.

108

The highest impact on the Z(f) characteristic is noticed when a CM choke (L¢ = 0.72 mH)
is applied (Figure 18). A distinct common-mode impedance value increase is observed
for a frequency higher than 200 kHz; however, this effect is determined by the cable
parameters, and it is significantly weakened if the cable length grows. Moreover, the CM
choke impedance excites additional resonance with a frequency between 200 and 500 kHz
(depending on the cable length), which is especially visible when a 1 m cable is used
(Figure 18a).

108

104 |

10% |
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102 4

100
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—— motor + cable —— motor + cable
; 104 \ CEEH SR R T EENE T A RIS
— 100
E
=
=)
O
N g2
10
. . ; ; 107 : : ——
10° 104 105 108 107 103 104 105 108 107
f(Hz) f(Hz)
(a) (b)

Figure 18. Measured impedance Z(f) frequency characteristics: (a) motor + CM choke (L¢c = 0.72 mH) + 1 m cable; (b)
motor + CM choke (L¢ = 0.72 mH) + 10 m cable.

4.2. Voltage and Current Waveforms

The laboratory setup for experimental tests is presented in Figure 19. The Parker AC10
10G-44-0170-BF (7.5 kW, 17A, 3 x 400 V) inverter was loaded by a 7.5 kW induction motor
equipped with hybrid bearings with ceramic rolling elements. Measurement of the motor
shaft voltage ugy and shaft current igy was ensured by using the shaft brush mounted on
the motor frame [20]. The motor was loaded by an induction generator, and insulation
between the motor and generator was performed by the installation of an insulated clutch.
Star-connected capacitors Cq (3 x 680 pF) were used to measure a common-mode voltage
un_pg affecting motor windings. Additionally, a measurement of a phase voltage uc pg
referred to as the PE ground potential was also performed.
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The Tektronix DPO4034 oscilloscope equipped with the high-voltage differential probe
P5205A (100 MHz) and the current probe TCP2020 (50 MHz) was used to record voltage
and current waveforms. Tests were performed under two different cable lengths (1 m and
10 m) and different configurations of filters and chokes installed between the motor and
inverter. Configurations with a 3.8 mH motor choke, a 0.72 mH CM choke, a 0.31 mH
du/dt choke, a 3.8 mH/15 uF sine-wave filter and a 3.8 mH /15 uF sine-wave filter with a
0.72 mH CM choke were taken into account.

AC

T Ac B4 _W.&%_I frame
T LB _:rvvq:j- A :/ load
| \

1 C t
DC © Filter, 1 —+ (o l-==- \

: chokes
I

a motor choke.

INDUCTION MOTOR

(b)

Figure 19. Laboratory setup for experimental tests: (a) scheme; (b) a photo of an experimental setup in a configuration with

From Equation (3), it can be derived that common-mode voltage uy pr levels, as well
as the duy pr/dt gradient, are determined by phase voltages ug_pg, #p_pr and uc _pr referring
to the PE ground potential. As a result, a reduction in gradient duy_pg/dt (which limits the
leakage ground current ipg flowing in a PE protective ground wire) may be achieved by the
limitation of derivatives dus pp/dt, duc pg/dt and duc_pg/dt. If no countermeasures were
used, the value of derivative duc_pp/dt significantly exceeded 5 kV /us regardless of the
cable length (Table 2). It is worth mentioning that gradient duc pg/dt is lower for a longer
cable, which is caused by the additional inductances introduced between the motor and
inverter by a longer cable. Application of the CM choke with the sine-wave filter results in
the highest reduction in gradient duc_pg/dt (duc_pg/dt <<1kV/us). A good effect (duc_pg/dt
reduced to below 1.3 kV /us) is also noted when only the CM choke is used; however, the
effectiveness of the CM choke decreases if the cable length increases. The sine-wave filter
and the du/dt choke ensure a comparable level of du/dt reduction, with the duc_pg/dt value
limited to 1.6 kV/us (Figure 20). When the motor choke was applied, the lowest level of
du/dt gradient reduction was observed (duc _pg/dt reduced to 2.5 kV /us).
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Table 2. Common-mode impedance model parameters of a 7.5 kW motor with hybrid bearings 6308-2RS (ZCS Ceramit).

Conﬁguration | duApr/dtI (kV/l.lS) UAB(max)/UDC -) II’E(max) (A) ISH(max) (mA) IuN,PE/UDC I )
cable length: 1m 10m 1m 10m 1m 10m 1m 10 m 1m 10m
inverter 7.08 557 1.45 2.05 3.75 3.37 158 146 1/2 1/2
inverter + motor choke (Lp ¢, 242 1.44 147 223 208 132 60 1/2 1/2
= 3.8 mH)
inverter + du/dt choke
(Lpr = 031 mH) 1.27 1.04 1.43 1.46 1.45 1.73 70 86 1/2 1/2
inverter + sine-wave filter
(Ls = 3.8 mH, Cs = 15 uF) 1.57 1.33 1.12 1.16 191 1.73 105 95 1/2 1/2
inverter + CM choke (Lc = 1.09 1.28 2.10 216 028 0825 112 98 1/2 1/2
0.72 mH)
inverter + sine-wave filter +
CM choke (Lg =0.31 mH, 0.12 0.09 1.12 1.13 0.25 0.43 80 40 1/2 1/2
Cg =15 uF, L¢ = 0.72 mH)
Tek Prevu
inverter

f |
jf[ \1\ /\'\/\/\\/\f\« :

1] J v

) : //\‘.',Enverter + du/dt choke !

Uc PE, 250vidiv

(@ 20V

1ps/div
TG | [ @7 )

Figure 20. Experimental waveforms of voltage uc pr recorded in a configuration with a single

inverter and in the configuration of an inverter with a 0.31 mH du/dt choke (10 m cable).

Besides the reduction in the du/dt gradient, an impact of the considered solutions on
the uc_pr voltage spectrum is also perceptible. In comparison with other solutions, the
most significant reduction (of about 25 dBuV) in the uc pg voltage spectrum was noticed
when the CM choke in a configuration with the sine-wave filter was applied (Figure 21ij).
For this configuration, a spectrum limitation was achieved in a range of frequencies higher
than 150 kHz regardless of the cable length. If only the CM choke is used, the spectrum
is deteriorated due to the appearance of a peak at the frequency of 1.5 MHz, which is
about 16 dBuV higher than the one noticed in the configuration with a single inverter
(Figure 21g,h). For the rest of the considered solutions, the level of spectrum suppression is
comparable.

Experimental waveforms of the line-to-line voltage 145 and current i4 measured at
motor terminals are presented in Figures 22 and 23. High du/dt values in connection with
high-frequency wave reflections result in overvoltage spikes’ excitation, whose value may
exceed twice that of the DC voltage supplying the inverter (Table 2, Figures 22a and 23a).
Hence, a reduction in the du/dt gradient of voltages affecting the motor windings causes
a limitation in the overvoltage spikes” maximal value and decreases insulation voltage
stress. Application of the motor chokes or the du/dt chokes does not completely suppress
overvoltage spikes, and only a slight reduction in their maximal values is noticed, wherein
this effect is more pronounced with a longer cable (Table 2). A complete limitation of the
overvoltage spikes is noticed when sine-wave filters are applied (Figures 22d,f and 23d,f).
Using the sine-wave filters brings the voltage waveforms to a near sinusoidal shape
without significant overvoltage spikes. Smoothing of voltage waveforms also enables
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an improvement in the motor current shape. It should also be noted that using the CM
choke does not suppress overvoltage spikes from line-to-line voltage waveforms despite
the reduction in the du/dt gradient of phase-to-ground voltages. For the differential-mode
disturbances, the impedance of the CM choke is small; hence, its influence on differential-
mode disturbance reduction is negligible. As a result, the CM choke should be used in a
configuration with other solutions (e.g., sine-wave filter) to improve the supply conditions
of a motor fed by an inverter (Figures 22f and 23f).
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Figure 21. Spectrum of voltage uc pg recorded in a configuration with: (a,c,e,g,i) 1 m cable; (b,d,fh,j) 10 m cable.
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Figure 22. Experimental waveforms of line-to-line voltage 14 and current iy measured at motor terminals in a configuration
with a 1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with

sine-wave filter.
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Figure 23. Experimental waveforms of line-to-line voltage 14 and current iy measured at motor terminals in a configuration
with a 10 m cable for: (a) inverter; (b) motor choke; (c¢) du/dt choke; (d) sine-wave filter; (€) CM choke; (f) CM choke with
sine-wave filter.

Comparative measurements of the common-mode voltage uy pr and motor shaft
voltage ugy were performed for the considered solutions (Figures 24 and 25). If a conven-
tional two-level inverter is used, the uy _pg voltage equals =Upc/6 for the active vectors
and £Upc/2 for the zero vectors (Figures 24a and 25a). The shaft voltage ugy reflects
the common-mode voltage waveform with the maintenance of the bearing voltage ratio,
BVR = 5%, which is a typical value for induction motors. Thus, the possibility of de-
structive EDM current appearance is the highest for the inverter zero vectors, when the
ugy voltage reaches its maximum values. The du/dt gradient of voltage ugy is slightly
lower than that observed in uy_pg waveforms, which is caused by an impact of the motor
stator windings or shaft motor frame impedances. The presented results of the performed
measurements show that none of the comparative solutions ensure a significant reduction
in common-mode and shaft voltage levels (Figures 24 and 25).
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Figure 24. Experimental waveforms of CM voltage uy pr and motor shaft voltage 1gy measured in a configuration with a
1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with sine-wave

filter.
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Figure 25. Experimental waveforms of CM voltage uy pr and motor shaft voltage ugy measured in a configuration with
a 10 m cable for: (a) inverter; (b) motor choke; (¢) du/dt choke; (d) sine-wave filter; (e) CM choke; (f) CM choke with

sine-wave filter.

It is worth mentioning that despite the sinusoidal shape of the line-to-line voltage
measured at motor terminals, the considered sine-wave filter does not affect the uy pr
and ugy levels. Considering the equivalent scheme presented in Figure 26, it can be
distinguished that the sine-wave filter inductances Lg, capacitors Cs and C; and motor
ground capacitance Cpr form a resonant series circuit LC supplied by a constant DC
voltage source. Neglecting the impact of capacitor C; and the motor impedance Zo, it
can be assumed that Cs >> Cpg, Cp1 = Cpp and Cp; >> Cpg; hence, the sine-wave filter
capacitance Cs does not affect the uy pr voltage levels at a steady state. Similarly, the
impact of inductance Lg is also omitted in common-mode voltage level forming.
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Figure 26. Electric drive fed by a conventional hard-switched two-level bridge voltage inverter in a configuration with a

sine-wave filter.

Considering the scheme presented in Figure 12b, it can be recognized that the CM
choke inductance L¢ and parasitic capacitances of the wires and motor form a resonant
circuit with a low attenuation rate. Hence, neglecting the impact of the motor windings’
impedance Zp and the cable parasitic components, if Lc is high enough to meet the

condition .

27t/3LcCpg’
in un pp waveforms, undesirable oscillations may occur, in which maximum amplitudes

significantly exceed Upc/2 (Figure 27). As a result, the ugy voltage maximum value is
increased, and hence the possibility of EDM current occurrence rises.
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Figure 27. Experimental waveforms of the common-mode voltage uy pr and motor shaft voltage
ugyy of a motor fed by the AC10 10G-44-0170-BF (Parker) inverter in a configuration with a CM choke
with increased inductance L¢ (Lc = 28 mH).

Comparative waveforms of the common-mode voltage uy pr, ground leakage current
ipr and motor shaft ground current isy are depicted in Figures 28 and 29. The observed
overvoltage spikes of the uy pg voltage are caused by the common-mode current flowing
through motor inductances, which is excited during each inverter transistor’s switching.
The maximum values of ground currents ipp and igy are determined by the du/dt gradient
of the un pr voltage, which results in currents’ capacitive character. It should be noted that
the highest reduction in the duy pg/dt gradient is noted in the drive configuration with
the CM choke; hence, this solution demonstrates the highest effectiveness for a ground
current reduction (Table 2). Similarly, a reduction in the igy current maximum value due to
a decrease in the duy prp/dt gradient was also noted for all considered solutions.
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Figure 28. Experimental waveforms of CM voltage uy pg, leakage current ipg and shaft-grounding brush current iy
measured in a configuration with a 1 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e) CM
choke; (f) CM choke with sine-wave filter.
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Figure 29. Experimental waveforms of CM voltage uy pg, leakage current ipr and shaft-grounding brush current igy

measured in a configuration with a 10 m cable for: (a) inverter; (b) motor choke; (c) du/dt choke; (d) sine-wave filter; (e)
CM choke; (f) CM choke with sine-wave filter.

5. Conclusions

In this paper, a survey of representative methods focused on the reduction in negative
effects caused by a common-mode voltage influence was presented (Table 3). Basing on
the results of the performed comparative tests, the highest effectiveness in the reduction
in ground leakage currents and motor shaft-grounding currents was noticed for the drive
configuration with a CM choke. The best improvement in motor supply conditions was
noted when sine-wave filters were used. Applications of du/dt chokes and motor chokes
brought moderate results. Hence, application of the configuration with a CM choke and a
sine-wave filter may be proposed as the most reasonable solution [47]. However, it should
be noted that the application of this configuration results in the highest power loss. For
example, during the performed tests, at 1.5 kW of power measured at motor terminals,
the obtained power loss equaled 2.7 W for the CM choke, 6.3 W for the du/dt choke and
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53.7 W for the sine-wave filter in a configuration with a CM choke. It should also be noted
that none of the tested typical commercial solutions ensure a reduction in common-mode
voltage and motor shaft voltage levels; hence, they do not significantly improve the safety

of motor bearings in terms of the possibility of EDM current occurrence.

Table 3. Main features of compared reduction methods of common-mode voltage impact in electric drives.

Technique

CM Voltage
Levels

Ground
Leakage Current
Suppression

Usage
Requirements

Advantages

Disadvantages

Modification of
modulation

strategy
[8,30-32]

Active
common noise
canceller
[34-36]

Dual two-level
inverter
[37-39]

+Upc/6[32]

reported
reduction in
un_pg voltage
levels more
than 90%
regardless of
the inverter
transistors’
state [36]

+Upc/3 [39]

required
modification of
reported 50% inverter
[32] modulation
strategy and
control algorithms

implemented
between motor
and inverter,
access to both DC
link buses between
rectifier and
inverter is required

reported up to
90% [34]

required use of
dual inverter and
motor with open
stator windings

reported up to
50% [38]

suppression of
ground leakage
current

significant
reduction in uy_pg
voltage levels

low cost

high reduction in
un_pg voltage
levels

high suppression
of ground leakage
current

suppression of
ground leakage
current

reduction in uy pg
voltage levels

increase in THD
of motor current
undesirable
spikes, whose
amplitude
exceeds
+Upc/2, may be
noted in CM
voltage
waveforms when
AZVC technique
is applied
cannot be used
with commercial
inverters, whose
control system’s
access is made
unavailable for
users with
further
modifications

high cost

a high-frequency,
four-winding
transformer is
required

high complexity
requires access to
both DC link
buses between
rectifier and
inverter

high complexity
of control system
and control
algorithms

high cost
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Table 3. Cont.
Ground
Technique CM Voltage Leakage Current U.sage Advantages Disadvantages
Levels . Requirements
Suppression
high suppression
of ground leakage
current
significant
reduction in uy pr high complexity
voltage levels high cost
required decrease in in comparison
PQRDCLI with modifications of generated with
two insulating S Upe/6 [20] reported up to inverter DC link cgnducted hard—swnched
switches be 80% [20] circuit, control disturbances, inverters, energy
[20,43] systems and especially in a efficiency of
control algorithms range of frequency PQRDCLI is
from 0.6 to 15 MHz lower at low
possibility of loads
implementation of
control methods
based on SVPWM
modulators
simplicity
moderate cost
applied between enables a no reduction in
motor and inverter, smoothing of CM voltage
no additional motor current and levels
moderate modifications of reducing du/dt large dimensions
motor choke +Upc/2 reduction (about inverter topology voltage gradients generation of
40%) or control at the motor additional
algorithms are terminals voltage drop and
needed reduction in power loss
overvoltage at
motor terminals
simplicity
applied between moderate cost no reduction in
motor and inverter, reduction in .d”/ dt CM voltage
no additional voltage gradients levels
moderate modifications of affecting the motor di .
du/dt choke +Upc/2 reduction (about . ) reduction in tmensions
50%) inverter topology overvoltage at additional power
or control 8¢ loss and voltage
algorithms are motor te.zrmma.lls drop
needed lower dimensions

than motor chokes

A\ MOST


http://mostwiedzy.pl

A\ MOST

Energies 2021, 14, 4003

27 of 30

Table 3. Cont.

Ground
Technique CM Voltage Leakage Current U.sage Advantages Disadvantages
Levels . Requirements
Suppression
- no reduction in
simplicity S‘\]/Ll\; oltage
) significant } 1 di .
applied between improvement in arge 1@ensf1 ons
moderate motor anq inverter, motor supply - ﬁ?nﬁratlon 01
sine-wave filter +Upc/2 reduction (about no additional conditions (near B porerios
DC difications of ; ; : - high cost
50%) mo sinusoidal profile ) sometimes
inverter topology of motor currents L.
are needed and voltage modification of
waveforms) moto? con‘frol
algorithm is
required
- no reduction in
CM voltage
levels
- no reduction in
differential-
mode
disturbances
applied between simplicity E?rlnnolgf :ﬁ;},e]r;,t
motor and inverter, low cost conditions
no additional low power 10§5 - complicated
CM choke L Upe/2 high reduction .modifications of ;mal.lf.dlmtensmns design process
(about 80%) inverter topology . %m lthE - if CM choke
eduction i . .
needed current undes’irable
oscillations may
occur in un pg
waveforms, in
which maximum
amplitudes
significantly
exceed Upc/2
simplicity
the highest
applied between reduction in
motor and inverter, ground leakage combines
CM choke + LUpe/2 highest reduction no additional current disadvantages of
sine-wave filter bc (about 90%) modifications of significant sine-wave filters and
inverter topology improvement in CM chokes
are needed motor supply
conditions
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